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Abstract

We prove the split property for any finite helicity free quantum fields. Finite helicity
Poincaré representations extend to the conformal group C (cf. [18]) and the conformal
covariance plays an essential role in the argument: the split property is ensured by
the trace class condition Tr (e−βL0) < +∞ for the conformal Hamiltonian L0 of the
Möbius covariant restriction of the net on the time axis. We extend the argument
for the scalar case presented in [7]. We provide the direct sum decomposition into
irreducible representations of the conformal extension of any helicity-h representation to
the subgroup of transformations fixing the time axis. Our analysis provides new relations
among finite helicity representations and suggests a new construction for representations
and free quantum fields with non-zero helicity.

1 Introduction

The split property in quantum field theory can be viewed as a strong version of locality.
Locality (= Einstein causality) requires the bounded observables localized in two spacelike
separated regions O1 and O2 to generate two commuting von Neumann algebras A(O1) and
A(O2). The split property demands that the algebra generated by A(O1) and A(O2) is
naturally isomorphic to the tensor product A(O1) ⊗A(O2) and this can hold only if there
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is some finite positive distance between the regions O1 and O2, due to UV singularities that
arise when the regions touch.

Physically, the split property is motivated as a “statistical indepence” in the sense that
states can be independently prepared in O1 and O2: for every pair of normal states on
A(Oi), there is a normal state of the full QFT that on A(Oi) coincides with the given states
[5]. The relative tensor product position is also an indispensible prerequisite without which
a notion of entanglement of states between the two subsystems cannot be defined [15].

The terminology “split” for a pair of commuting algebras actually refers to the inclusion
of one algebra in the commutant of the other, asserting that there exists a type I factor1 B
such that

A1 ⊂ B ⊂ A′
2,

cf. Definition 5.1. Because local algebras in QFT are in general type III (a characteristic
feature of QFT as compared to quantum mechanical systems), the split property is not
ensured by basic assumptions.

Whether the split property holds for two local algebras at a finite distance, is a feature of
the QFT model under consideration. It has been verified in various models in quantum field
theory, see, e.g., [8, 20, 7]. Several sufficient conditions are known in terms of the trace-class
property of certain operators related to phase space [8, 6, 7], indicating that typically, “too
many degrees of freedom” may cause it to fail. A deep mathematical understanding of the
split property was given in [11].

For the massless scalar free field in four spacetime dimensions, the split and nuclearity
properties for an inclusion of non-touching double cone regions has been established in [7].
The argument is essentially group theoretic: the one-particle space of the massless free field
carries an irreducible representation U of the Poincaré group that extends to the conformal
group C in four dimensions. C is the 15-dimensional Lie group generated by the Poincaré
group and the “conformal inversion” I, cf. (2.1). It contains the dilations and the special
conformal transformations I ◦ t ◦ I, where t is a translation.

The 3-dimensional subgroup generated by time translations and the conformal inversion
is isomorphic to the Möbius group Möb = SL(2,R)/Z2, and acts geometrically on the time
axis ~x = 0 exactly like the conformal symmetry group of a chiral conformal QFT. This
means that a conformal quantum field theory in four dimensions, when restricted to the
time axis, becomes a chiral conformal QFT. In the scalar case, the chiral currents of this
theory are the free scalar field restricted to the time axis, along with all its spatial derivatives
∇a1 . . .∇akϕ(t, 0). Their scaling dimensions increase with the number of spatial derivatives.

The number of quasiprimary (i.e., Möb-covariant) currents as a function of their scaling
dimension is controlled by representation theory. In this way, the authors of [7] could
establish that the operator e−βL0 has a finite trace, where L0 is the conformal Hamiltonian
of this chiral conformal QFT.

This suffices to establish the split property for the algebra inclusions A(O) ⊂ A(Õ)
when O ⋐ Õ are two double cones with apices on the time axis. This implies the statistical
independence of A(O1) and A(O2) whenever O1 = O and O2 is contained in the causal
complement of Õ, and then, by covariance, whenever O1 and O2 are spacelike separated
double cones with a finite distance.

We adapt this argument to all massless free field theories of finite helicity, including the
free Maxwell field. Because Möb commutes with the subgroup SO(3) of spatial rotations,

1i.e., isomorphic to B(H) of some Hilbert space H.
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the proof reduces to the computation of the restriction of the unitary representation of
the conformal group on the one-particle space to the subgroup Möb × SO(3), where the
representations of SO(3) just provide multiplicities for the irreducible representations of
Möb. The traces of e−βL0 in irreducible representations of Möb are well known, and the
trace-class property on the one-particle space is obtained by an explicit computation. This
also implies the L2-nuclearity property.

Our computation leads to a remarkable observation: as a representation of Möb×SO(3),
the one-particle space for helicity h + 1 is just a subrepresentation of that for helicity h
(provided h > 0). This suggests some new kind of “deformation argument” to construct
helicity h+ 1 from helicity h, cf. Sect. 6.

2 Preliminaries

2.1 Minkowski spacetime and the Poincaré group

Let R1+3 be Minkowski space, i.e., R4 endowed with the metric

(x, y) = x0y0 −
3∑

i=1

xiyi.

In a 4-vector x = (x0, x1, x2, x3), x0 = t and ~x = {xi}i=1,2,3 are the time and space coordi-
nates, respectively. The metric induces a causal structure, in particular the future x+ V+
of a point x, where V+ = {y ∈ R

4 : (y, y) > 0, y0 > 0}. The causal complement of a region
O is given by O′ = {x ∈ R1+3 : (x − y, x − y) < 0,∀y ∈ O}. A causally closed region is
such that O = O′′. Particularly nice causally closed regions are the open double cones of
the form O = x− + V+ ∩ x+ − V+, where x+ is a point in the future of x−.

