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1. Introduction: Wedge triples and local nets

In relativistic quantum field theory, the rigorous construction of interacting models
in four space-time dimensions is still an open, challenging problem for mathematical
physics. Despite the insights we have gained from constructive quantum field theory
[1] and other methods [2], even the existence of interacting quantum field theories
satisfying standard assumptions has not been proved until today, and it seems that
new ideas are needed to improve this situation.

The aim of this contribution is to outline a recent development which uses
operator-algebraic deformation techniques as a new tool in the construction of QFT
models. This method is adapted to the framework of algebraic QFT [3, 4], where
models are specified in terms of their local observable algebras: For each spacetime
region O ⊂ R4 (in four-dimensional Minkowski space), one considers the algebra
A(O) generated by all observables localized in O. Basic properties like Einstein
causality and relativistic covariance can be formulated naturally in this algebraic
language, and nowadays many tools exist to extract important physical quantities,
such as the particle content, S-matrix, charge structure, thermal equilibrium states
and local field content, from the local net O 7→ A(O) [3] .

In all algebraic construction procedures developed so far, a particular kind of
unbounded region in Minkowski space plays a special role, the so-called right wedge

WR := {x = (x0, x1, x2, x3) ∈ R4 : x1 > |x0} .

The following algebraic structure is associated with this region.
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Definition 1.1. A wedge triple (A,B, α) consists of an inclusion A ⊂ B of C∗-
algebras and a strongly continuous automorphic action of the Poincaré group P on
B, such that

(1) αg(A) ⊂ A for all g ∈ P with gWR ⊂WR,
(2) αg′(A) ⊂ A′ ∩ B for all g′ ∈ P with g′WR ⊂ −WR,

where A′ ∩ B denotes the relative commutant of A in B.

The significance of wedge triples for QFT relies on the following facts [5]. On
the one hand, any QFT defines a wedge triple: Take B as the C∗-algebra of all
observables of the theory, localized anywhere in Minkowski space, and A as the
C∗-algebra of all observables localized in the wedge WR. Since we are considering
relativistic field theories, B carries an automorphic action of the Poincaré group, and
the two consistency conditions in the above definition hold because of the locality
and covariance properties of the theory.

On the other hand, any wedge triple gives rise to an associated QFT. Namely,
starting from a triple (A,B, α), one can define the “wedge algebras”

A(ΛWR + x) := αx,Λ(A) , (1)

and the consistency conditions imply that this assignment of wedges (Poincaré trans-
forms of WR) to C∗-algebras, W 7→ A(W ), complies with the usual isotony, covari-
ance and locality assumptions of QFT. Moreover, given a bounded spacetime region
O, one can unambiguously construct the maximal algebra A(O) of all observables
localized in O. These local algebras inherit the basic covariance and locality proper-
ties from the wedge triple. Since the construction of such A(O) involves intersections
of subalgebras of B, one has to check however that these algebras A(O) are non-
trivial, i.e. that the QFT associated to the triple (A,B, α) contains strictly localized
observables.

This two-sided relation between QFT models and wedge triples opens up the
possibility to realize new QFTs by exploring examples of wedge triples. The con-
struction then consists of first finding an appropriate triple (A,B, α), and then
working out the physics of the QFT associated to this triple.

As explained in [5], for the construction of QFTs in their vacuum representa-
tion, one can work with a particular concrete form of wedge triples: Consider a Fock
space H with its second quantized unitary strongly continuous representation U of
P, and let B := B(H), α := adU . Then the task is to find A ⊂ B(H) such that the
two conditions of Def. 1.1 are satisfied. In this setting, the structure of H and U is
dictated by the particle spectrum of the QFT to be described, and the choice of A
encodes the interaction.

