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We report on a rigorous operator-algebraic renormalization group scheme and construct the continuum

free field as the scaling limit of Hamiltonian lattice systems using wavelet theory. A renormalization group

step is determined by the scaling equation identifying lattice observables with the continuum field smeared

by compactly supported wavelets. Causality follows from Lieb-Robinson bounds for harmonic lattice

systems. The scheme is related with the multi-scale entanglement renormalization ansatz and augments

the semi-continuum limit of quantum systems.

Lattice regularization is a standard procedure to define con-

tinuum quantum field theories. While the classical works

of Glimm-Jaffe and others [1] have rigorously constructed

interacting models, the lattice and continuum theories are

related rather indirectly in terms of correlation functions.

A recent attempt in conformal field theory (CFT) inspired

by the block-spin transformation resulted in a discontin-

uous action of symmetries, even the translations [2–5].

Here, we utilize an operator-algebraic approach to the

renormalization group for lattice field theories clarifying

the roles of scaling maps and states ([6] for details and

proofs). We take scaling maps based on compactly sup-

ported Daubechies wavelets [7]. Renormalizing the ground

states of lattice free fields by these to approach the unstable,

massless fix point, we reconstruct the massive continuum

free field in the scaling limit.

More precisely, we invoke a formulation [8, 9] of the

Wilson-Kadanoff renormalization group [10–12] in terms

of operator algebras which is dual to the density matrix

renormalization group (DMRG) [13–15]. We explicitly

implement it in real space for scalar lattice fields in any

dimension based. Inspired by renormalization in classical

systems [16], we achieve this by a scaling function and its

multiresolution analysis (MRA), cp. [17, 18]. Restricting

to compactly supported wavelets, e.g. the Daubechies fam-

ily, we obtain sharp localization with adjustable regularity

compared with standard block-spin renormalization. This

avoids certain obstacles encountered in [2, 4, 5], see also

[19]. Pictorially, while the block-spin renormalization av-

erages uniformly over adjacent sites, the wavelet renormal-

ization takes a weighted average over the sites determined

by the length of the low-pass filter associated with the scal-

ing function. In the important case of harmonic (free) fields

[13, 20] we control all involved objects. We point out that

our approach yields a rigorous proof that spacetime local-

ity (in the sense of the Haag-Kastler axioms [21]) in the

continuum follows from Lieb-Robinson bounds [22–26].

For interacting lattice models, we do not expect to find all

objects in closed form, but approximations by analytical

and numerical expansion or perturbation methods will be

required [15, 27, 28].

Real-space renormalization schemes received a rapidly

growing interest in recent years, especially in the con-

text of tensor networks [29] and the multi-scale entangle-

ment renormalization ansatz (MERA) [30–32]. We show

that our wavelet renormalization yields an analytic MERA

[33, 34]. Mathematically, we identify the additional, dis-

crete dimension of the d + 1-dimensional tensor network

determined by a MERA for a d-dimensional quantum sys-

tem with the label set of an inductive system of operator

algebras [35]. Each label represents a different scale of a

given quantum system and the algebras consist of fields or

observables at these scales. The connecting maps of the

inductive system form the renormalization group acting on

the dual state spaces by coarse graining.

OPERATOR-ALGEBRAIC RENORMALIZATION

For the renormalization scheme [9], we fix a family of lat-

tices {ΛN}N∈N0
in R

d and consider a sequence of Hamil-

tonian quantum systems {AN ,HN ,H
(N)
0 }N∈N0

indexed

by the level N – the logarithmic scale accounting for the

relative density of lattice points. At each levelN , we have a

concrete C∗-algebra AN⊂B(HN) of basic field operators

acting on a Hilbert space HN and H
(N)
0 is a self-adjoint

Hamiltonian on B(HN). Then, renormalization group the-

ory considers (coarse graining) quantum operations, map-

ping a state on the finer system to one on the coarser system

EN+M
N (ρ

(N+M)
0 )=ρ

(N)
M , EN+1

N ◦ EN+1
N+1 =E

N+2
N , (1)

If these states are given by density matrices ρ
(N)
0 =

(Z(N)
0 )−1e−H

(N)
0 and ρ

(N)
M = (Z(N)

M )−1e−H
(N)
M , the parti-

tion functions should be equal [36]: Z
(N+M)
0 =Z

(N)
M .