The Poincaré group P is the inhomogeneous symmetry group of R
1+3. It is the

semidirect product of the Lorentz group L, the homogeneous Minkowski symmetry group,
and the translation group R4, i.e., P = R4 ⋊ L. We shall indicate with P↑

+ = R4 ⋊ L↑
+ the

connected component of the identity, with P̃↑
+ and L̃↑

+ the universal coverings resp. of P↑
+

and L↑
+, and with Λ the covering map.

The conformal group C in four spacetime dimensions is the extension of the Poincaré
group by the “conformal inversion”

I : (t, ~x) 7→
(−t, ~x)

t2 − ~x2
. (2.1)

Notice that I is singular on R
1+3, but one can extend Minkowski space to the “Dirac

manifold” on which C acts without singularities, and of which Minkowski space is a dense
chart. C is a 15-dimensional Lie group isomorphic to SO(2, 4)0. The minus sign in the
t-component of (2.1) ensures that I belongs to the connected component.

2.2 Massless representations of the Poincaré group

The characters of the translation group are a 7→ ei(a,q) where q ∈ R
4 is a momentum.

According to Wigner [31], irreducible positive-energy representations of P̃↑
+ are induced

by what is now called Mackey induction, from irreducible representations of the stabilizer
subgroup (also known as the “little group”) of some q appearing in the representation. The
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characters appearing in massless positive-energy representations of P̃↑
+ are given by q 6= 0

contained in ∂V+ = {x ∈ R
1+3 : (x, x) = 0, x0 ≥ 0}. We fix

q ≡ (1, 0, 0, 1) ∈ ∂V+

(∂V+ r {0} is a L↑
+-orbit). We shall call Stab and Stabq the stabilizers of the point q

through the L̃↑
+ and P̃↑

+ actions, respectively. The latter is the semidirect product of R3+1

and the little group Stabq, i.e. Stabq = R
4
⋊ Stabq. Any massless P̃↑

+ unitary positive
energy representation is obtained inducing by a unitary representation of the Stabq group.
Note that a Stabq representation is of the form R4 ⋊ Stabq ∋ (x, σ) 7→ V (σ)q(x) where V is
the unitary representation of Stabq.

The little group Stabq is isomorphic to Ẽ(2), the double cover of the Euclidean group of
the two dimensional euclidean space, namely E(2) = R

2
⋊T. Let U = Ind

Stabq↑P̃
↑
+
V q be a

unitary representation of P̃↑
+ induced from the representation V q of Stabq. We say, in case

V trivial on Ẽ(2)-translations, that U has finite helicity (or finite spin); in the other cases
has infinite spin.

An irreducible finite helicity representation is of the form

Uh = Ind
Stabq↑P̃

↑
+
Vh q, h ∈

1

2
Z

where Vh(g, x) = h(g) where h is the one dimensional representation of the double covering
of T of character 2h ∈ Z (Vh has to be trivial on Ẽ(2) translation subgroup). h is called
helicity parameter.

Massless representations of P̃↑
+ of finite helicity extend to unitary representations Ũ of

the conformal group C. The main argument in our paper pertains to the restriction of this
extension to the Möbius subgroup of C (Sect. 2.3). We denote by Pµ the generators of the

translations, andKµ := Ũ(I)PµŨ(I) the generator of the special conformal transformations.
Then i[Pµ,Kν ] = −2ηµνD + 2Mµν where D and Mµν are the generators of the dilations
and Lorentz transformations. The conformal Hamiltonian L0 = 1

2 (P0 + K0) generates the

rotations in SO(2)⊕ 14 ⊂ SO(2, 4)0 ≃ C, and Ũ(I) = eiπL0 .

2.3 The Möbius group and its representations

The Möbius group. The Möbius group Möb is the 3-dimensional Lie group PSU(1, 1) =
SU(1, 1)/Z2 acting on S1 ⊂ C by fractional linear transformations

S1 ∋ z 7→
αz + β

βz + α
,

(
α β

β α

)
∈ SU(1, 1).

Via the Cayley transform and its inverse, the stereographic projection:

C : R = R ∪ {∞} ∋ x 7→ −
x− i

x+ i
∈ S1, C−1 : S1 ∋ z 7→ −i

z − 1

z + 1
∈ R

it is isomorphic to PSL(2,R) = SL(2,R)/Z2 acting on the compactified real line R via

R ∋ x 7→
ax+ b

cx+ d
∈ R,

(
a b
c d

)
∈ SL(2,R).
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We shall freely switch between the “circle picture” and the “line picture”.

Möb arises as the subgroup of the conformal group C in four spacetime dimension,
generated by time translations and the conformal inversion (2.1). It preserves the time
axis and commutes with SO(3), the spatial rotations. Its more familiar appearance in
quantum field theory is in the (unbroken) conformal group in two spacetime dimension,
that is isomorphic to Möb × Möb acting on the two-dimensional Dirac manifold S1 × S1

where each S1 is the compactification of one lightlike axis.
Möb can be generated by various one-parameter subgroups. Firstly, consider the follow-

ing subgroups:

• Rotations r : [0, 2π] ∋ θ 7→ eiθz ∈ S1, in the circle picture;

• Dilations δ : R ∋ s 7→ esx ∈ R, in the line picture.

• Translations t : R ∋ s 7→ x+ s ∈ R, in the line picture.

They are respectively denoted with K, A and N. Any element g ∈ Möb can be uniquely
decomposed following the KAN decomposition (Iwasawa decomposition), i.e. let g ∈ Möb

then g = kan, k ∈ K, a ∈ A, n ∈ N. The subgroup A preserves the upper semicircle, or
the right half-line on the line picture, while N maps it into itself for s > 0. By the adjoint
action of Möb one can define translation and dilation groups relative to any other interval
I, resp. τI and δI .

Another convenient choice replaces the rotations by the special conformal transforma-
tions I ◦ t ◦ I, where the conformal inversion I : t 7→ −1/t in the line picture is the rotation
by π in the circle picture.

