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UNITARY, ANOMALOUS MASTER WARD IDENTITY AND ITS

CONNECTIONS TO THE WESS-ZUMINO CONDITION, BV FORMALISM

AND L∞-ALGEBRAS

ROMEO BRUNETTI, MICHAEL DÜTSCH, KLAUS FREDENHAGEN, AND KASIA REJZNER

Abstract. The C*-algebraic construction of QFT by Buchholz and one of us relies on the
causal structure of spacetime and a classical Lagrangian. In one of our previous papers we have
introduced additional structure into this construction, namely an action of symmetries, which
is related to fixing renormalisation conditions. This action characterizes anomalies and satisfies
a cocycle condition which is summarized in the unitary anomalous Master Ward identity. Here
(using perturbation theory) we show how this cocycle condition is related to the Wess-Zumino
consistency relation and the consistency relation for the anomaly in the BV formalism, where the
latter is the generalized Jacobi identity for the associated L∞-algebra.

1. Introduction

One of the most interesting features of quantum physics is the fact that symmetries of the
classical theory are, in general, not straightforwardly transferred to the corresponding quantum
theory. Instead, often the symmetries are modified by anomalies. These satisfy the Wess-Zumino
consistency relations [29], and the arising new structures have a crucial impact on the quantum
theory, e.g. on the formulation of the standard model of particle physics.

In perturbative algebraic quantum field theory (pAQFT), the anomalies can be obtained in terms
of the anomalous Master Ward Identity (AMWI) [4,12,14], and it was shown by Hollands [22] that
in Yang-Mills theory these anomalies satisfy a consistency relation which allows one to apply the
homological methods of the BRST formalism with antifields, where the key information about the
theory is encoded in a certain differential. In [18,26] this result was generalized to arbitrary theories
with local gauge symmetries by giving it the interpretation in terms of the infinite-dimensional
rigorous version of the Batalin-Vilkovisky (BV) formalism. One of the crucial results of that work
was to formulate the difference between classical symmetries and their quantized counterparts
in terms of deformation of the classical BV differential to the quantum BV differential. This
deformation is induced by the deformation of the pointwise product of the classical theory to the
renormalized time-ordered product. In particular, a renormalized BV Laplacian was introduced,
and its action on the BV algebra could be understood in terms of the anomaly [26]. Recently,
Fröb [21] succeeded in proving that the arising algebraic structure is that of an L∞-algebra. The
Wess-Zumino consistency relation has also been applied recently in [27] in the treatment of global
anomalies. Another insight concerns the difference between consistent anomalies, i.e. those that
satisfy the Wess-Zumino conditions, and the so-called covariant anomalies [2]. We do not enter into
this in our paper and refer the reader to the literature [3].

In a previous paper [8], we investigated the action of symmetries in the C*-algebraic construction
of scalar quantum field theories proposed in [11]. In that construction the algebras are generated
by S-matrices which describe local interactions within compact regions of spacetime. Subject to a
causality condition and a unitary version of the Schwinger-Dyson equation, one obtains a net of
C*-algebras satisfying the Haag-Kastler axioms, generalized to generic globally hyperbolic space-
times according to the principles of locally covariant QFT [10]. Starting from the free Lagrangian

1

http://arxiv.org/abs/2210.05908v1
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and admitting only linear interactions, one obtains the well known Weyl algebra of the free field.
If one includes more general interactions, the arising algebra possesses automorphisms which act
nontrivially only in a compact subregion. The existence of such internal symmetries violates the
time slice axiom which states that observations in the neighborhood of some Cauchy surface deter-
mine all other observables, i.e. the algebra associated to this neighborhood is already the algebra
of the whole spacetime.

Therefore, we introduced in [8] an additional axiom for these C*-algebras: the “unitary anoma-
lous Master Ward Identity (UAMWI).” It characterizes how symmetries of the classical configu-
ration space are modified in the quantum theory. The symmetries considered form a group Gc of
transformations with compact support, generated by affine field redefinitions and point transfor-
mations. The modification consists in a transformation of the classical functional describing the
local interaction. It leads to a map (the anomaly term) ζ : Gc → Rc to a group Rc which is in-
terpreted as the analogue to the Stückelberg-Petermann renormalization group which according to
Stora’s Main Theorem of Renormalization [15,25] governs the freedom of imposing renormalization
conditions. And, most importantly for this paper, ζ satisfies a cocycle relation. We also showed
that this cocycle ζ exists in the perturbative version of the model where it can be determined up
to equivalence and yields the known anomalies.

Building on these results, in the present paper we explore further the cocycle condition, focusing
on perturbation theory. Since the non-triviality of this cocycle is related to the existence of anom-
alies, it is reasonable to expect that it should be related to the Wess-Zumino consistency condition.
The latter has been originally derived in the context of the effective action and it reflects to the way
in which this action transforms under infinitesimal gauge symmetries. In Section 3 we review that
original derivation, following essentially [1]. Although it is clear that the Wess-Zumino consistency
condition has to be related to the action of the Lie algebra of the group of symmetries of the theory,
the precise statement of this fact in the framework of [8,11] has not been known. While addressing
this question, the present work also makes connections with another statement of the Wess-Zumino
consistency condition, namely the one present in the BV formalism.

Concretely, we show that, considering the infinitesimal symmetry transformations, the cocycle
ζ induces a corresponding map ∆ : LieGc → LieRc which is a Lie algebraic cocycle, and that this
cocycle is the anomaly map appearing in the AMWI (Theorem 10.3 in [8] and Theorem 5.1 in
this paper). This provides a link between the notions of anomalies used in perturbation theory [4]
and anomalies in the non-perturbative formulation of [8]. In Section 4, in Theorem 4.1, we give
another derivation of the cocycle relation for ∆: we show that the anomaly ∆ of the AMWI
satisfies a consistency condition, which is precisely the cocycle relation for ∆, and which we call the
extended Wess-Zumino consistency condition, as it reduces to the standard Wess-Zumino condition
for quadratic interactions.

Finally, we discuss the relation to the BV formalism. In [18], two of us have shown that the
anomaly in the AMWI is in fact related to the renormalised BV Laplacian, so it is natural to expect
that the algebraic properties of the BV Laplacian would be reflected also in the cocycle condition.
This is indeed the case, as we prove in Section 6 that the extended cocycle condition for ∆ follows
directly from the nilpotency of the BV operator, when applied to those infinitesimal symmetries
which arise from affine field redefinitions g ∈ Gc (Prop. 6.6).

2. The framework

2.1. Perturbative algebraic quantum field theory (pAQFT). We use the same setting for
pAQFT as in [8, Sect. 10 and App. C]; for the convenience of the reader we repeat here in a
somewhat sketchy way the notations, definitions and results being relevant for this paper.

We consider an n-component real scalar field Φ on a globally hyperbolic curved space-time M
of dimension larger than 2. The classical configuration space E (M,Rn) is the space of smooth
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functions on M with values in Rn. The basic field Φ(x) is the evaluation functional

Φ(x) : E (M,Rn) → R
n ; Φ(x)[φ] = φ(x) . (2.1)

Observables are elements of the space F (M) of functionals F : E (M,Rn) → C which are polynomial
in φ and have the form

F [φ] =
m
∑

k=0

〈fk, φ
⊗k〉 (2.2)

with compactly supported distributional densities fk on Mk satisfying suitable conditions on their
wave front sets [6,9]. The latter ensures the existence of the star product of the free theory (which is
given in terms of the free Lagrangian L, see below) as a map ⋆ : F (M)×F (M) → F (M). This star
product is an ~-dependent deformation of the (commutative) pointwise product: F ·G[φ]

.
= F [φ]G[φ]

for F,G ∈ F , φ ∈ E (M,Rn), see [13] or [16, Chap. 2]. The (functional) support of a functional F
as above is the smallest closed set K ⊂ M such that supp fk ⊂ Kk for all k (where supp f0 = ∅ is
understood).

The subspace of local functionals F ∈ Floc(M) is defined by the additional conditions that F

is R-valued and of the form F [φ] =
∫

F̂ (x, jx(φ)), with a smooth density-valued function F̂ on the
jet space of E (M,Rn) with compact support in x.