In two dimensions, the constructive program making use of wedge triples has already
been carried through for a large family of interacting models, where the algebra A
is set up with the help of a factorizing S-matrix in the spirit of inverse scatter-
ing theory [6–9]. Also in the four-dimensional case, a number of authors have used
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wedge-localized objects for constructive purposes [10–13]. First wedge triples corre-
sponding to interacting QFTs have been constructed in [14] and then generalized
in [5] and [15]. These examples will be reviewed from a novel point of view in the
following.

As non-trivial wedge triples are hard to construct from scratch, we will in the
following consider the question how wedge triples can be deformed. That is, we will
assume a triple T := (A,B, α) complying with Def. 1.1 to be given (for example by
an interaction-free theory) and then “perturb” this structure in the family of wedge
triples to some Tθ. Here θ is a “coupling constant” such that T0 = T , and the QFT
corresponding to the deformed triple Tθ exhibits non-trivial interaction for θ 6= 0.

2. Rieffel deformations of wedge triples

The particular deformation of wedge triples which we want to discuss here relies on
Rieffel’ work on deformations of C∗-algebras, and we briefly recall some aspects of
this analysis [16]. Rieffel considers a unital C∗-algebra B equipped with a strongly
continuous action α of Rd by automorphisms. In our application to wedge triples,
B will be the larger algebra of a wedge triple (A,B, α), and the action α is given by
restricting the Poincaré action of this triple to the translation subgroup R4.

Rieffel’s analysis is based on a deformed product ×θ which can be introduced on
the dense subalgebra B∞ ⊂ B of elements B ∈ B for which x 7→ αx(B) is smooth.
To define it in our context, we equip R4 with the Minkowski inner product and
consider as deformation parameter a real (4 × 4)-matrix θ which is antisymmetric
with respect to the Minkowski product. Then the deformed product ×θ on B∞ is
given by the integral formula

A×θ B := (2π)−d
∫

Rd

dp

∫
Rd

dx e−ipx αθp(A)αx(B) , A,B ∈ B∞ . (2)

Note that the integral (2) has to be defined in an oscillatory sense.
Some results established in the general context of Rieffel deformations are the

following: ×θ carries B∞ into itself and is jointly continuous in the natural Fréchet
topology of this algebra, it is an associative product and reproduces the undeformed
product in B for θ = 0, i.e. A×0 B = AB. Furthermore, ×θ is compatible with the
identity and star involution of B.

We now consider a wedge triple (A,B, α), and want to use Rieffel’s procedure to
deform it. For the purposes of this note, we restrict ourselves to consider only a
realization associated with a P-invariant state. That is, in the following we put
B := B(H) for some Hilbert space H which carries a strongly continuous unitary
representation U of the Poincaré group with a U -invariant vector Ω. The action α

is the adjoint action of U on B(H), and A ⊂ B(H) a C∗-subalgebra.
To deform A, we consider the left multipliers B 7→ (A×θB) w.r.t. the deformed
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product (2). Since Ω is U -invariant, these products evaluate on Ω to

Aθ : BΩ 7−→ (A×θ B)Ω = (2π)−4

∫
dp

∫
dx e−ipx U(θp)AU(x− θp) BΩ , (3)

and define a new, deformed, operator Aθ, if the integral is interpreted in the same
oscillatory sense as before. This operator can also be represented as a “warped
convolution” of A by the spectral measure of U [5], and this point of view shows in
particular that the p-integration in (3) runs only over the spectrum S ⊂ R4 of U ,
while the x-integration runs over all of R4. That is, we have

Aθ = (2π)−4

∫
S

dp

∫
dx e−ipx U(θp)AU(x− θp) , (4)

and define the deformed wedge algebra Aθ as the C∗-algebra generated by all Aθ,
where A ∈ A is smooth.

We thus consider the deformed triple (Aθ,B(H), adU), and turn to the crucial
question under which conditions these data still define a wedge triple, such that it
can be used to build a QFT model.

Because of the form of the conditions in Def. 1.1, one has to study the effect
of Lorentz transformations on the operators Aθ to answer this question. A proof
cannot be given in this short contribution, but we will at least sketch what the main
mechanisms are which are relevant for making the Rieffel deformation preserve the
wedge triple structure.