Unitary positive-energy representations of M̃öb. Let U be a unitary representa-
tion of M̃öb on a Hilbert space H. The self-adjoint infinitesimal generator of the rotation
subgroup in U is denoted by L0, i.e. U(r(θ)) = eiθL0 . L0 is called the conformal Hamiltonian.
Let P , D, K be the generators of the translations, dilations and special transformations,
resp., and (by abuse of notation) I the unitary representative of the conformal inversion,
then one has

IPI = K, IDI = −D, L0 =
1

2
(P +K), I = eπL0 . (2.2)

U is said to be a positive-energy representation of M̃öb if the spectrum of the conformal
Hamiltonian L0 is contained in [0,+∞).

Irreducible, unitary, positive energy representations of M̃öb on a Hilbert space H are
labelled by positive real numbers k. They correspond to the lowest eigenvalue of the confor-
mal Hamiltonian L0, called “lowest weight”. An irreducible positive unitary representation
of M̃öb factors on Möb, iff k is an integer.

Let P be the translation-dilation subgroup of Möb associated to R+. A unitary repre-
sentation of P is said to have positive energy if the spectrum of the translation subgroup
is contained in the positive half-line [0,+∞). There exists a unique, up to unitary equiv-
alence, irreducible unitary positive-energy representation U of P. The positivity of the
energy of a M̃öb representation U is equivalent to the positivity of the translation genera-
tor, thus a positive-energy representation U of Möb restricts to the unique positive-energy
representation of P [12]. Furthermore, if U is irreducible then U |P is irreducible [22].

5



2.4 (Anti-)unitary extensions

The Poincaré group. Let θ be the space and time reflection (t, ~x) 7→ (−t,−~x) and α be

the action of θ on P↑
+ by conjugation, we define

P+ = Z2 ⋉α P↑
+

to be the extension of P↑
+ through α. An (anti-)unitary representation of P+ is unitary,

resp. anti-unitary, on P↑
+ resp. on θP↑

+.

Proposition 2.1. [29] A unitary irreducible positive energy representation U of P↑
+ extends

(anti-)unitarily to P+ iff it is induced by a self-conjugate representation of the little group.

This is true for all irreducible positive energy representations except for those of non-zero
finite helicity. On the other hand Uh ⊕ U−h extends to P+.

The Möb2 group. Let r be the complex conjugation z 7→ z on S1 (x 7→ −x in R), and
α be the action of r on Möb by conjugation, we define

Möb2 = Z2 ⋉α Möb

to be the extension ofMöb through α. Note that r reverses the orientation. An (anti-)unitary
representation of Möb2 is unitary, resp. anti-unitary, on Möb (the orientation preserving
transformations of Möb2) resp. on rMöb (the orientation reversing transformations of Möb2).

Proposition 2.2. [22] Every unitary positive energy representation U of Möb extends (anti-
)unitarily to Möb2.

Now we are going to show that there exists a unique, up to unitary equivalence, way
to represent (anti-)unitarily such extensions. Let K be a locally compact group, α be an
involutive automorphism ofK and G be the semidirect productK⋊αZ2. Let U and Û=̇U ◦α
be unitary representations of K on a Hilbert space H and J be an anti-unitary operator
on H, we shall call JÛJ∗ the conjugate representation of U . The unitary equivalence class
of the conjugate representation does not depend on the choice of J . If α = 1, then our
definition of conjugate representation coincides with the classical one. An (anti-)unitary
representation of G is unitary on K and anti-unitary on rK, where r is the Z2-generator. U
is said to be self-conjugate if U is unitary equivalent to JÛJ∗, and real if the anti-unitary
J can be chosen s.t. J2 = 1 and

U = JÛJ∗. (2.3)

Note that such an anti-unitary involution extends the representation U (anti-)unitarily from
K to G (the converse is also true). In case J can be chosen s.t. J2 = −1 and (2.3) holds,
then U is said to be pseudo-real.

Proposition 2.3. Assume that K is a locally compact type I group, and let U be a unitary
representation of K. Then

1. If U is real, then it extends to an (anti-)unitary representation of G on H. The
extension is unique modulo unitary equivalence.

2. In general, let J be an anti-unitary involution on H, then U ⊕ JÛJ is real and it
extends uniquely (up to unitary equivalence) to an (anti-)unitary representation of G
on H⊕H as a consequence of point 1.
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Proof. Firstly, we consider the factorial case, namely U = U0 ⊗ 1 on the Hilbert space
H = H0 ⊗ K, where U0 is an irreducible unitary representation of K. We consider the
following cases:

(1.a) Assume that U and U0 are real representations. In this case, U0 extends to an (anti-
)unitary representation of G through an anti-unitary operator J0 satisfying (2.3).
Let J be any antilinear involution on K, one can define the anti-unitary involution
J = J0 ⊗ J, which extends U (anti-)unitarily to G and satisfies (2.3).

Now we have to show the uniqueness up to unitary equivalence of the extension.
Consider another anti-unitary involution J ′ on H extending U from K to G. The
composition JJ ′ ∈ U(K)′ = C⊗ B(K) and since JJ ′ is a unitary,

J ′ = (1⊗ Z)(J0 ⊗ J) = J0 ⊗ ZJ

where Z is a unitary operator on the Hilbert space K. By uniqueness, up to unitary
equivalence, of the complex structure of an Hilbert space, then there exists a unitary
V ∈ U(K) s.t. V JV ∗ = ZJ, thus

(1⊗ V )J(1⊗ V ∗) = J ′.

The two extensions through J and J ′ are unitarily intertwined by 1⊗ V .

(1.b) Assume that U is real and U0 is pseudo-real, w.r.t. an anti-unitary operator J0. Let J
be an anti-unitary operator s.t. J2 = −1 then J = J0⊗J is an involution implementing
the Z2-generator on U and satisfying (2.3). The argument of unitary equivalence of
the (anti-)unitary extensions is a slight modification of the previous case.