The LagrangianL is the standard Lagrangian of the free theory where we use the canonical metric
on Rn; L(x) is a density with values in the local functionals and we write L(f)

.
=
∫

M
L(x)f(x) ∈

Floc(M) for f ∈ D(M,R).
To construct the time ordered product we use an off-shell version of the Epstein-Glaser method1

[17], generalized to globally hyperbolic space times [9,23,24]. We furthermore use the fact that the
k-fold pointwise product of local functionals which vanish at the zero configuration is injective and
thus isomorphic to its image, the k-local functionals2 F ∈ Fk loc(M). Identifying the 1-fold product
with the identity and the 0-fold product with the map R ∋ c 7→ Fc with the constant functional
Fc[φ] = c, we can describe the time ordered product as a linear map

T : F• loc(M) → F (M) (2.3)

where F• loc(M), the space of multilocal functionals, is the direct sum of the spaces Fk loc(M) of
k-local functionals, k ∈ N0 [18]. We can then equip the space TF• loc(M) with the commutative
and associative product

F ·T G
.
= T ((T−1F ) · (T−1G)) . (2.4)

On local functionals T is the identity. In the sense of formal power series we can then characterize
T by its action on exponentials of local functionals S(F ) = TeiF ≡ eiF·T , the formal S-matrices. They
are unitaries with respect to the ⋆-product and have to satisfy the condition of causal factorization

S(F +G) = S(F ) ⋆ S(G) if suppF ∩ J−(suppG) = ∅ (2.5)

where J− denotes the past of a space-time region and F,G ∈ Floc(M). The time-ordered product
is further restricted by renormalization conditions: in this paper we also require field independence

δ

δφ
T (F ) = T

(

δ

δφ
F

)

, F ∈ F• loc(M), (2.6)

and the off-shell field equation

T (F · 〈Φ, f〉) = T (〈F ′, EFf〉) + T (F ) · 〈Φ, f〉 , f ∈ D(M,Rn), F ∈ F• loc(M), (2.7)

1Epstein and Glaser consider Fock space operators of the form
∑

k
〈fk , :ϕ

⊗k:〉 with the normal ordered products
of the free field ϕ. This corresponds to a restriction of functionals to the space of solutions of the free field equation
(on shell formalism).

2Note that Floc(M) = F0 loc(M) + F1 loc(M).
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where EF is the Feynman propagator and F ′ is the first derivative of F . Note that the non-
uniqueness of the Feynman propagator on curved spacetimes leads to an ambiguity of the time-
ordered product which however is irrelevant since it is absorbed by a corresponding freedom in the
association of observables to functionals by a normal ordering procedure, see [19, 20] for details.
Time ordered products satisfying these axioms exist, and, according to Stora’s Main Theorem of
Renormalization [15, 25], any two formal S-matrices S and Ŝ are related by

Ŝ = S ◦ Z (2.8)

where Z is a formal power series

Z(F ) =

∞
∑

n=1

1

n!
Zn(F

n) (2.9)

of linear maps Zn : Fn loc(M) → Floc(M). The Stückelberg-Petermann renormalization group R0

is defined to be the set of maps Z ≡ (Zn)n∈N appearing in (2.8), and one proves that this set is
indeed a group [15]. For a direct definition of R0 see [6, 15] or [16, Chap. 3.6].

We immediately see that Z1 = id. To include also possible changes of the Feynman propagator
which is unavoidable in a generally covariant formalism [24], we generalize the definition of R0 by
admitting nontrivial, but still invertible Z1 which describe the change of the normal ordering and
thus the action of the time ordering operator T̂ on 1-local functionals. For convenience, we continue
to use a time ordering operator T which is the identity on local functionals and obtain the more
general time orderings by composition with the renormalization group map Z as in equation (2.8).

2.2. Unitary anomalous master Ward identity. In pAQFT, the unitary anomalous master
Ward identity (UAMWI) describes the behaviour of the time-ordered product under the group
Gc(M) of compactly supported automorphisms of the affine bundleM×Rn. This group is generated
by the following transformations g : E (M,Rn) → E (M,Rn):

• Point transformations, i.e. smooth and compactly supported diffeomorphisms ρ :M →M
inducing the transformation gρ : φ 7→ gρ(φ)

.
= φ ◦ ρ.

• Affine field redefinitions g(A,ψ) with A ∈ D(M,GL(n,R)) and ψ ∈ D(M,Rn) which act on
configurations by

g(A,ψ)(φ)(x)
.
= φ(x)A(x) + ψ(x) . (2.10)

where φ(x) and ψ(x) are considered as row vectors.

The action of Gc(M) on a functional F ∈ Floc(M) is defined by

g∗F [φ]
.
= F [g (φ)] (2.11)

and the free Lagrangian L is transformed by

((gρ)∗L)(f)
.
= (gρ)∗(L(f ◦ ρ)) , ((g(A,ψ))∗L)(f)

.
= (g(A,ψ))∗(L(f)) (2.12)

with f ∈ D(M,R). Note that (gh)∗ = g∗h∗ for g , h ∈ Gc(M), that is, Gc(M) ∋ g 7→ g∗ is a
representation of Gc(M) by maps on Floc(M).

The group Gc(M) acts on the full Lagrangian, and hence on the interaction by an L-dependent
action on Floc(M)

(g , F ) 7→ gLF
.
= δgL+ g∗F where δgL

.
= g∗L(f)− L(f) (2.13)

with f ∈ D(M,R) such that f |supp g = 1. Obviously eL = idFloc(M,L) for the unit e ∈ Gc(M), and

one verifies that (gh)L = gL ◦ hL.
The unitary anomalous master Ward identity (UAMWI) relates the transformations induced by

the action g → gL to renormalization group transformations ζg ∈ R0 with supp ζg = supp g . Here

the support of Z ∈ R0 is the smallest closed subset N of M such that Z(F +G) = F + Z(G) for
all F,G ∈ Floc(M) with suppF ∩N = ∅. The subgroup Rc of R0 of renormalization group maps
Z with compact support was discussed in [8, Appendix C].
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We will now discuss the UAMWI in pAQFT. To allow for an off-shell description, we introduce
“sources.” Let q ∈ Edens(M,Rn) be a smooth density and we define Lq

.
= L − 〈Φ, q〉. In pAQFT,

the UAMWI states that there exists a map (called “anomaly map”)

ζ : Gc(M) → Rc, satisfying ζe = idFloc(M), supp ζg ⊂ supp g (2.14)

and the cocycle relation

ζgh = ζh h−1L ζg hL , g , h ∈ Gc(M) , (2.15)

such that for every smooth density q ∈ Edens(M,Rn)

S ◦ gLq
(F )[φ] = S ◦ ζg (F )[φ] , for φ solving

δL

δφ
[φ] = q , (2.16)

with g ∈ Gc(M), F ∈ Floc(M) arbitrary. As shown in Theorem 10.3 in [8], the UAMWI follows3

from the anomalous master Ward identity (AMWI) [4] (recalled below in (2.24) or (2.26)), which
is its infinitesimal version, formulated in terms of the respective Lie algebras.

The Lie algebra LieRc is defined as follows (compare [8, Appendix C]): it is the space of formal
power series z(F ) =

∑∞

n=1
1
n!zn(F

n), with linear maps zn : Fn loc(M) → Floc(M), with the
properties

(P1) id + λz1 is invertible for λ sufficiently small,
(P2) z(F +G) = z(F ) + z(G) for suppF ∩ suppG = ∅, F,G ∈ Floc(M),
(P3) z(F + 〈Φ, ψ〉) = z(F ) for ψ ∈ D(M,Rn),
(P4) δ

δφ
z(F ) = 〈z′(F ), ( δ

δφ
F )〉 ,

(P5) the support of z is compact, where supp z is the smallest closed subset N of M such that
z(F +G) = z(G) for all F,G ∈ Floc(M) with suppF ∩N = ∅.

The action of Gc(M) on the configuration space (considered as an affine space) induces an action
of the Lie algebra LieGc(M) with values in the associated vector space,

E (M,Rn)× LieGc(M) ∋ (φ,X) 7→ φX . (2.17)

To determine the Lie bracket, it is convenient to describe the Lie algebra LieGc(M) in a faithful
representation of the group. Since Gc(M) acts from the right on field configurations, we write it in
terms of a matrix multiplication from the right on the space E (M,Rn)⊕ R in the form

g : (φ, c) 7→ (φ, c)

(

A 0
ψ 1

)

◦

(

ρ 0
0 id

)

, (2.18)

with g = (A,ψ, ρ), from which we get

X : (φ, c) 7→ (φ, c)

(

a+
←

∂ µ v
µ 0

p 0

)

= (φa + vµ∂µφ+ cp, 0)
.
= (φX, 0) (2.19)

with the Lie algebra element X = (a, p, v), a ∈ D(M, gl(n,R)), p ∈ D(M,Rn) and a smooth vector
field v with compact support. The Lie bracket

[(a, p, v), (b, q, w)] = ([a, b] + wν∂νa− vν∂νb, pb− qa+ wν∂νp− vν∂νq, w
ν∂νv − vν∂νw) (2.20)

can directly be obtained from the matrix representation above. Note the unusual sign of the Lie
bracket of vector fields due to the action of derivatives to the functions on the left, indicated by
the upper left arrow.