Generalizing from density matrices to algebraic states, (1)

translates as:

EN+M
N (ω(N+M)

0 ) = ω
(N+M)
0 ◦ αN

N+M = ω
(N)
M , (2)

where αN
N+M : AN → AN+M is the dual of EN+M

N (the

ascending superoperators [31]). ω
(N)
0 and ω

(N)
M are initial

and renormalized states corresponding to ρ
(N)
0 and ρ

(N)
M .

The equality between the state sums of the initial and renor-

malized states requires that αN
N+M is unital and completely
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positive (ucp) sending states onto states and preserving

probability [35]. We call the collection {αN
N+M}M∈N0

, the

scaling maps or renormalization group. The semi-group

property manifests as: αN+1
N+2 ◦ α

N
N+1 =αN

N+2. The struc-

ture is neatly summarized by Wilson’s triangle of renor-

malization [11, p. 790] in Figure 1.

ω
(N)
0 ω

(N)
1 ω

(N)
2

. . . ω
(N)
∞ AN

ω
(N+1)
0 ω

(N+1)
1

. . . ω
(N+1)
∞

AN+1

E
N+1
N

E
N+1
N

αN
N+1

ω
(N+2)
0

. . . ω
(N+2)
∞

AN+2

E
N+2
N+1 αN+1

N+2

. .
. ...

...

FIG. 1: An analogue of Wilson’s triangle of renormalization.

Now, given a sequence of initial states {ω(N)
0 }N∈N0

, we

define its scaling limit as the sequence {ω(N)
∞ }N∈N0

, where

limM→∞ ω
(N)
M =ω(N)

∞ is the limit state on AN for fixed N .

A scaling limit satisfies the consistency property (coarse-

graining stability),

ω(N ′)
∞ ◦ αN

N ′ = ω(N)
∞ , N <N ′, (3)

whenever ω(N)
∞ exists in the weak*-sense for every N . A

scaling limit defines a state ω(∞)
∞ = lim←−N

ω(N)
∞ on the in-

ductive limit algebra lim−→N
AN =A, whenever it exists.

Physically, non-trivial scaling limits require the divergence

of correlation lengths ξ
(N)
M (w.r.t. M ) defined by ω

(N)
M be-

tween pairs of local operators. Thus, natural candidates

for the initial states are ground states ωλN
of lattice Hamil-

tonians HλN
admitting quantum critical points λ

(c)
N [37].

In this case, we can also consider the limit of dynamics,

η
(N)
t = eitH

(N)
0 ( · )e−itH

(N)
0 , under refinement. More pre-

cisely, for fixed t ∈ R and aN ∈ AN , one asks the conver-

gence of the sequence

{αN ′

∞ (η
(N ′)
t (αN

N ′(aN )))}N ′>N , (4)

in a suitable operator topology on A relative to the scaling

limit ω(∞)
∞ [38, 39]. Here, αN

∞ : AN → A are the natural

embeddings into inductive limit. This way we may define

the limit η
(∞)
t = limN→∞ η

(N)
t and obtain a scaling-limit

Hamiltonian H(∞)
∞ .

WAVELETS AND THE SCALAR FIELD

We now apply the above framework to lattice scalar fields,

setting up a specific renormalization scheme involving

compactly supported wavelets [7, 40]. A sequence of lat-

tices ΛN = εN{−rN , ..., 0, ..., rN − 1}d with scale pa-

rameters εN = 2−Nε > 0, rN = 2Nr ∈ N represents

a discretization of the torus [−L,L)d = T
d
L (the product

εNrN =L is fixed and we impose periodic boundary con-

ditions: rN ≡ −rN ). The kinematical setup of the lattice

scalar field systems is given in terms of the one-particle

spaces hN = ℓ2(ΛN ) [16, 41]: AN = W(hN) = WN ,

HN = F+(hN) ∼=
⊗

x∈ΛN
Hx, where Hx =L2(R), and

W(hN)=WN is the Weyl algebra,

WN(ξ)WN (η)=e−
i
2σN (ξ,η)WN(ξ + η), (5)