(1.c) Assume that U0 is disjoint from the conjugate representation. Let J0 be an antilinear
involution on H0, we define representation

Ũ =
(
U0 ⊕ J0Û0J0

)
⊗ 1K

acting on H̃ = (H0 ⊕ H0) ⊗ K. Ũ is real w.r.t. the following anti-unitary involution
J̃ . Let σ be the flip operator on H0 ⊕ H0, i.e., σ(ξ ⊕ η) = η ⊕ ξ, J be an antilinear
involution on K, then we define

J̃ = ((J0 ⊕ J0) · σ)⊗ J

on H̃. It extends (anti-)unitarily Ũ from K to G. Let J̃ ′ be another anti-unitary
involution extending Ũ to G, then J̃ J̃ ′ ∈ U(K)′ = (C ⊕ C)⊗ B(K). Since J̃2 = 1, it
is easy to see that there exists a unitary V ∈ U(K) such that

(1C2 ⊗ V ) J̃ (1C2 ⊗ V ∗) = J̃ ′

by uniqueness of the complex structure of the Hilbert space K, and we conclude this
case.

We sketch the proof for the general case. Since K is a type I group the above result
generalizes to direct integrals and direct sums of factorial representations. Indeed, for U =∫
X Uxdµ(x) where {Ux}x∈X is a family of factorial representations and (X,µ) is a standard
measure space, the product of any two anti-unitary involutions J and J ′ extending U to G
belongs to U(K)′. Then one can conclude by applying the factorial case on integral fibers.

�
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Positive-energy unitary representations of P↑
+ and Möb satisfy the assumptions of Propo-

sition 2.3. In particular, positive-energy factorial representations of Möb fall in case (1.a);

massive, scalar massless and infinite spin P↑
+-representations also fall in (1.a), and massless

non-zero helicity representations in (1.c).

3 One-particle nets and Brunetti-Guido-Longo construction

In QFT, localization is formulated in terms of local nets, i.e., inclusion preserving maps that
associate with open spacetime regions the corresponding quantum structures (algebras or
Hilbert spaces, see below), and Einstein causality is encoded as a feature of these maps. We
introduce the various nets pertaining to our purpose.

The general idea of the connection between nets of algebras on a complex Hilbert space
containing the vacuum vector Ω and nets of real Hilbert subspaces is to define, for every
spacetime region O, H(O) := A(O)saΩ.

2 One may also take the intersection with the
one-particle space H1(O) = H(O) ∩ H1. In the free case, one can recover H(O) and also
A(O) from the real Hilbert spaces H1(O) by second quantization, and this can be used
as a construction, once H1(O) are given. Finally, modular theory allows to define H1(O)

intrinsically in terms of a positive-energy representation of P↑
+.

3.1 Standard subspaces

A linear, real, closed subspace H of a complex Hilbert space H is called cyclic if H + iH is
dense in H, separating if H ∩ iH = {0} and standard if it is cyclic and separating.

Given a standard subspace H the associated Tomita operator SH is defined to be the
closed the anti-linear involution with domain H + iH, given by:

SH : H + iH ∋ ξ + iη 7→ ξ − iη ∈ H + iH, ξ, η ∈ H,

on the dense domain H + iH ⊂ H. The polar decomposition

SH = JH∆
1/2
H

defines the positive self-adjoint modular operator ∆H and the anti-unitary modular

conjugation JH . In particular, ∆H is invertible and

JH∆HJH = ∆−1
H .

If H is a real linear subspace of H, the symplectic complement of H is defined by

H ′ ≡ {ξ ∈ H ; ℑ(ξ, η) = 0,∀η ∈ H} = (iH)⊥R ,

where ⊥R denotes the orthogonal in H viewed as a real Hilbert space with respect to the
real part of the scalar product on H. H ′ is a closed, real linear subspace of H. If H is
standard, then H = H ′′. It is a fact that H is cyclic (resp. separating) iff H ′ is separating
(resp. cyclic), thus H is standard iff H ′ is standard and we have

SH′ = S∗
H .

2Msa are the self-adjoint elements of a von Neumann algebra M .
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Fundamental properties of the modular operator and conjugation are

∆it
HH = H, JHH = H ′ , t ∈ R .

The one-parameter, strongly continuous group t 7→ ∆it
H is the modular group of H (cf.

[28]).
There is a 1–1 correspondence between Tomita operators and standard subspaces, namely

between:

• Standard subspaces H ⊂ H,

• Closed, densely defined anti-linear involutions S on H,

• Pairs (J,∆) of an anti-unitary involution J and a positive self-adjoint operator ∆ on
H s.t.

J∆J = ∆−1. (3.4)

Namely, given (J,∆) one can recover S := J∆
1
2 and H as the real eigenspace of S with

eigenvalue 1.

We shall need the following results on standard subspaces.

Lemma 3.1. [22, 23]. Let H ⊂ H be a standard subspace, and K ⊂ H a closed, real linear
subspace of K.

If ∆it
HK = K, ∀t ∈ R, then K is a standard subspace of K ≡ K + iK and ∆H |K is the

modular operator of K on K. If moreover K is a cyclic subspace of H, then H = K.

Lemma 3.2. [22, 23]. Let H ⊂ H be a standard subspace, and U a unitary on H such that
UH = H. Then U commutes with ∆H and JH .

The following is the one-particle analogue of Borchers’ theorem [4].

Theorem 3.3. [22, 23]. Let H ⊂ H be a standard subspace, and U a one-parameter unitary
group on H with positive generator, such that U(t)H ⊂ H, t ≥ 0. Then ∆is

HU(t)∆−is
H =

U(e−2πst).

3.2 Nets on Minkowski spacetime

Let U be a unitary positive energy representation of the Poincaré group on a Hilbert space
H.