3In [8] only the case q = 0 was treated. The generalization to arbitrary densities q relies on the fact that ζ does
not change under adding a source term −〈Φ, q〉 to the Lagrangian, see Theorem A.1 in appendix A. In particular,
the proof of that Theorem explicitly shows that the cocycle relation (2.15) is a necessary condition for the UAMWI
(2.16).
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The action of LieGc(M) on field configurations yields a representation X 7→ ∂X on the space of
local functionals with

∂XF [φ] = 〈F ′[φ], φX〉 ≡

∫

δF

δφa(x)
[φ](φX)a(x) , (2.21)

where we use the usual summation conventions over the components of φ, a = 1, . . . , n; and the
functional derivative is naturally identified with a density. In particular we have

[∂X , ∂Y ] = ∂[X,Y ] . (2.22)

For the Lagrangian, we set

∂XL
.
= ∂XL(f) with f ∈ D(M,R) satisfying f |suppX = 1. (2.23)

To derive the AMWI from the UAMWI let X ∈ LieGc(M) be the tangent vector at λ = 0 of a
smooth curve λ 7→ gλ ∈ Gc(M) with g0 = e. Starting with the UAMWI (2.16) we substitute gλ

for g and apply d
dλ

|λ=0; this yields

T
(

eiF ·
(

∂XF + ∂XLq −∆X(F )
)

)

[φ] = 0 , for φ solving
δL

δφ
[φ] = q , (2.24)

with X ∈ LieGc(M), F ∈ Floc(M) and where

∆ : LieGc(M) ∋ X 7→ ∆X
.
=

d

dλ

∣

∣

∣

λ=0
ζgλ ∈ LieRc . (2.25)

Indeed, (2.24) agrees with the AMWI, thus ∆X(F ) coincides with the uniquely determined anomaly
in the AMWI (see [4, Thm. 7], [5, Thm. 5.2] and [16, Chap. 4.3]). The AMWI (2.24) may also be
written in the equivalent form

eiFT ·T
(

∂XF + ∂XL−∆X(F )
)

=

∫

(

eiFT ·T (∂XΦ(x))a
) δL(f)

δφa(x)
, f ≡ 1 on suppX , (2.26)

where δL(f)/δφa(x) is understood as a density. We observe that the map X 7→ ∆X is linear and
that supp ζg ⊂ supp g implies supp∆X ⊂ suppX . Moreover, there is a common locality of ∆X(F )
in X and F derived in [4, Thm. 7], see also [16, Thm. 4.3.1]:

Lemma 2.1. The anomaly map ∆ of the AMWI satisfies

supp∆X(F ) ⊂ suppF ∩ suppX. (2.27)

and

∆X(F ) = 0 if suppF ∩ suppX = ∅ . (2.28)

3. Review of the Wess-Zumino consistency relations

Following [1], we concentrate here on the subgroup Go ⊂ Gc of orthogonal field redefinitions
φ 7→ gφ where g : M 7→ SO(n,R) is smooth and compactly supported and φ is written as a
column vector. An orthogonal field redefinition may be interpreted as a gauge transformation. It
transforms the trivial connection on the vector bundle M ×Rn to an equivalent one which may be
considered as an external gauge field A which is a pure gauge, i.e. A = g−1dg for some g ∈ Go.
We consider Lagrangians LA,

LA(φ) =
1

2
〈(d+ A)φ, (d+A)φ〉 , (3.1)

which depend on a compactly supported external gauge field A, considered as a so(n,R)-valued
1-form, in symbols A ∈ Ω1

c(M, so(n)). The bracket here combines the spacetime metric on 1-forms
together with the canonical inner product on Rn. We have

(g∗LA)(φ) = LA(g
−1φ) = LAg (φ) , (3.2)
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where Ag = g (dg−1)+ gAg−1 is the gauge transformed gauge field. Let V (A)
.
=
∫

(LA−L) denote
the interaction induced by A. Then

V (Ag ) = gLV (A) , (3.3)

where gL refers to the action of Go on φ defined in (2.13). One now considers the effective action,
i.e. the Legendre transform of the generating functional of connected Green’s functions,

Γ(A,ϕ)
.
= 〈ϕ, J〉 − i log

(

S(V (A) + 〈Φ, J〉)[φ = 0]
)

, ϕ ∈ D(M,Rn) , (3.4)

where J(ϕ,A) is the solution of

ϕ = −i
δ

δj
log
(

S(V (A) + 〈Φ, j〉)[φ = 0]
)∣

∣

j=J
. (3.5)

Since LA is a quadratic functional of φ, we have the explicit solution

J = �Aϕ (3.6)

with the d’Alembertian �A for an external gauge field A. Thus

Γ(A,ϕ) =

∫

LA(ϕ)− i log
(

S(V (A) + 〈Φ,�Aϕ〉)[φ = 0]
)

. (3.7)

In the absence of anomalies Γ should be gauge invariant. The action of the gauge group on gauge

fields A 7→ Ag and matter fields ϕ 7→ gϕ induces a corresponding representation X 7→ ∂A,ϕX of the
Lie algebra, acting by derivations on functions K of these fields,

∂A,ϕX K(A,ϕ)
.
=

d

dλ

∣

∣

λ=0
K(Agλ , gλϕ) (3.8)

with gλ = exp (−λX); in particular [∂A,ϕX , ∂A,ϕY ] = ∂A,ϕ[X,Y ] holds. One defines the anomaly by

G(X,A)
.
= ∂A,ϕX Γ(A,ϕ) . (3.9)

Even though Γ is nonlocal and depends on ϕ, the anomaly is a local functional of A and independent
of ϕ. These two statements are well known from the literature (see e.g. [28]), but for completeness
we give independent proofs below. An immediate consequence of the definition (3.9) is the Wess-
Zumino consistency relation

∂AXG(Y,A) − ∂AYG(X,A) = G([X,Y ], A) , (3.10)

where we write ∂AX instead of ∂A,ϕX when acting on a functional not depending on ϕ. The consis-
tency relation is a nontrivial restriction on the structure of anomalies, although it is an obvious
consequence of the fact that anomalies are defined directly through a Lie elgebra action.

Next we show how this consistency relation can be derived directly from the UAMWI. For
g ∈ Go, we have that

V (Ag ) + 〈Φ,�Ag (gϕ)〉 = gL
(

V (A) + 〈Φ,�Aϕ〉
)

. (3.11)

Using the UAMWI, we get

S
(

V (Ag ) + 〈Φ,�Ag (gϕ)〉
)∣

∣

φ=0
= S

(

ζg

(

V (A) + 〈Φ,�Aϕ〉
))∣

∣

φ=0
. (3.12)

Using parts (i) and (iii) of Prop. 4.14 in [8], we obtain

ζg

(

V (A) + 〈Φ,�Aϕ〉
)

= ζg

(

V (A)
)

+ 〈Φ,�Aϕ〉 = V (A) + 〈Φ,�Aϕ〉+G(g , A) , (3.13)

with a functional G which depends on g and A but does neither depend on the field ϕ nor on the
field configuration φ. Moreover G is local in the sense that for x 6= y

δ2G

δA(x)δA(y)
= 0 ,

δ2G

δg (x)δA(y)
= 0 and

δ2G

δg (x)δg (y)
= 0 . (3.14)



8 R. BRUNETTI, M. DÜTSCH, K. FREDENHAGEN, AND K. REJZNER

This follows from G(g , A) = ζg (V (A))− V (A) (3.13) and the following proposition:

Proposition 3.1. Let ω, ω1, ω2 ∈ Ω1
c(M, so(n)), g , g1, g2, h ∈ G0 such that suppω1 ∩ suppω2 = ∅,

suppω ∩ supp g = ∅ and supp g1 ∩ supp g2 = ∅.Then

(1) ζh

(

V (A+ ω1 + ω2)
)

= ζh

(

V (A+ ω1)
)

− ζh

(

V (A)
)

+ ζh

(

V (A+ ω2)
)

,

(2) ζgh

(

V (A+ ω)
)

= ζh

(

V (A+ ω)
)

− ζh

(

V (A)
)

+ ζgh

(

V (A)
)

,

(3) ζg1g2h

(

V (A)
)

= ζg1h

(

V (A)
)

− ζh

(

V (A)
)

+ ζg2h

(

V (A)
)

.

Proof. (1) From V (A) =
∫

(LA − L)) we see that V is a local functional of A, hence

V (A+ ω1 + ω2) = V (A+ ω1)− V (A) + V (A+ ω2) (3.15)

and supp (V (A+ ωi)− V (A)) ⊂ suppωi, i = 1, 2. Since ζh satisfies the additivity relation

ζh(F +G+H) = ζh(F +G)− ζh(G) + ζh(G+H) (3.16)

for F,G,H ∈ Floc(M) with suppF ∩ suppH = ∅, we get

ζh

(

V (A+ ω1 + ω2)
)

= ζh

(

(V (A+ ω1)− V (A)) + V (A) + (V (A+ ω2)− V (A))
)

= ζh

(

V (A+ ω1)
)

− ζh

(

V (A)
)

+ ζh

(

V (A+ ω2)
)

. (3.17)

(2) From the cocycle relation we have ζgh = ζhζ
h
g with ζh

g
.
= h−1L ζg hL ∈ Rc [8, Lemma 5.4]. In

the first step we show that supp ζh
g ⊂ supp ζg .