of hN w.r.t. the standard symplectic form, σN =ℑ〈·, ·〉hN
,

and the decomposition into real subspaces facilitated

by ξ = ε
d+1
2

N q + iε
d−1
2

N p for ξ ∈ hN using canoni-

cal scaling dimensions. We also need the dual lattices

ΓN = π

L
{−rN , ..., 0, ..., rN − 1}d and the identification

ℓ2(ΛN) ∼= ℓ2(ΓN , (2rN)
−d) via the discrete Fourier trans-

form, FN [ξ](k) =
∑

x∈ΛN
ξ(x)eikx = ξ̂(k). For the real

decomposition of ℓ2(ΓN , (2rN)
−d), we choose the normal-

ization: q̂ = ε
d
2

NFN [q], p̂ = ε
d
2

NFN [p]. Then, we choose

symplectic maps {RN
N ′}N∈N0

between one-particle spaces,

RN
N ′ : hN→hN ′ , αN

N ′(WN(ξ))=WN ′(RN
N ′(ξ)). (6)

The renormalization group element αN
N ′ is the second

quantization of RN
N ′ . The choice of the maps RN

N ′ is the

most important step in our framework, and it determines

the existence of the continuum scaling limit. Although

there is an obvious sequence of inclusions associated with

the inclusion ΛN ⊂ ΛN+1,

h0... ⊂ hN ⊂ hN+1 ⊂ ..., (7)

we do not take RN
N ′ as these inclusion maps. Instead, we

use the scaling equation [7, 42, 43]:

φ(x)=
∑

n∈Zd

hn2
d
2φ(2x− n), (8)

where φ is a scaling function, s.t. {φ( . −n)}n∈Zd is or-

thonormal. As we intend to built local operators, we spe-

cialize to a compactly supported scaling function φ nor-

malized by φ̂(0) = 1. Such a φ generates an orthonor-

mal, compactly supported wavelet basis in L2(Rd), and

the sum (8) is necessarily finite (hn is a finite low-pass fil-

ter [7]). We denote by φ(ε)
x ( · ) = ε−

d
2φ(ε−1( · − x))

the scaling function localized near x∈ εZd at length scale

ε. The orthonormality property of the scaling function,

(φ(ε)
x , φ(ε)

y )L2(Rd) = δx,y, x, y ∈ εZd, allows us to iden-

tify the linear span of {φ(ε)
x } with ℓ2(εZd). Periodiz-

ing {φ(ε)
nε }n∈Zd on the torus T

d
L, we formally identify,

δ(0)x ∼φ(ε)
x , x∈Λ0, with the standard basis of h0=ℓ2(Λ0).

With this identification and the scaling relation (8) in mind,

we define RN
N+1:

RN
N+1(δ

(N)
x )=2

d
2

∑

n∈Zd

hnδ
(N+1)
x+nεN+1

, (9)

where {δ(N)
x }x∈ΛN

is the standard basis of ℓ2(ΛN ). Choos-

ing log2 r ∈ N0 ensures completeness of (7) in L2(Td
L).
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The properties of the scaling functions entail that RN
N+1 is

symplectic. From (9), we derive the asymptotic map:

RN
∞(q, p)=

∑

x∈ΛN

(q, p)(x)φ(ε−1
N (· − x)). (10)

By (6), we have an inductive system of Weyl alge-

bras determining an inductive-limit Weyl algebra [35]:

lim−→N
WN = W . By the Gelfand-Naimark-Segal (GNS)

construction with respect to a scaling limit ω(∞)
∞ of a suit-

able sequence of initial states, W embeds in the contin-

uum field theory, as we see below. In accordance with

[2, 3, 8, 9, 44] we call W the semi-continuum limit, see

also [45, 46].

Connection with multi-scale entanglement renormalization

We can use the structure (9) of the map RN
N+1 to exhibit a

connection with the MERA [31, 32]. We decomposeRN
N+1

into the trivial isometry INN+1 resulting from the inclusion

ΛN⊂ΛN+1 and the symplectic rotation SN+1 with kernel:

SN+1(x−y)=
∑

n∈Zd

hnδn,ε−1
N+1(x−y)

, x, y∈ΛN+1. (11)

Then, the renormalization group element αN
N+1 takes the

form expected from a MERA [9, 30, 44]:

αN
N+1(·)=UN+1(·⊗1N+1\N)U

∗
N+1, (12)

where 1N+1\N is the identity on the ancillary Fock space

F+(ΛN+1 \ΛN) and UN+1 is the Bogoliubov unitary in-

duced by SN+1. The dual quantum channel EN+1
N =

TrN+1\N(U
∗
N+1( · )UN+1) is given by the twisted partial

trace on the ancillary. The actual MERA isometry and

disentangler are recovered in combined form by the GNS

isometry V N
N+1 induced by αN

N+1 due to (3) in the GNS

representation of a scaling limit ω(∞)
∞ :