A U -covariant net of standard subspaces H on the set W of wedge regions of the
Minkowski spacetime is a map

H : W ∋W 7−→ H(W ) ⊂ H

that associates a closed real linear subspace H(W ) with each W ∈ W, satisfying:

1. Isotony: If W1 ⊂W2 then H(W1) ⊂ H(W2);

2. Poincaré covariance: U(g)H(W ) = H(gW ) (W ∈ W, g ∈ P↑
+);

3. Reeh-Schlieder property: H(W ) is cyclic ∀ W ∈ W;

9



4. Locality: For every wedge W ∈ W we have

H(W ′) ⊂ H(W )′.

The net is said to have the Bisognano-Wichmann property if

5. Bisognano-Wichmann property: ∆it
H(W ) = U

(
ΛW (−2πt)

)
for all W ∈ W and t ∈ R.

Given a U -covariant net H on W, one gets a net of closed, real linear subspaces on double
cones O defined by

H(O) ≡
⋂

W∋W⊃O

H(W ) . (3.5)

Note that H(O) is not necessarily cyclic. If H(O) is cyclic and H has the BW property,
then

H(W ) =
∑

O⊂W

H(O)

by Lemma 3.1.

3.3 Nets on the circle

Let I be the set of nonempty, nondense, open connected intervals of the unit circle S1 =
{z ∈ C : |z| = 1}. Let U be a positive-energy representation of Möb on a Hilbert space H.

A Möbius covariant net is a map H which assigns to every interval I ∈ I a von
Neumann algebra H(I) ⊂ H satisfying the following properties:

1. Isotony: If I1, I2 ∈ I and I1 ⊂ I2, then H(I1) ⊂ H(I2);

2. Möbius covariance: U(g)H(I) = H(gI) (I ∈ I, g ∈ Möb);

3. Reeh-Schlieder property: H(I) is cyclic for every I ∈ I;

4. Locality: If I1, I2 ∈ I and I1 ∩ I2 = ∅,

H(I1) ⊂ H(I2)
′.

With these properties, H(I) are standard subspaces, and the net automatically satisfies the
Bisognano-Wichmann property

5. Bisognano-Wichmann property: ∆it
H(I) = U

(
δI(−2πt)

)
for all I ∈ I and t ∈ R.

Here, for I+ the upper semicircle, δI+(t) are the dilations x 7→ etx in the line picture, and
for every other interval I = g(I+) (g ∈ Möb), δI(t) = g ◦ δI+(t) ◦ g

−1.

A translation-dilation covariant net of standard subspaces on the intervals of the real
line R can be defined in complete analogy. It is said to satisfy the Bisognano-Wichmann
property if U(δR+(2πt)) = ∆−it

R+
. In this case, it is possible to obtain a net on the circle; and

also the converse is true:

Lemma 3.4. [22] Let H be a translation-dilation net on the line. It extends to a Möbius
covariant net on the circle if and only if the Bisognano-Wichmann property holds. The
extension is unique.

10



3.4 Brunetti-Guido-Longo construction

The Brunetti-Guido-Longo construction relies on the 1–1 correspondence between standard
subspaces and Tomita-Takesaki modular data.

On Minkowski space. [9] Let U be an (anti-)unitary representation of P+, and JW
and KW the anti-unitary reflection and the self-adjoint generator of the one-parameter
group of boosts associated with the wedge W (i.e., U(ΛW (t)) = eitKW ), respectively. The
pair (JW ,∆W ≡ e−2πKW ), satisfies (3.4), thus one can associate to any wedge W ∈ W a
standard subspace H(W ) in a covariant way. By positivity of the energy and the Borchers
Theorem 3.3, the net W 7→ H(W ) satisfies Isotony. Covariance, Locality and the Reeh-
Schlieder and Bisognano-Wichmann properties hold by construction.

On the circle. [22] Let U be an (anti-)unitary representation of Möb and JI and KI the
anti-unitary reflection and the generator of the one-parameter group of dilations associated
with the interval I, respectively, and ∆I = e−2πKI . In analogy with the previous, we can
define a net I 7→ H(I). By positivity of the energy and the Borchers theorem, the net
I 7→ H(I) satisfies Isotony. Covariance, Locality and the Reeh-Schlieder and Bisognano-
Wichmann properties hold by construction.

Proposition 3.5. There is a unique, up to unitary equivalence, net of standard subspaces
on the considered spacetimes (circle or Minkowski) satisfying 1.–5. of Sect. 3.2 resp. 3.3.

Proof. On Minkowski space. Let W 7→ H(W ) be a Poincaré covariant net of standard
subspaces on wedges satisfying the Bisognano-Wichmann property w.r.t. a positive-energy
unitary Poincaré representation U . Then the modular conjugations of wedge subspaces
extend U to an (anti-)unitary representation of P+, cf. [14]. We conclude by the unitary
equivalence of (anti-)unitary extensions in Proposition 2.3 and the 1–1 correspondence be-
tween Tomita operator and standard subspaces.

On the circle. Let I 7→ H(I) be a Möbius covariant net of standard subspaces on intervals
satisfying 1.–5. Then U extends to an (anti-)unitary representation of Möb2 through interval
modular conjugations [22]. The conclusion again follows by Proposition 2.3 and the 1–1
correspondence between Tomita operators and standard subspaces. �

3.5 Chiral current models [12]

For n ∈ N consider the Hilbert space Hn defined by the closure of the space of square
integrable functions on R w.r.t. the scalar product

(f, g)n =

∫ ∞

0
p2n−1dp f̂(p)ĝ(p).

Its null space contains the polynomials of degree 2(n − 1). The associated symplectic form
on the real-valued functions is

ωn(f, g) ≡ ℑ(f, g)n =
(−1)n−1

2

∫
f(x)g(y)δ(2n−1)(x− y) dx dy.