Let F,G ∈ Floc(M) and suppG ∩ supp g = ∅. With supp h∗G = suppG we get

ζh
g (F +G) = h−1L ζg (hLF + h∗G)

= h−1L
(

ζg (hLF ) + h∗G
)

= ζh
g (F ) +G . (3.18)

Then supp
(

ζh
g (V (A)) − V (A)

)

⊂ supp ζh
g ⊂ supp g (see [8, Prop. 4.14(ii)]) and we find

that

ζgh

(

V (A+ ω)
)

= ζhζ
h
g

(

(V (A+ ω)− V (A)) + V (A)
)

= ζh

(

ζh
g (V (A)) + V (A+ ω)− V (A)

)

= ζh

((

ζh
g (V (A))− V (A)

)

+ V (A) +
(

V (A+ ω)− V (A)
))

= ζhζ
h
g

(

V (A)
)

− ζh

(

V (A)
)

+ ζh

(

V (A+ ω)
)

. (3.19)

(3) In the first step we show that for g , h ∈ Go with disjoint supports (i.e. supp g ∩ supp h = ∅)
the following relation holds for F ∈ Floc(M):

ζh
g (F ) = h−1L ζg hL(F )

= h−1L ζg

(

(hLF − F ) + F
)

= h−1L (hLF − F + ζg (F ))

= F − h−1L F + h−1L ζg (F )

= F − h−1L F + h−1L
(

(ζg (F )− F ) + F
)

= F − h−1L F + ζg (F )− F + h−1L F

= ζg (F ) . (3.20)
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Here we used that supp (hLF − F ) ⊂ supp h and supp (ζg (F ) − F ) ⊂ supp g . We now
compute

ζg1g2h(F ) = ζh h−1L ζg2ζ
g2
g1 hL(F )

= ζh h−1L ζg2ζg1hL(F )

= ζh h−1L ζg2

(

(ζg1hL(F )− hL(F )) + hL(F )
)

= ζh h−1L
(

(ζg1hL(F )− hL(F )) + ζg2hL(F )
)

= ζh

(

ζh
g1(F )− F + ζh

g2(F )
)

= ζh

(

(ζh
g1(F )− F ) + F + (ζh

g2(F )− F )
)

= ζhζ
h
g1(F )− ζh (F ) + ζhζ

h
g2(F )

= ζg1h(F )− ζh(F ) + ζg2h(F ) . (3.21)

In the second last step we were able to apply the additivity of ζh (3.16) since supp (ζh
gj (F )−

F ) ⊂ supp gj . Inserting F = V (A) yields the claim in the proposition.
�

We now insert (3.13) into (3.12) and find

S
(

V (Ag ) + 〈Φ,�Ag (gϕ)〉
)
∣

∣

φ=0
= S

(

V (A) + 〈Φ,�Aϕ〉
)
∣

∣

φ=0
eiG(g ,A). (3.22)

Hence, using (3.7) and (3.2), we obtain the following action of Go on the effective action:

Γ(Ag , gϕ) = Γ(A,ϕ) +G(g , A) . (3.23)

Since (Ah )g = Agh and G(g , Ah) does not depend on ϕ, we immediately see that G satisfies the
cocycle relation

G(gh , A) = G(g , Ah) +G(h , A) . (3.24)

The Wess-Zumino consistency relation is just the infinitesimal version of this cocycle relation with

G(X,A) =
d

dλ

∣

∣

∣

λ=0
G(exp(−λX), A) . (3.25)

This follows from the fact that Go acts on Γ as an antirepresentation. To see it directly, we compute

∂AXG(Y,A)− ∂AY G(X,A) =
∂2

∂λ∂µ

∣

∣

∣

λ=µ=0

(

G
(

exp(−µY ), Aexp(−λX)
)

−G
(

exp(−λX), Aexp(−µY )
)

)

=
∂2

∂λ∂µ

∣

∣

∣

λ=µ=0

(

G
(

exp(−µY ) exp(−λX), A
)

−G
(

exp(−λX) exp(−µY ), A
)

)

,

(3.26)

where we used the cocycle condition (3.24) and the fact that the terms which depend only on one
of the variables, λ or µ, do not contribute to the derivative. We use now the following consequences
of the Baker-Campbell-Hausdorff formula:

exp(−λX) exp(−µY ) = g+(λ, µ) exp(
1

2
λµ[X,Y ]) (3.27)

and

exp(−µY ) exp(−λX) = g−(λ, µ) exp(−
1

2
λµ[X,Y ]) , (3.28)
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where g+ and g− coincide up to 2nd order. Inserting this into the previous formula and using again
the cocycle condition, together with G(e, A) ≡ 0, we find

∂AXG(Y,A)− ∂AY G(X,A) =
∂2

∂λ∂µ

∣

∣

∣

λ=µ=0

(

G
(

g−(λ, µ), A
exp(− 1

2
λµ[X,Y ])

)

+G
(

exp(− 1
2λµ[X,Y ]), A

)

−G
(

g+(λ, µ), A
exp(+ 1

2
λµ[X,Y ])

)

−G
(

exp(12λµ[X,Y ]), A
)

)

= G([X,Y ], A) ,

(3.29)

since the terms involving g+ and g− cancel.

4. Consistency relation for the anomaly of the AMWI

We return to the more general framework introduced in Sect. 2. We aim at a derivation of a
consistency relation for the anomaly map X 7→ ∆X (2.25) of the AMWI (2.24) which holds for
general interactions, by using only the AMWI. For this purpose we consider two paths gλ and hµ

in Gc(M) with tangent vectors X and Y at 0, respectively. We compute

∂2

i∂λ∂µ

∣

∣

∣

λ=µ=0

(

S
(

(gλhµ)Lq
F
)

− S
(

(hµgλ)Lq
F
)

)

= S(F ) ·T ∂[X,Y ](F + Lq) , (4.1)

by using (2.22). According to the AMWI (2.24), it coincides for configurations φ with δL
δφ

[φ] = q

with

S(F ) ·T ∆[X,Y ](F ) . (4.2)

Instead we can also use the AMWI after the first derivative and obtain on those configurations φ

∂

i∂λ

∣

∣

∣

λ=0
S
(

(gλhµ)Lq
F
)

= S(hµLq
F ) ·T ∆X(hµLq

F )

=
d

idt

∣

∣

∣

t=0
S
(

hµLq
(F + t(hµ∗ )

−1∆X(hµLF ))
)

, (4.3)

where we used that ∆X is invariant under addition of an affine function of the field Φ. (This
follows from the defining properties (P3) and (P5) of ∆X ∈ LieRc, cf. Footnote 4.) Taking now
the derivative with respect to µ and using again the AMWI we obtain

∂2

i∂λ∂µ

∣

∣

∣

λ=µ=0
S
(

(gλhµ)Lq
F
)

=
d

dt

∣

∣

∣

t=0
S(F + t∆X(F )) ·T

(

∆Y (F + t∆X(F ))

− t∂Y (∆X(F ) + t〈(∆X)′(F ), ∂Y (F + L)〉
)

= S(F ) ·T
(

i∆X(F ) ·T ∆Y (F ) + 〈∆Y ′(F ),∆X(F )〉

− ∂Y (∆X(F )) + 〈(∆X)′(F ), ∂Y (F + L)〉
)

(4.4)

on the above mentioned configurations. We finally arrive at a consistency relation which does no
longer depend on the source q and therefore holds for all configurations φ.

Theorem 4.1. The anomaly ∆ of the AMWI satisfies the consistency relation

∆([X,Y ])(F ) = 〈(∆Y )′(F ),∆X(F )〉 − 〈(∆X)′(F ),∆Y (F )〉

+ ∂X(∆Y (F ))− ∂Y (∆X(F ))

− 〈(∆Y )′(F ), ∂X(L+ F )〉+ 〈(∆X)′(F ), ∂Y (L+ F )〉 (4.5)

for X,Y ∈ LieGc(M).
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We call (4.5) the “extended Wess-Zumino consistency condition,” because for quadratic func-
tionals F , it reduces to the Wess-Zumino condition (3.10). Namely, for those functionals, ∆X(F )
is a constant functional (see part (iii) of [8, Prop. 4.14]). Then ∂Y∆X(F ) and4 〈∆Y ′(F ),∆X(F )〉
vanish for X,Y ∈ LieGc(M), and the Wess-Zumino relation is obtained by using the identifications

G(X,A) = −∆X(V (A)) (4.6)

and

∂AXG(Y,A)
(4.6)
= −

d

dλ

∣

∣

∣

λ=0
∆Y

(

V (Ag
λ

)
)

(3.3)
= −

d

dλ

∣

∣

∣

λ=0
∆Y

(

gλLV (A)
)

= 〈∆Y ′(V (A)), ∂X
(

L+ V (A)
)

〉 , (4.7)

where gλ
.
= exp (−λX) as in (3.8).