Ω(N+1)
∞ =V N

N+1Ω
(N)
∞ , lim−→

N

Ω(N)
∞ =Ω(∞)

∞ (13)

where Ω(N)
∞ is the vector inducing ω(N)

∞ on WN . In this

sense, even our general renormalization group scheme pro-

duces an operator-algebraic MERA in the form of the maps

αN
N ′ and a scaling limit. Therefore, the scaling limits of

free lattice ground states onWN , which we construct be-

low, exhibit the structure of an analytic MERA [33, 47].

Spatial locality structure and translations

One of the most important properties of the renormaliza-

tion group elements αN
N ′ defined by (9) is their spatial lo-

calization which is encoded into the low-pass filter hn.

Defining the spatial support supp(aN) of a local opera-

tor aN at level N as the set of sites x ∈ ΛN s.t. the

restriction aN |x 6= 1 is compatible with the notion of sup-

port of elements in the one-particle space hN . From (9)

and the linearity (unitality) of RN
N ′ (αN

N ′) it follows that the

increase in support due to renormalization group steps is

bounded from above by 2−N(rmin−1), where rmin is the

number of nonzero hn’s. Thus, we can define local alge-

bras W(S) ⊂ W for open sets S ⊂ T
d
L by collecting at

each level N all the operators aN with support in the sub-

lattice ΛN(S) = ΛN ∩S of the points x∈ΛN ∩S s.t. the

cube x+[0, εN (rmin−1)]d does not intersect the bound-

ary ∂S . The bound on the increase of support ensures that

this definition is stable under the renormalization group el-

ements αN
N ′ . In other words, we have a local inductive

limit: W(S) := lim−→N
WN(S) = lim−→N

W(hN (S)), with

hN(S) = ℓ2(ΛN(S)). Then W =
⋃

SW(S) is a quasi-

local algebra [38] because:

W(S) ⊂ W(S ′) S ⊂ S ′, (14)

[W(S),W(S ′)] = {0} S ∩ S ′ = ∅. (15)

As the semi-continuum limit W is an algebra associated

with the Cantor set Λ∞ of the dyadic rationals scaled by ε
which results from the refinement of ΛN in the limit N→
∞, there is a natural action by translations ρ which brings

W(S) toW(S+x) for x ∈ Λ∞[48]. Whether this extends

to a continuous action of Rd in the scaling limit depends on

the choice of the initial states {ω(N)
0 }N∈N0

, cp. [2, 4, 9]. In

d = 1, W even admits a representations of Thompson’s

groups by identifying ΛN with a complete binary tree of

depth N [48].

SCALING LIMITS OF HARMONIC LATTICE SYSTEMS

We are now in a position to apply the renormalization

group {αN
N ′}N<N ′ defined by (9) to find the ground-state

scaling limits of the free lattice Hamiltonian onHN :

H
(N)
0 =

ε−1
N

2





∑

x∈ΛN

Π2
N |x+µ2

NΦ
2
N |x−2

∑

〈x,y〉⊂ΛN

ΦN |xΦN |y



 (16)

where µN ≥ 2d is a “mass” parameter and ΦN , ΠN are the

dimensionless canonical field and momentum operators at

level N identified via WN(ξ) = ei(ΦN (ℜξ)+ΠN (ℑξ)). The

ground state ΩµN ,0 of H
(N)
0 can be encoded into the state:

ωµN ,0(WN(ξ))=e
− 1

4 ||γ−1/2
µN

q̂N+iγ1/2
µN

p̂N ||
2

hN , (17)

with the dispersion relation γ2
µN

(k) = ε−2
N (µ2

N − 2d) +

2ǫ−2
N

∑d

j=1(1−cos(ǫNkj)), k∈ΓN . The GNS construction

applied toWN w.r.t. ωµN ,0 yields a representation which is

unitarily equivalent to that on HN s.t. ΩµN ,0 is identified

with the cyclic GNS vector.
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Scaling limit of the ground states