11



Hn carries a unitary positive-energy representation Un of Möb by

(Un(g)f)(x) =
(dg(x)
dx

)−2(n−1)
f(g(x)) = (cx− a)2(n−1) f(g(x)), (3.6)

in particular
(If)(x) = x2(n−1) · f(I(x)). (3.7)

The self-adjoint generators act by

(Pf)(x) = i∂xf(x), (Df)(x) = i(x∂x − (n − 1))f(x), (3.8)

(Kf)(x) = i(x2∂x − 2(n− 1)x)f(x). (3.9)

Un is the positive-energy representation of lowest weight n.

Applying the BGL construction (Sect. 3.4) to the representation Un, one obtains the net
of real subspaces

I 7→ Hn(I) = {f ∈ C∞(R,R) : supp f ⊂ I}
‖·‖n

⊂ Hn,

on which Möb acts covariantly. (“Modular localization” is the fact that the support property
arises as a consequence of the definition of Hn(I) via modular theory. Locality is then seen
directly from the symplectic form ωn.) The second quantization ofHn (cf. Sect. 3.6) gives the
net of von Neumann algebras generated by the quasiprimary chiral current jn of dimension
n.

Note that
(f, g)n = (∂xf, ∂xg)n−1,

i.e., the derivative ∂x is a unitary operator Hn → Hn−1. This operator intertwines the
actions of the generators P and D, but not of K. Thus, ∂x : Hn → Hn−1 implements the
unitary equivalence of the restrictions of Un to the translation-dilation subgroup, cf. Sect.
2.3. In the language of quantum field theory, this is the statement that a quasiprimary
current of dimension n and the derivative of a quasiprimary current of dimension n − 1
transform in the same way under translations and dilations.

The distinction is only seen by the action of K, or I. This motivates the following

Lemma 3.6. Suppose a representation U of Möb is given whose restriction to P is given
by (3.8). Suppose that I acts geometrically, i.e.,

(If)(x) = g(x)f(I(x)) (3.10)

with some function g. Then g(x) = x2(n−1), and U = Un.

Proof. By direct computations, using (2.2): Insertion of (3.10) into ID +DI = 0 implies
that g is homogeneous of degree 2(n− 1), hence g(x) = g0x

2(n−1). I2 = id implies g0 = ±1.
Then K = IPI implies (3.9), which together with (3.8) integrates to (3.6). Then (3.7)
implies g0 = 1. �

The following is a reformulation of Lemma 3.6.

12



Proposition 3.7. Let H be the anti-Fourier transform of the Hilbert space L2(R, p2k+1dp).
Let

I 7→ H(I) = {f ∈ C∞
0 (R,R), supp f ⊂ I} ⊂ H

be a Möb-covariant standard subspace net with the natural action of translations and dila-
tions on H. Then H(I) = {jk(f)Ω ∈ H : supp f ⊂ I} where jk is the quasiprimary field of
dimension k. In particular, H is the one-particle net Hk associated to Uk (up to multiplic-
ity).

Proof. By the Bisognano-Wichmann property we can say H is the canonical BGL net
associated to the covariant Möb-representation. Thus there exists a current j generating H.

Assume that, the scalar product is misidentified, for simplicity consider (f, f) = ||j′k−1(f)Ω||
2.

It is possible since jk and ∂xjk−1 share the same scale dimension, and the same translation-
dilation covariant representation (but inequivalent Möb covariant representations). Then
the conformal inversion would act geometrically on derivatives as f ′ because j′h−1(f) =
−jh−1(f

′), but not on its primitive f . As a consequence j = jk and H = Hk. �

3.6 Second quantization and nets of von Neumann algebras

With H a Hilbert space and H ⊂ H a real linear subspace, R+(H) is the von Neumann
algebra on the symmetric Fock space F+(H) generated by the CCR operators:

R+(H) ≡ {w(f) : f ∈ H}′′, (3.11)

with w(ξ) the Weyl unitaries on F+(H) defined on the coherent states eg ∈ F+(H) (f ∈ H)

by their action w(f)eg = e−
1
2
(f,f)−(f,g) · ef+g. If ϕ(f) is the selfadjoint generator of the

unitary one-parameter group w(f), this standard construction ensures the identification of
the “one-particle vector” ϕ(f)Ω ∈ F+(H) with f ∈ H ⊂ F+(H). By continuity we have that

R+(H) = R+(H) .

Moreover the Fock vacuum vector Ω is cyclic (resp. separating) for R+(H) iff H is cyclic
(resp. separating).

Second quantization respects the lattice structure [1] and the modular structure [21, 24].
We recall these basic properties. For a standard subspace H ⊂ H, we denote by S+

H ,
J+
H , ∆+

H the Tomita operators associated with (R+(H),Ω), and by Γ+(T ) the Bose second
quantization of a one-particle operator T on H.

Proposition 3.8. [1, 21, 24] Let H and Ha be closed, real linear subspaces of H. We have

(a) R+(H)′ = R+(H
′);

(b) R+(
∑

aHa) =
∨

aR+(Ha);

(c) R+(
⋂

aHa) =
⋂

aR+(Ha).

(d) If H is standard, then S+
H = Γ+(SH), J+

H = Γ+(JH), ∆+
H = Γ+(∆H).
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Given the canonical BGL-net HU associated with a unitary positive-energy representa-
tion U of P↑

+ or Möb, then its second quantization net

A(W ) ≡ R+

(
HU(W )

)
, W ∈ W , resp. An(I) ≡ R+

(
HUn(I)

)
, I ∈ I ,

is the free field net, i.e., A(W ) is generated byWeyl operators w(f) = eiϕ(f) of freeWightman
fields smeared with real test functions supported in W , and An(I) is generated by Weyl
operators w(f) = eijn(f) of the quasiprimary current of dimension n, smeared in I. The
case n = 1 is the canonical U(1) current.

These nets satisfy the usual assumptions on nets of von Neumann algebras of local
observables.

On Minkowski space.