5. Consistency condition of the AMWI as a cocycle for Lie algebras

The consistency relation for ∆ derived in the previous section actually shows that ∆ is a Lie-
algebraic cocycle. This can be most easily seen by starting from the UAMWI with its group
theoretical cocycle ζ. The cocycle ζ intertwines two actions of Gc(M) on Floc(M), namely (g , F ) 7→
gLF and (g , F ) 7→ gLζ−1g (F ). They induce representations R and P on the space of functions K

on Floc(M) by

(R(g )K)(F ) = K(g−1L F ) , (P (g )K)(F ) = K(ζg g−1L F ) (5.1)

The relation R(g1g2) = R(g1)R(g2) relies on (g1g2)L = g1,L g2,L; to obtain P (g1g2) = P (g1)P (g2)
we additionally use our crucial input: the cocycle relation for ζ (2.15).

The corresponding representations r and p of LieGc(M) act by derivations on smooth functions
on Floc(M), i.e.

r(X)K(F ) = 〈K ′(F ),−∂XF − ∂XL〉 , p(X)K(F ) = 〈K ′(F ),−∂XF − ∂XL+∆X(F )〉 , (5.2)

where we used (2.25). Representations r and p differ by the linear map X 7→ q(X) = p(X)− r(X)
with q(X)K(F ) = 〈K ′(F ),∆X(F )〉. Since p and r are representations, q satisfies the relation

q([X,Y ]) = [q(X), q(Y )] + [r(X), q(Y )]− [r(Y ), q(X)] (5.3)

It remains to compute the commutators of these derivations. We obtain

(q(X)(q(Y )K))(F ) =
d

dλ

∣

∣

∣

λ=0
(q(Y )K)(F + λ∆X(F ))

=
d

dλ

∣

∣

∣

λ=0
〈K ′(F + λ∆X(F )),∆Y (F + λ∆X(F ))〉

= 〈K ′′(F ),∆X(F )⊗∆Y (F )〉+
〈

K ′(F ), 〈(∆Y )′(F ),∆X(F )〉
〉

, (5.4)

hence

[q(X), q(Y )]K(F ) =
〈

K ′(F ), 〈(∆Y )′(F ),∆X(F )〉 − 〈(∆X)′(F ),∆Y (F )〉
〉

= 〈K ′(F ), [∆Y,∆X ]LieRc
(F )〉 , (5.5)

where we use the explicit formula for the Lie bracket in LieRc derived in [8, App. C]. Proceeding
analogously to (5.4)-(5.5) we get

[r(X), q(Y )]K(F ) =
〈

K ′(F ),−〈(∆Y )′(F ), ∂XF + ∂XL〉+ ∂X(∆Y (F ))
〉

=
〈

K ′(F ), (∂X∆Y )(F )
〉

(5.6)

4The defining property (P5) of ∆Y ∈ LieRc implies that ∆Y (F + c) = ∆Y (F ) for all F ∈ Floc(M), c ∈ R.
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with the representation X 7→ ∂X ,

(∂Xz)(F )
.
= ∂X(z(F ))− 〈z′(F ), ∂X(F + L)〉 (5.7)

of LieGc(M) by derivations on LieRc.
5 We also have the analogous relation with X and Y in-

terchanged, so combining the two, we arrive at precisely the same consistency condition for the
anomaly ∆ of the AMWI as in Theorem 4.1 which now assumes the form:

Theorem 5.1. The cocycle relation (2.15) for the anomaly ζ of the UMWI implies the following
Lie-algebraic cocycle relation for the corresponding anomaly ∆ of the MWI (i.e., ∆ is obtained from
ζ by (2.25)):

∆([X,Y ])(F ) =− [∆X,∆Y ]LieRc
(F ) + (∂X∆Y )(F ) − (∂Y∆X)(F ) (5.8)

for X,Y ∈ LieGc(M).

It is instructive to see how the seemingly different derivations in sections 4 and 5 lead to the
same consistency relation for ∆. In the preceding section we solely used the definition of ∆ in terms
of the AMWI (2.24); here we solely used the expression of ∆ in terms of ζ (2.25).

6. Infinitesimal cocycle condition from the nilpotency of the BV operator

In this section, we will derive the infinitesimal cocycle condition (5.8) within the BV formalism.
The crucial insight is that the infinitesimal renormalisation group transformation ∆X , applied to
a local functional F , can in fact be identified with the renormalized BV Laplacian △F for the
interaction F , applied to the vector field ∂X ,

∆X(F ) = i△F∂X , X ∈ LieGc(M), F ∈ Floc(M) , (6.1)

where ∂X is the vector field on E (M,Rn) induced by X [18]. The operator △F can be expressed by
means of a generalization of the AMWI (see (6.15)), so the derivation of the anomaly consistency
condition (4.5) given in the current section is essentially equivalent to the previous derivation
in Sect. 4. Phrasing it in terms of the BV language, however, is important for showcasing the
underlying algebraic structures naturally associated with the space of multivector fields and allows
us to make connection with the literature, in particular [21,22]. Moreover, we see that the restriction
to vector fields, which are polynomial of first order in the configuration φ, is crucial.

In the BV formalism one considers functions and vector fields on the configuration space as
functions on the (-1)-shifted cotangent bundle T ∗[−1]E (M,Rn) over the configuration space. These
functions form a graded commutative algebra BV(M), where the derivatives δ

δφ
are identified with

the antifields Φ‡,

Φ‡r(x)[dF [φ]] =
δF

δφr(x)
[φ] , F ∈ F (M) . (6.2)

They are assumed to anticommute. The enlarged configuration space is Ẽ (M,Rn)
.
= E (M,Rn) ⊕

Edens(M,Rn), and the elements F ∈ BV(M) are of the form

F =
∑

n,m

〈fnm,Φ
⊗n ⊗ (Φ‡)⊗m〉 (6.3)

where the compactly supported distributions fn,m are symmetric in the first n and antisymmetric in
the last m arguments. If fnm = 0 for m 6= 1, the element F can be identified with a vector field on
Ẽ (M,Rn). The wave-front set conditions on f are the same as for the distributions characterizing
elements of F (M). Analogously as for the functionals on the original configuration space, we
introduce the spaces BVloc(M), BVn loc(M) and BV• loc(M).

5To see that X → ∂X is indeed a representation, note that it is the infinitesimal version of the representation D

of Gc(M) on the space of maps K : Floc(M) → Floc(M) defined by D(g )K(F ) = g∗K(g−1

L
F ).
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The algebra BV• loc(M) is equipped with a graded Poisson bracket, the Schouten bracket, also
known as antibracket. For a functional F ∈ F• loc(M) and a vector field X ∈ BV• loc(M) it is
given by the action of the vector field on the functional as a derivation: {X , F}

.
= XF . For two

vector fields we have {X ,Y} = [X ,Y], i.e. the Lie bracket of vector fields, and for general elements
F ,G ∈ BV• loc(M) we invoke the graded Leibniz rule.

In this notation, the antibracket takes the form:

{F ,G} =

〈

δrF

δφ
,
δlG

δφ‡

〉

−

〈

δrF

δφ‡
,
δlG

δφ

〉

(6.4)

where δr and δl signify right and left derivatives, respectively. We will use the convention that if
no superscript is present, then the derivative is to be understood as the left derivative (see [18] for
more detail).

The physical information about the equations of motion and symmetries of the classical theory
with Lagrangian L+F (L and F are both of vector field degree zero, we say that they don’t depend
on antifields), is encoded in the classical BV operator. For a compactly supported multivector field
X ∈ BV• loc(M), we define

sFX
.
= {X , L(f) + F (f)} , (6.5)

where f ≡ 1 on suppX . To simplify the notation, we will often just write {X , L + F}, unless we
want to indicate a particular choice of the test function. As a consequence of the graded Jacobi
identity for the Schouten bracket, sF is a differential,

(sF )
2(X ) = {{X , L+ F}, L+ F} =

1

2
{X , {L+ F,L+ F}} = 0 , (6.6)

since the Schouten bracket of two functionals, which do not depend on antifields, is zero. The space
of on-shell functionals is formally encoded in the 0-th cohomology of the differential sF , and the
first cohomology gives the space of non-trivial (i.e. not vanishing on-shell) symmetries.