Let us now explain how ground-state scaling limits of (16)

can be constructed in any spatial dimension d≥1: Choos-

ing (17) for every N as our initial family of states, we gen-

erate a sequence of states {ω(N)
M }M∈N0

at each level N
(Figure 1). To avoid the fix points µ2

N = 2d (massless,

unstable) and µ2
N =∞ (ultralocal, stable) of the renormal-

ization group and hit the unstable manifold of the relevant

Φ2-operator, we need to satisfy the renormalization condi-

tion,

lim
N→∞

ε−2
N (µ2

N − 2d) = m2, (18)

for some m> 0. Then, the massive continuum dispersion

relation results from limM→∞ γµN+M
(k)2 = m2 + k2 =

γm(k)
2 and the scaling limit is (using (9) & (17)):

ω(N)
m,∞(WN(ξ))=e

− 1
4

∣

∣

∣

∣

∣

∣

φ̂
(εN )

0 (γ−1/2
m q̂+iγ1/2

m p̂)
∣

∣

∣

∣

∣

∣

2

2,L . (19)

Here, q̂, p̂ are periodically extended to π

L
Z

d, and || · ||2,L
is the standard norm of ℓ2( π

L
Z

d, (2L)−d). Since the con-

tribution to ω(N)
m,∞ involving p̂ is the most singular, the

limit states are well-defined for scaling functions with

momentum-space decay |φ̂(k)|≤C(1+|k|)−ρ s.t. ρ> d+1
2

.

This condition can be satisfied, for example, by a scal-

ing function associated with the Daubechies (D2K) wavelet

family, {Kφ}K∈N [7]. A sufficient choice for (19) is a ten-

sor product of D4 wavelets, φ= 2φ
⊗d, because ρ≈ 1.339

for this choice. The formula (19) for ω(N)
m,∞ equals the eval-

uation of the usual continuum ground state ω(L)
m of mass

m for finite volume L on the continuum Weyl operators

W (f, g) = ei(Φ(f)+Π(g)) with (f, g) = RN
∞(q, p). There-

fore, ω(∞)
m,∞ agrees with ω(L)

m on the span of wavelets as-

sociated with φ. But, because of the localization of these

wavelets, their density in the usual Sobolev spacesHs(Rd)
for sufficiently high regularity [7, 40] and the strong conti-

nuity of Weyl operators in the GNS representation π(∞)
m,∞

[41], we conclude that the local von Neumann algebras

π(∞)
m,∞(W(S))′′ equal those of the continuum free field

Am,L(S)[49] in finite volume. Since the scaling limit

ω(∞)
m,∞ is evidently invariant w.r.t. dyadic spatial transla-

tions, ρx is implemented by a unitary V (∞)
x . These uni-

taries can be extended to x ∈ T
d
L by continuity in the

strong operator topology because they coincide with the

translations in the continuum for dyadic x, and the mo-

mentum operators can be defined. The thermodynamical

limit of (19), L→∞, exists by a Riemann-sum argument

and yields the free, massive vacuum ωm in infinite volume

together with its local time-zero algebrasAm(S).

Dynamics, locality and Lieb-Robinson bounds

The dynamics η(N) :RyWN of the free lattice Hamilto-

nian H
(N)
0 is given by the harmonic time-evolution, τ (N) :

R y hN , on the one-particle space using γµN
. Then,

η
(N)
t (WN(q̂, p̂)) = WN(τ

(N)
t (q̂, p̂)), is well-defined be-

cause τ
(N)
t is symplectic. The initial states are preserved

by the dynamics, i.e. ωµN ,0◦η
(N)
t =ωµN ,0. As explained in

the general context, we understand the convergence of the

lattice dynamics to a dynamics for the scaling limit via se-

quences (4) with aN =WN(q, p). α
N
∞ is explicitly realized

by (10). As a consequence of (8), we have RN ′

∞ ◦R
N
N ′ =RN

∞

for N <N ′ with analogous identities for αN
∞. Since γµN

extends periodically to ΓN ′ for N<N ′≤∞, we find:

lim
N ′→∞

||RN ′

∞(τ
(N ′)
t (RN

N ′(q̂, p̂)))−τ
(∞)
t (RN

∞(q̂, p̂))||=0, (20)

for all N w.r.t. the closure h∞ in the norm || · || defined by

(19). τ (∞) :Ry h∞ is defined similarly to τ (N) using γm.