• Isotony: A(W1) ⊂ A(W2) if W1 ⊂W2;

• Poincaré covariance: U is a positive-energy representation of P↑
+, and U(g)A(W )U(g)∗ =

A(gW ), g ∈ P↑
+;

• Vacuum with Reeh-Schlieder property: there exists a unique (up to a phase) U -invariant
vector Ω ∈ H, and Ω is cyclic and separating for A(W ) for all W ∈ W;

• Locality: A(W ′) ⊂ A(W )′.

In addition, for the canonical free field nets the Bisognano-Wichmann property holds:

∆it
A(W ),Ω = U

(
ΛW (−2πt)

)
, W ∈ W, t ∈ R ,

where ∆A(W ),Ω is the modular operator of (A(W ),Ω).

On the circle.

• Isotony: A(I1) ⊂ A(I2) if I1 ⊂ I2;

• Möbius covariance: U is a positive-energy representation ofMob, and U(g)A(I)U(g)∗ =
A(gI), g ∈ Möb;

• Vacuum: There exists a unique (up to a phase) U -invariant vector Ω ∈ H;

• Locality: A(I ′) ⊂ A(I)′, I ∈ I;

The following are consequences of these axioms

• Reeh-Schlieder property: Ω is a cyclic and separating vector for each A(I), I ∈ I;

• Haag duality: A(I ′)′ = A(I), I ∈ I;

• Bisognano-Wichmann property: U(δI(−2πt)) = ∆it
A(I),Ω, for all I ∈ I and t ∈ R.

4 Time-axis theory of finite helicity representations

Consider the representation U = Uh ⊕ U−h of the Poincaré group. The Brunetti-Guido-
Longo construction associates to U a net of standard subspaces H on wedge shaped regions
satisfying the Bisognano-Wichmann property. The second quantization procedure provides
the free field net A associated with U .
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Finite helicity von Neumann algebra nets have an associated Wightman field φh sat-
isfying the Bisognano-Wichmann property [2]. Thus the BGL and the Wightman field
constructions coincide as

H(O) = {φh(f)Ω : f ∈ C∞
0 (R1+3), Suppf ⊂ O} and H(W ) =

⋃

O⊂W

H(O),

gives a one-particle U -covariant net (with two polarizations h and −h) and its second quan-
tization

Ah(O)=̇R+(H(O)) = {eiφh(f) : f ∈ C∞
0 (R1+3), Suppf ⊂ O}}′′

gives the free field. Note that Haag duality holds by [17, 16], namely H(O′) = H(O)′ and
R+(H(O′)) = R+(H(O)′) = R+(H(O))′. Furthermore, due to the conformal covariance, the
modular operator of any double cone subspace (resp. second quantization algebra) imple-
ment a one-parameter group of conformal transformation that is conjugated to the dilation
and the boost one parameter groups [16].

Firstly, note that it is not possible to unitarily rewrite the netH as a direct sum according
to Uh ⊕U−h, as Uh does not extend (anti-)unitarily to P+ [19, 29]. On the other hand U±h

(thus U) extends to a representation Ũ±h (resp. Ũ) of the conformal group which acts
covariantly on the net H, see e.g. [17, 16, 18].

We recall that a local net of standard subspaces on double cones undergoing the action
of a massless Poincaré representation is timelike local.

Lemma 4.1. [24] Assume that U is a massless, unitary representation of P̃↑
+ acting covari-

antly on a local net of closed, real linear subspaces on double cones. Let O1, O2 be double
cones with O2 in the time-like complement of O1, then

H(O2) ⊂ H(O1)
′ ,

where H(O) =
⋂

W⊃OH(W ).

Now, we can define a local net of standard subspaces on the time axis. Let I = (a, b) ⊂ R

be an interval and OI = (V− + b)∩ (V+ + a) the double cone with vertices on the time axis.
Then we get a net on the line

I 7→ H(I) = H(OI)

which undergoes the Möbius covariant action of Ũ |Möb.
Since any unitary positive energy Möbius representation extends (anti-)unitarily to

Möb2, then Ũ±h|Möb extends to Möb2 and acts covariantly on its BGL-standard subspace
net H0. By Proposition 3.5 and the Bisognano-Wichmann property for the dilation group,
we have that the net I 7→ H(I) is unitarily equivalent to the direct sum of the two local
Möb-covariant nets H±.

Now we need the structure coming from Wightman fields in order to construct the
theories on the time axis.

4.1 One-particle space and free field equations

Free field theories are completely determined by their one-particle structure. This structure
is conveniently described by the two-point functions of Wightman fields, that define the
one-particle space by endowing the space of test functions with a scalar product. The null
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space of this scalar product is completely characterized by the free field equations (that are
closer to the physicists’ mind). Our strategy is to use the latter in order to control the
one-particle space and the pertinent decomposition of the one-particle representations.

As compared to the scalar field, there are two complications with helicity > 1: the
(higher) Maxwell fields transform nontrivially under SO(3), and the one-particle space of a
local field carries necessarily the direct sum of the irreducible representations of helicity +h
and −h. (Nevertheless, we shall loosely refer to the local fields as “helicity-h fields”.)

The electromagnetic field, h = 1. The Maxwell equations for the magnetic and
electric fields in absence of charges are

curlB =
∂

∂t
E, curlE = −

∂

∂t
B, divE = 0 = divB.

The field strength Fµν of the electromagnetic field is defined to be the anti-symmetric tensor
given by

E = (F01, F02, F03) and B = (F32, F13, F21),

and the Maxwell equations become

∂µFµν = 0 and ∂µFνρ + ∂νFρµ + ∂ρFµν = 0.

These imply the Klein-Gordon equation �F = 0.
In the quantized theory, the one-particle Hilbert space is the space of test functions fµν

equipped with the scalar product given by the two-point function

(f, f) := (F (f)Ω, F (f)Ω) = (Ω, F (f)F (f)Ω).