In quantum theory, the differential, in the absence of interaction i.e. F = 0, is deformed into

ŝ0
.
= T−1 ◦ s0 ◦ T (6.7)

with the time ordering operator T , extended to multilocal functionals of fields and antifields F ∈
BV• loc(M) such that the antifields are treated as classical sources, i.e. smooth densities. Since T is
linear, also ŝ0 is linear. Polynomials of linear local functionals have smooth functional derivatives.
They form the subspace of regular functionals BVreg(M) ⊂ BV• loc(M). We compute

ŝ0(F) = (s0 − i∆)(F) (6.8)

with the BV Laplacian

△ =

∫

M

δ2

δφ(x)δφ‡(x)
. (6.9)

Following [18], we define the renormalized BV Laplacian in the absence of interaction by

△0
.
= i(ŝ0 − s0) . (6.10)

In the presence of an interaction F ∈ Floc(M) we define the quantum BV operator ŝF by

ŝF (X )
.
= e−iF ŝ0(e

iFX ) , X ∈ BV• loc(M) (6.11)

and introduce the interaction-dependent BV Laplacian by

△F
.
= i(ŝF − sF ) . (6.12)

On regular functionals, △F = △0 = △, but due to renormalization, the operators differ in general.
Since ŝ0 is linear, also ŝF and△F are linear. From (6.6) and (6.7) we immediately see that (ŝ0)

2 = 0;
hence, by (6.11), also (ŝF )

2 = 0.



14 R. BRUNETTI, M. DÜTSCH, K. FREDENHAGEN, AND K. REJZNER

The effects of renormalization can be understood by the AMWI which was extended to local
multivector fields by Hollands and takes the form [22, Prop. 3]:

ŝF (e
iX ) = i eiX

(

{X , L+ F}+
1

2
{X ,X}+A(F + X )

)

, (6.13)

where X =
∑

ηiXi, F ∈ Floc(M), Xi ∈ BVloc(M) and ηi elements of a multiplier Grassmann
algebra such that X is even6. A characterizes the anomalies. It is of the form

A(F) =

∞
∑

n=0

1

n!
An(F

n) , F ∈ BV1 loc(M) even , (6.14)

where An : BVn loc(M) → BVloc(M) are linear maps, which reduce the antifield number by 1,
hence, A(F) is odd. The relation between A and △F is obtained from (6.12) and (6.13) by using
that sF is a derivation:

− i△F (e
iX ) = i eiX

(

1

2
{X ,X}+A(F + X )

)

. (6.15)

Taking into account that △F is linear and A(F ) = 0, this formula implies

△F (X ) = −i
d

dλ

∣

∣

∣

λ=0
△F (e

iλX ) = i〈A′(F ),X〉 . (6.16)

Note that for X = ∂Xη the original AMWI (2.26) (or (2.24)) is obtained from the generalized
AMWI (6.13) as the coefficient of η. Namely we get

T
(

eiF ŝF (∂X)
)

[φ] = s0 ◦ T
(

eiF∂X
)

[φ] = T
(

eiF∂X〈Φ, q〉
)

[φ] (6.17)

with φ satisfying q = ∂L
∂φ

[φ]. This is similar to the result of [18], with the difference that here we

introduced the external source q. In the last formula on the right-hand side, q can be pulled out
from under the time-ordering operator and after one sets q = ∂L

∂φ
[φ], one obtains the same relation

between ŝF and s0 as in [18].
Now, applying AMWI (2.24) to the right-hand side, we obtain

T
(

eiF ŝF (∂X)
)

[φ] = T
(

eiF
(

∂X(L+ F )−∆X(F )
)

)

[φ] . (6.18)

Since A(F ) = 0 this coincides with the corresponding term for the right hand side of (6.13), i.e.,
d
dλ

|λ=0T
(

ei(F+λX )
(

λ{X , L+F}+ λ2

2 {X ,X}+A(F +λX )
))

, with the identification 〈A′(F ), ∂Xη〉 =
−∆X(F ) η, that is,

∆X(F ) = −
dr

dη

∣

∣

∣

η=0
A(F + ∂Xη)

.
= −〈A′(F ), ∂X〉 , (6.19)

hence by (6.16) we indeed obtain the announced relation (6.1) between ∆X and △F .

Hollands shows in [22, Prop.5] that the nilpotency of ŝ0, i.e. ŝ20 = 0, (or, equivalently, the
nilpotency of ŝF , see (6.22) and (6.29) below) induces a consistency condition for the anomaly term
in (6.13). We recall this result in Proposition 6.2 and provide an alternative (shorter) proof using
a result of Fröb [21]: there is an L∞-structure on BV1 loc(M) underlying the AMWI (6.13). The
brackets [•, . . . , •]Fn : BV1 loc(M)n → BV1 loc(M) are linear and graded symmetric maps, given in
terms of the generating function (for even X ) by

[eiX ]F ≡
∞
∑

n=0

in

n!
[X , . . . ,X ]Fn

.
= e−iX ŝF (e

iX ) . (6.20)

6For the use of external multipliers from Grassmann algebras (the η-trick [16]) see e.g. [7]. In particular note
that, if η is odd, then ηφ‡ = −φ‡η.
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Note that [eiX ]F is odd. Obviously, with this definition, the AMWI (6.13) can be written as

[eiX ]F = i
(

{X , L+F}+ 1
2{X ,X}+A(F +X )

)

= i
(

1
2{L+F +X , L+F +X}+A(F +X )

)

, (6.21)

where F ∈ Floc(M). Crucially, we verify here (streamlining the argument of [21]) that the brackets
defined by the formula (6.20) satisfy the generalized Jacobi identity, so we are indeed dealing with
an L∞ structure.

Proposition 6.1. The brackets defined by (6.20) satisfy the generalized Jacobi identity:

[eiX , [eiX ]F ]F = 0 . (6.22)

Proof. The result follows directly from the nilpotency of ŝF and the fact that ŝF (e
iX ) is odd. To

see this, first note that, for G ∈ BV1 loc(M) even, we obtain

[eiX ,G]F =
d

i dλ

∣

∣

∣

λ=0
[ei(X+λG)]F

(6.20)
= −e−iXG ŝF (e

iX ) + e−iX ŝF (e
iXG). (6.23)

Inserting G = η [eiX ]F = η e−iX ŝF (e
iX ) (with η an odd Grassmann variable) and omitting in the

resulting formula the factor η, we get

[eiX , [eiX ]F ]F = −e−i2X
(

ŝF (e
iX )
)2

+ e−iX ŝ2F (e
iX ) = 0 .

�

From (6.20) we see that the 0-bracket vanishes, [−]F0 = 0, and that the 1-bracket is given by

[X ]F1 = ŝF (X ) = sF (X )− i△F (X ) (6.24)

(this formula is also immediately obtained from (6.21)), and from (6.21) we obtain for the 2-bracket

[X ,X ]F2 = −i
(

{X ,X}+ 〈A′′(F ),X ⊗ X〉
)

(6.25)

and for the n-bracket (with n > 2)

[X , . . . ,X ]Fn = (−i)n−1〈A(n)(F ),X⊗n〉 . (6.26)

With the L∞ structure at hand, we come back to [22, Prop.5].

Proposition 6.2. The anomaly map F 7→ A(F) (where F ∈ BV1 loc(M) is even) defined by the
generalized AMWI (6.13) satisfies the relation

0 = {L+ F , A(F)}+ 〈A′(F),
(

1
2{L+ F , L+ F}+A(F)

)

〉 . (6.27)

Proof. We prove this proposition by verifying that the generalized Jacobi identity (6.22) is precisely
the consistency condition (6.27) (which is not surprising since both rely on ŝ2F = 0). To verify this,

let F = F + X with δF
δφ‡ = 0 and X even. Using that

[eiX ,G]F =
dr

i dλ

∣

∣

∣

λ=0
[ei(X+Gλ)]F

(6.21)
= {L+ F ,G}+ 〈A′(F),G〉 (6.28)

for G ∈ BV1 loc(M) odd and λ an odd Grassmann parameter, and applying again the AMWI (6.21),
we obtain

0 = −i [eiX , [eiX ]F ]F
(6.21)
= [eiX ,

(

1
2{L+ F , L+ F}+A(F)

)

]F

(6.28)
= {L+ F , A(F)}+ 〈A′(F),

(

1
2{L+ F , L+ F}+A(F)

)

〉 ,

where we also used the graded Jacobi identity for the antibracket; hence we arrive at (6.27). �

Note that the vector fields ∂X , X ∈ LieGc(M) are of at most first order in φ. For these vector
fields we have 〈A′′(F ), ∂X ⊗ ∂Y 〉 = 0 (see [21] for a related result). To show this we start with the
following lemma.
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Lemma 6.3. Let G ∈ T (BV• loc) and let Y ∈ BV1 loc depend at most linearly on φ, then

(

G ·
δL

δφ(x)

)

·T Y = (G ·T Y) ·
δL

δφ(x)
+ iG

δY

δφ(x)
, (6.29)

Proof. Since Y is of first order in φ we have

(

G ·
δL

δφ(x)

)

·T Y −
(

G ·T Y
) δL

δφ(x)
= G

〈

δ

δφ

δL

δφ(x)
, EF δY

δφ

〉

= iG
δY

δφ(x)
(6.30)

where only the term with a single contraction with the Feynman propagator contributes. �

Next, we show that for elements of first order in φ, △F acts as the unrenormalized BV Laplacian.
In fact, this result holds not only for F ∈ F1 loc, but also for all even F ∈ BV1 loc satisfying the
quantum master equation (QME), in the form proposed in [18].