One first computes that general Poincaré transformations (a,Λ) consisting of a
translation a ∈ R4 and a Lorentz transformation Λ act on the Rieffel product ×θ
according to

αa,Λ(A×θ B) = αa,Λ(A)×ΛθΛ−1 αa,Λ(B) . (5)

We thus have to compare Rieffel deformations with different deformation parame-
ters, and first choose a suitable θ adapted to the geometry of WR. Let

θ :=


0 κ1 0 0
κ1 0 0 0
0 0 0 κ2

0 0 −κ2 0

 , κ1, κ2 ∈ R , (6)

which is antisymmetric w.r.t. the Minkowski inner product. Then the transforma-
tions (a,Λ) appearing in Def. 1.1 can be characterized as follows [14]:

• ΛWR + a ⊂WR ⇔ ΛθΛ−1 = θ and a ∈WR,
• ΛWR + a ⊂ −WR ⇔ ΛθΛ−1 = −θ and a ∈ −WR.

So the wedge-preserving transformations appearing in the first condition in Def.
1.1 preserve θ, and the wedge-reflecting transformations appearing in the second
condition map θ to −θ.

With this choice of θ, it is straightforward to verify that the deformed algebra
Aθ satisfies the first consistency condition for any κ1, κ2 ∈ R.
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The second condition, related to the locality of the deformed theory, is more
involved. Since the transformations mapping WR into its causal complement cor-
respond to −θ, we must study the relation between the Rieffel deformations with
parameters θ and −θ. The second condition is valid if for all smooth A ∈ A, A′ ∈
A′, B ∈ B(H),

0 = A×θ (A′ ×−θ B)−A′ ×−θ (A×θ B) = (AθA′−θ −A′−θAθ)BΩ .

Using Rieffel’s formula (2), this commutator can be computed as the integral

[Aθ, A′−θ] = (2π)−4

∫
S

dp

∫
dx e−ipxU(x2 )[αθp(A), α−θp(A′)]U(x2 ) , (7)

where as before, S denotes the joint spectrum of the generators of the representation
of the translations.

Since A is stable under translations in the direction of WR, the commutant
A′ is stable under translations in the opposite direction. Hence if θp ∈ WR for
all p in the above integral, the commutator vanishes. As observed by Buchholz
and Summers [5], this situation is realized if one considers a vacuum representation
where S is contained in the forward lightcone, and the parameter κ1 is non-negative.

Theorem 2.1. Let θ be of the form (6), and let the spectrum of U |R4 be contained in
the forward lightcone. Then the Rieffel-deformed triple (Aθ,B(H), adU) is a wedge
triple for any κ1 ≥ 0, κ2 ∈ R.

This theorem has been obtained in the context of warped convolution deforma-
tions [5]. If it is applied to an interaction-free field theory, this wedge triple defines
a new QFT model [14].

The discussion of the properties of this field theory goes beyond the scope of
this note. We only mention here that the two-particle S-matrix changes under the
deformation [5, 14], which proves in particular that the deformed wedge triple is not
equivalent to the undeformed one. In application to Wightman quantum field the-
ories, the deformed theory is governed by θ-dependent fields (φ̃θ(p) = φ̃(p)U(θp) in
the scalar case), and can thus be interpreted as a field theory on non-commutative
Minkowski space [15]. This point of view also explains why the QFTs obtained by
Rieffel deformations have strong non-local features and do not contain strictly lo-
calized observables [5].

The details of the construction outlined here will soon be published in a joint paper
with D. Buchholz and S. J. Summers. Beyond the example of Rieffel deformations,
an infinite class of other deformations of wedge triples has been found which give
rise to similar field theoriesa. It seems that the family of wedge triples which lead to
new QFT models is very large, and it would be interesting to systematically inves-
tigate which models can be obtained from a free field theory by such deformation
procedures.

aG. Lechner, work in progress
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