As γµN′
→γm we deduce

lim
N ′→∞

π(∞)
m,∞◦α

N ′

∞ ◦η
(N ′)
t ◦αN

N ′ =η
(∞)
t ◦π(∞)

m,∞◦α
N
∞, (21)

pointwise strongly on each AN and uniformly on bounded

intervals of t ∈ R. By construction, η(∞) : R y

π(∞)
m,∞(W)′′ is the time evolution of the continuum free

scalar field commuting with ρ. It is implemented by a

unitary group U
(∞)
t = eitH

(∞)
∞ with the (renormalized)

free continuum Hamiltonian H(∞)
∞ as its generator because

the scaling limit ω(∞)
m,∞ is invariant under η(∞). Explic-

itly, H(∞)
∞ is the second quantization of the generator h(∞)

∞

of τ (∞) on its natural domain [50]. Identifying h∞ with

ℓ2( π
L
Z

d, (2L)−d), h(∞)
∞ is given by (right) multiplication

with the matrix-valued function iγmσ2 (with σ2 the second

Pauli matrix). Since γm is the free, massive relativistic dis-

persion relation, we know that η(∞) has propagation speed

c=1 and, thus, obtain a causal net of local von Neumann

algebras for suitableO⊂R×Td
L [1, 21]:

Am,L(O)=

(

⋃

t∈R

η
(∞)
t (π(∞)

m,∞(W(O(t)))′′)

)′′

, (22)

where O(t) = {x | (t, x) ∈ O} ⊂ T
d
L. A more lattice-

intrinsic and model-independent way to conclude that (22)

defines a causal net is via Lieb-Robinson bounds [23, 24].

Considering the periodic extension of η(N) to W , e.g. by

(12), said bounds for harmonic lattice systems [25] imply:

lim
N→∞

∣

∣

∣

∣

∣

∣

[

η
(N)
t (W(S)),W(S ′)

]∣

∣

∣

∣

∣

∣=0, (23)

exponentially fast and uniformly for |t| ≤ T with Sc′T =
{x |dist(x,S)≤ c′T} and S ′ ∩ Sc′T = ∅ for some c′ > 1.

Because c′ > 1, the causality implied by (23) is not strict,

but that is rather not due to the argument than a non-optimal

bound on the Lieb-Robinson velocity [23].
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CONCLUSIONS AND OUTLOOK

Our results show that the existence of continuum lim-

its depends decisively on the choice of a renormalization

scheme. Using compactly supported wavelets and cor-

rectly choosing the initial states allows us to reconstruct

the continuum field theory from the lattice approximation

through the semi-continuum limit.

This new bridge between lattice and continuum field theory

may help to investigate other problems in quantum field

theory. As our general method can include fermions, we

expect that an application of the wavelet method to (free)

lattice fermions leads to similar results as those presented

here (adjusting the one-particle scaling maps to be uni-

tary). In this respect, it would be very interesting to ex-

hibit precise relations with other renormalization schemes

using wavelets [33, 47]. Since we are able to construct

the complete renormalization group trajectory for the Φ2-

operator, a rigorous proof of a (restricted) c-theorem [51]

is conceivable using the concept of entanglement entropy

[52, 53]. In d = 1, Jones’ construction yields a geometric

representation of Thompson’s group T onW interpretable

as an action of discretized, orientation-preserving diffeo-

morphisms of the circle [48]. But, expecting a genuine ex-

tension to diffeomorphisms in the continuum limit to ob-

tain a CFT, similar to the translations, is probably too naive

[54]. Continuing along these lines, although our methods

should be able to construct the U(1)-current from the lat-

tice (µ2
N = 2d), the induced Jones action by T corre-

sponds to diffeomorphisms acting on the time-zero slices

and not along light rays. The wavelet method works in

principle also for interacting lattice systems and the exis-

tence of scaling limits is ensured by weak*-compactness

of the state spaces. Moreover, Lieb-Robinson bounds for

anharmonic lattice systems [26] offer a possibility to obtain

spacetime locality directly from the lattice [23, 24]. Parts

of the classical results by Glimm-Jaffe and others [1] on in-

teracting models in d=1 can be formulated in terms of our

method using a low-pass filter that implements momentum-

space cutoffs [6] and should extend to the wavelet setting.

But, those results indicate as well that proving convergence

to the scaling limit is difficult [55].
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