Firstly, we define ŝF by means of (6.11), i.e. ŝF(X )
.
= e−iF ŝ0(e

iFX ), X ∈ BV• loc(M); and △F
by means of (6.12), where sF is defined analogously to (6.5). Note that also in this case ŝ2F = 0.
However, if F contains antifields, it may happen that sF (which is still a derivation) is no longer
nilpotent, i.e. the classical master equation, {L + F , L + F} = 0, is violated. Instead, one only
requires the QME, which is the condition that the formal S-matrix is invariant under s0, i.e. [18]

s0(Te
iF) = 0 . (6.31)

Using an equivalent reformulation of the generalized AMWI (6.13) (i.e., the formulation given
in [22, Prop. 3]), we can also rewrite the QME as:

s0(Te
iF) = iT

(

(

1
2{L+ F , L+ F}+A(F)

)

eiF
)

= 0 ,

hence the QME (6.31) is equivalent to 1
2{L+F , L+F}+A(F) = 0. Note that (6.13) can equivalently

be formulated in terms of an F containing antifields:

ŝF (e
iX ) = i eiX

(

1

2
{X + F + L,X + F + L}+A(F + X )

)

, (6.32)

and for F satisfying QME, this simplifies to

ŝF (e
iX ) = i eiX

(

{X , L+ F}+
1

2
{X ,X}+A(F + X )−A(F)

)

, (6.33)

Proposition 6.4. Let X ,Y ∈ BV1 loc be of first order in φ and even (we multiply the usual vector
fields with Grassman generators – the η-trick), and F ∈ BV1 loc even, such that (6.31) holds. Then

△F(XY) = (△FX )Y + X (△FY) + {X ,Y} . (6.34)

Proof. Since △F = i(ŝF − sF) and sF is a derivation, the statement is equivalent to

ŝF(XY) = ŝF (X )Y + X ŝF (Y) − i {X ,Y} . (6.35)

Taking into account that ŝF (X ) = e−iFT−1s0(Te
iFX ) this implies

s0(Te
iFXY) = s0(Te

iFX ) ·T Y + X ·T s0(Te
iFY)− i T (eiF{X ,Y}) , (6.36)
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by applying (2.4) and that T−1X = X (and similarly for Y). Using the fact that s0 = −〈 δL
δφ
, δ

r

δφ‡ 〉

(see (6.4)-(6.5)), we compute

s0(Te
iFXY)− s0(Te

iFX ) ·T Y − X ·T s0(Te
iFY)

= −
〈

T
(

eiF (
δrX

δφ‡
Y + X

δrY

δφ‡
+ i

δrF

δφ‡
XY)

)

,
δL

δφ

〉

+
〈

T
(

eiF
δrX

δφ‡

)

,
δL

δφ

〉

·T Y + X ·T
〈

T
(

eiF
δrY

δφ‡

)

,
δL

δφ

〉

+
〈

T
(

eiF i
δrF

δφ‡
X
)

,
δL

δφ

〉

·T Y + X ·T
〈

T
(

eiF i
δrF

δφ‡
Y
)

,
δL

δφ

〉

. (6.37)

Next we show that the terms containing δrF
δφ‡ cancel out since F satisfies the QME (6.31). To do

this, let Gx
.
= i T

(

eiF δrF
δφ‡(x)

)

. With that, the considered terms can be written as

−
〈

G• ·T X ·T Y,
δL

δφ

〉

+
〈

(G• ·T X ),
δL

δφ

〉

·T Y + X ·T
〈

(G• ·T Y),
δL

δφ

〉

. (6.38)

By iterated use of (6.29) (Lemma 6.3) we obtain for the first term

〈

(G• ·T X ) ·T Y,
δL

δφ

〉

=
〈

G•,
δL

δφ

〉

·T X ·T Y

− i
〈

G•,
δX

δφ

〉

·T Y − iX ·T
〈

G•,
δY

δφ

〉

, (6.39)

where we also take into account that δY
δφ

is of zeroth order in φ. Using again (6.29) we also obtain

〈

G•,
δL

δφ

〉

·T X ·T Y =
〈

(G• ·T X ),
δL

δφ

〉

·T Y + i
〈

G•,
δX

δφ

〉

·T Y . (6.40)

Note that on the r.h.s. we may exchange X and Y. Inserting these results into (6.38) and with
〈

G•,
δL
δφ

〉

= −s0(TeiF) we get

(6.38) = −s0(Te
iF) ·T X ·T Y = 0 (6.41)

by the QME.
To further transform the remaining terms in (6.37), we apply again Lemma 6.3

(6.37) = i
〈

T
(

eiF
δrX

δφ‡

)

,
δY

δφ

〉

+ i
〈δX

δφ
, T
(

eiF
δrY

δφ‡

)〉

= i T eiF
(〈

δX

δφ
,
δrY

δφ‡

〉

+

〈

δrX

δφ‡
,
δY

δφ

〉)

≡ −i T (eiF{X ,Y}) , (6.42)

where in the 2nd equation we used again that δX
δφ

and δY
δφ

are of zeroth order in φ and, hence, can

be shifted into the argument of T . �

The result on A′′ follows now directly from Proposition 6.4.

Proposition 6.5. Let A be the anomaly appearing in the AMWI. Let F ∈ BV1 loc(M) even,
satisfying QME (6.31) and let X ,Y ∈ BV1 loc(M) be at most linear in φ. Then

〈A′′(F),X ⊗ Y〉 = 0 . (6.43)
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Proof. Without restriction of generality we may assume that both X and Y are even (by using the
η-trick). Let λ, µ ∈ R. From the generalized AMWI (6.13) we have that:

ŝF (e
i(λX+µY)) ≡ (sF − i△F)(e

i(λX+µY)) (6.44)

(6.33)
= i ei(λX+µY)

(

{λX + µY, L+ F}+
1

2
{λX + µY, λX + µY}+A(F + λX + µY)−A(F)

)

Selecting the terms proportional to λµ we obtain

(sF − i△F)(XY) (6.45)

= X
(

{Y, L+ F} − i△F(Y)
)

+ Y
(

{X , L+ F} − i△F(X )
)

− i{X ,Y} − i〈A′′(F),X ⊗ Y〉 ,

by using the analog of (6.16) for F ∈ BV1 loc(M). The statement follows from the derivation
property of sF and the preceding proposition. �

For F ∈ F1 loc(M), one obtains a map

LieGc(M)× Floc(M) ∋ (X,F ) 7→ sF (∂X)− i△F (∂X) = ∂X(F + L)−∆X(F ) , (6.46)

which coincides with the action previously constructed in (5.2). The fact that it is an action was
derived from the cocycle relation (5.8) for X 7→ ∆X as a consequence of the cocycle relation for
the anomaly map ζ in the UAMWI.

Actually, the cocycle relation for ∆ in the form of the equivalent consistency relation (4.5) derives
directly from the BV-consistency condition (6.27).

Proposition 6.6. The BV consistency relation implies the extended Wess-Zumino consistency
relation (4.5).

Proof. We insertF = F+∂X1
η1+∂X2

η2 into the BV consistency relation (6.27), where F ∈ Floc(M)
and η1, η2 are Grassmann generators. As before, we use the fact that 〈A′′(F ), ∂X1

⊗∂X2
〉 = 0. Since

A(F ) = 0 we obtain the following finite Taylor expansion in η1, η2:

A(F) = −∆X1(F ) η1 −∆X2(F ) η2 , (6.47)

where we also used (6.19). In particular note that δA(F)
δφ‡ = 0. With that we obtain

{L+ F , A(F)} = −{(∂X1
η1 + ∂X2

η2),
(

∆X1(F ) η1 +∆X2(F ) η2
)

}

=
(

−∂X1
∆X2(F ) + ∂X2

∆X1(F )
)

η1η2 . (6.48)

Note that

〈A′(F), (G+ ∂Zη)〉 =
d

dτ

∣

∣

∣

τ=0
A
(

F + τ(G + ∂Zη)
)

(6.49)

= −
d

dτ

∣

∣

∣

τ=0

(

∆X1(F + τG) η1 +∆X2(F + τG) η2 + τ∆Z(F + τG) η
)

= −〈(∆X1)
′(F ), G〉η1 − 〈(∆X2)

′(F ), G〉η2 −∆Z(F ) η , (6.50)

where G ∈ Floc(M), Z ∈ LieGc(M) and η is another Grassmann generator. Hence, using (2.22),
we obtain

〈A′(F),
(

1
2{L+ F , L+ F}

)

〉 = 〈A′(F),
(

(∂X1
η1 + ∂X2

η2)(L + F )− ∂[X1,X2] η1η2
)

〉

=
(

−〈(∆X1)
′(F ), ∂X2

(L+ F )〉+ 〈(∆X2)
′(F ), ∂X1

(L+ F )〉+∆[X1, X2](F )
)

η1η2

(6.51)
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and

〈A′(F), A(F)〉 = −〈A′(F), (∆X1(F ) η1 +∆X2(F ) η2)〉

=
(

〈(∆X1)
′(F ),∆X2(F )〉 − 〈(∆X2)

′(F ),∆X1(F )〉
)

η1η2 . (6.52)

Composing (6.48), (6.51) and (6.52), we obtain the consistency equation (4.5). �

Remark 6.7. Note that by tracing back the arguments given in this section, we can see that
Proposition 6.6 essentially states that the generalized Wess-Zumino consistency condition is the
consequence of ŝ2F = 0. We can compare this with a simple fact that the nilpotency of the non-
renormalized BV Lapalacian△ (see (6.9)) implies an analogous statement for vector fields. Without
the loss of generality, we assume X and Y to be even (we multiply the usual vector fields with
Grassman parameters) X ,Y ∈ BVreg(M) (regular multivector fields):

0 = △2(XY) = △
(

(△X )Y + X (△Y) + {X ,Y}
)

= ∂X (△Y) + ∂Y(△X ) +△({X ,Y})

by using that ∆ satisfies a relation analogous to (6.34), where ∂X , ∂Y denotes the natural action
of vector fields on functionals as derivations. ֠

7. Summary and Outlook

For the symmetries g ∈ Gc(M) considered in this paper, we have proven that the anomaly
map ∆ in AMWI satisfies a consistency condition stated in Thm. 4.1, which we named extended
Wess-Zumino condition, as it can be understood as an extension to non-quadratic interactions of
the well-known Wess-Zumino consistency condition (3.10). Our proof uses only the AMWI. In
contrast to an analogous procedure in [22], our extended Wess-Zumino consistency condition and
its derivation do not need the antifield formalism.

We then showed that our extended Wess-Zumino consistency condition can be deduced from the
cocycle relation (2.15) for the anomaly map ζ occuring in the UAMWI and, hence, describes a Lie
algebraic cocycle of the Lie algebra of Gc(M) with values in the Lie algebra of the Stückelberg-
Petermann renormalization group (Thm. 5.1). Conversely, in the framework of perturbation theory,
starting with the AMWI one can derive the UAMWI with an anomaly map ζ fulfilling the cocycle
relation (2.15), see Thm. A.1.

We also investigated the connection to the BV formalism (as previously studied in [18, 21, 22])
and the underlying algebraic structures. In particular we verified that the extended Wess-Zumino
consistency condition (4.5) can be obtained from the nilpotency of the BV operator ŝF , by restrict-
ing to symmetries g ∈ Gc(M) (Prop. 6.6). Our proof starts with the consistency condition (6.27)
(Prop. 6.2) proven by Hollands [22], which can be understood as the the generalized Jacobi identity
for the underlying L∞-algebras (see the proof of Prop. 6.2) and relies on ŝ2F = 0.

It is an interesting open problem to find the grouplike structure associated to the L∞-structure for
more general symmetries and to understand its relation to renormalization. This will be addressed
in our future work.

Data availability statement

Data sharing is not applicable to this article as no new data were created or analyzed in this
study.

Appendix A. Off shell UAMWI

In [8, Thm. 10.3(i)] we showed that in formal perturbation theory the UAMWI holds on shell.
In this appendix we prove by a slightly improved argument that also the off-shell version of the
UAMWI 2.16 holds. Here “off-shell” means that φ can be arbitrary, but we also introduce external
sources q and at the end we set q = δL

δφ
[φ], so a priori our expressions are functions of two variables,
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φ and q and the UAMWI holds on a subspace where the condition q = δL
δφ

[φ] is satisfied. Crucially,

on that subspace the left-hand side of UAMWI proven below does not depend on q.

Theorem A.1. In formal perturbation theory, the AMWI implies the off-shell unitary AMWI

S ◦ ζg (F )[φ] = S ◦ gLq
(F )[φ] , for φ solving q =

δL

δφ
[φ] , for all F ∈ Floc(M) , g ∈ Gc(M) ,

(A.1)
with a cocycle ζ taking values in Rc and with supp ζg ⊂ supp g .

Proof. Since the elements of Gc(M) have compact support and depend smoothly on x, Gc(M) must
be connected. Therefore, given any g ∈ Gc(M), there exists a smooth curve λ 7→ gλ ∈ Gc(M) with

g0 = e and g1 = g . Let Xλ ∈ LieGc(M) be defined by d
dλ

gλ = Xλgλ.

In the next step, want to find a smooth curve λ 7→ ζ−1gλ ∈ Rc with ζ
−1
e = id and

d

dλ
S
(

gλLq
ζ−1

gλ (F )
)

[φ] = 0 with q =
δL

δφ
[φ] . (A.2)

Note that inserting λ = 0 and λ = 1 into S ◦ gλLq
◦ ζ−1

gλ , we obtain the unitary AMWI (2.16).

To search for the desired curve, we will first derive a differential equation that it has to solve.
Note that for G ∈ Floc(M), we have

d

dλ
gλLq

G = ∂XλgλLq
G+ ∂Xλ(Lq) , (A.3)

so by using this result, we perform the differentiation in (A.2) and obtain the condition

S
(

gλLq
ζ−1gλ (F )

)

·T
(

∂XλgλLq
ζ−1gλ (F ) + ∂Xλ(Lq) + gλ∗

d

dλ
ζ−1gλ (F )

)

[φ] = 0 for q =
δL

δφ
[φ] . (A.4)

We insert the anomalous MWI (2.24) and find

S
(

gλLq
ζ−1gλ (F )

)

·T
(

∆Xλ(gλLq
ζ−1gλ (F )) + gλ∗

d

dλ
ζ−1gλ (F )

)

[φ] = 0 for q =
δL

δφ
[φ] . (A.5)

On the other hand, ∆Xλ ◦ gλLq
= ∆Xλ ◦ gλL , since δgλ〈Φ, q〉 is at most of first order in Φ and due

to the defining property (iii) of LieRc. We thus get the desired family λ 7→ ζ−1gλ as the unique

solution of the differential equation

d

dλ
ζ−1

gλ = −(gλ∗ )
−1∆XλgλLζ

−1
gλ , (A.6)

with the initial condition ζ−1g0 = id. As explained for the case q = 0,

(gλ∗ )
−1∆XλgλL ∈ LieRc (A.7)

holds, hence ζ−1gλ ∈ Rc follows, so in particular ζg ∈ Rc. Since the differential equation (A.6)

determining ζ does not contain q, we explicitly see that ζ can be chosen such that it does not
depend on q either. Hence, the proof of supp ζg ⊂ supp g can be adopted from the case q = 0 as it
stands.

It remains to show that ζ satisfies the cocycle identity. Applying three times the UAMWI (2.16)
we obtain

S ◦ ζgh(F )[φ] =S ◦ (gh)Lq
(F )[φ] = S ◦ gLq

◦ hLq
(F )[φ]

=S ◦ ζg ◦ hLq
(F )[φ] = S ◦ hLq

◦ (h−1Lq
ζg hLq

)(F )[φ]

=S ◦ ζh ◦ (h−1Lq
ζg hLq

)(F )[φ] (A.8)
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for φ solving q = δL
δφ

[φ]. Using again that δh〈Φ, q〉 is at most of first order in Φ, we conclude that

ζg hLq
(F ) = ζg

(

hLF − δh〈Φ, q〉
)

= ζg hL(F )− δh〈Φ, q〉 , (A.9)

since ζg ∈ Rc.
7 With that we obtain

h−1Lq
ζg hLq

= h−1L ζg hL ≡ ζh
g , (A.10)

hence the cocycle relation

S ◦ ζgh(F ) = S ◦ ζh ◦ (ζg )
h(F ) (A.11)

holds for all field configurations φ. Since the off-shell S-matrix is injective, we obtain the cocycle
relation for ζ. �
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