The latter is dictated by covariance (i.e., by Weinberg’s quantization [30] based on Wigner’s
intrinsic construction [31] avoiding the use of a potential) to be

‖F (f)Ω‖2 =

∫

R3

dp

|p|
pµ pτ ηνσ f̂µν(p) f̂

στ (p).

Higher correlations are obtained by Wick’s theorem, so that the full Hilbert space is the
Fock space, and multi-particle states can be created by the usual creation and annilation
operators. The field strength transforms covariantly under the Poincaré group:

U(a,Λ)Fµν(x)U(a,Λ)∗ = Λρ
µ Λ

σ
νFρσ(Λx+ a).

It is well known that U(a,Λ) acts on the one-particle space as the direct sum of Poincaré
representations of helicities 1 and −1 [30].

In order to prove the split property for the resulting net, we want to restrict the Maxwell
net to the time axis. This gives a chiral conformal QFT. By computing Tr e−βL0 for this
chiral QFT and showing that it is finite for all β > 0, we shall establish that the chiral net
satisfies the split property. From this, we can conclude that the original net has the split
property.

Before we present the purely representation-theoretical argument for arbitrary helicities
|h| ≥ 1, we want to give its field-theoretic version in the Maxwell case.

The Poincaré transformations of the Maxwell tensor extend to the conformal group by

U(g)Fµν(x)U(g)∗ = Jg(x)
ρ
µJg(x)

σ
νFρσ(g(x)),
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where Jg(x)
ρ
µ = ∂g(x)ρ/∂xµ is the Jacobi matrix. For infinitesimal transformations with

generators P0 (time translations), D (dilations) and K0 = IP0I (special conformal transfor-
mations), one finds

i[P0, Fµν(x)] = ∂0Fµν(x), i[D,Fµν(x)] = (xκ∂κ + 2)Fµν(x),

i[K0, Fµν(x)] =
(
2x0(x∂)− x2∂0 + 4x0

)
Fµν(x) + 2(η0µx

κFκν − xµF0ν − (µ ↔ ν)).

From this, the commutators with the restricted fields ∇aFµν(t) = ∇a1 . . .∇akFµν(t, ~x)|~x=0

can be explicitly worked out.
Now, P0 = P , D and K0 = K are the generators of Möb, and quasi-primary chiral

currents of dimension h transform as

i[P, j(t)] = ∂tj(t), i[D, j(t)] = (t∂t+ h)j(t), i[K, j(t)] = (t2∂t+ 2ht)j(t).

It is obvious that the first two equations are satisfied by ∇aFµν(t) with h = 2+ |a| = 2+ k;
but the last one is in general not fulfilled. In an SO(3)-covariant formulation, and using the
Maxwell equations, we can bring the commutator with K into the form

i[K,Ja,b(t)]− (t2∂t + 2(2 + k)t)Ja,b(t) = 2
∑

1≤i<j≤k

∂tδaiajJä,b(t) + 2i
∑

1≤i≤k

εaibcJȧ,c(t),

where Ja,b are the complex fields ∇a1 . . .∇ak(Eb(t, ~x) + iBb(t, ~x))|~x=0, and ȧ is the multi-
index with ai deleted, and similarly ä is the multi-index with ai and aj deleted.

The quasi-primary currents are those for which the right-hand side vanishes. It is easy
to see that this is precisely the case for the completely symmetric and traceless part of
the rank k + 1 tensor Ja1...ak,b. This tensor carries the spin s = k + 1-representation of
SO(3), and because J is complex, there are two 2s + 1 multiplets of real quasi-primary
currents of dimension (= lowest weight of L0) 2 + k. All other components of Ja1...ak,b can
be seen to be time derivatives of lower currents by virtue of the Maxwell equations ∂aJa = 0,
∂aJb − ∂bJa = iεabc∂tJc and the wave equation that follows from them.

Now, it is well known that on the subspace generated from the vacuum by a quasi-
primary field of dimension h, one has Trh e

−βL0 = e−βh

1−e−β , hence on the one-partical space
of the Maxwell field,

Tr e−βL0 = 2
∑

k≥0

(2k + 3) ·
e−β(2+k)

1− e−β
,

which can be easily summed as a geometric series in z = e−β with radius of convergence 1.

Higher helicity fields, h > 1. The field strength is a tensor

F[µ1ν1]...[µhνh],

anti-symmetric in each index pair [µν]. It transforms covariantly under the Poincaré group:

U(a,Λ)F[µ1ν1]...[µhνh](x)U(a,Λ)∗ = Λρ1
µ1
. . . Λρh

µh
Λσ1
ν1 . . . Λ

σh
νh
F[ρ1σ1]...[ρhσh](Λx+ a)

and is subject to the linear dependencies (symmetries)

F...[µjνj ]...[µkνk]... = F...[µkνk]...[µjνj ]..., ηµjµkF[µ1ν1]...[µhνh] = 0,

F[αβ][γν2]...[µhνh] + F[βγ][αν2]...[µhνh] + F[γα][βν2]...[µhνh] = 0. (4.12)
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Its equations of motion (“higher Maxwell equations”) are

∂αF[αν1]...[µhνh] = 0, ∂αF[βγ]...[µhνh] + ∂βF[γα]...[µhνh] + ∂γF[αβ]...[µhνh] = 0. (4.13)

One can solve the linear dependencies in an SO(3)-covariant way by introducing the “elec-
tric” and “magnetic” components

Eb1...bh := F[0b1]...[0bh], Bb1...bh := εb1j1k1F[j1k1][0b2]...[0bh],

so that both E and B are symmetric traceless tensors, hence they carry the representation
Ds of SO(3); furthermore, the identities

εb1j1k1εb2j2k2F[j1k1][j2k2][µ3ν3]...[µhνh] = −F[0b1][0b2][µ3ν3]...[µhνh]

shows that two “magnetic” indices amount to two “electric” indices up to a sign, so that the
SO(3) tensors E and B contain all independent components of the higher Maxwell tensor.

Thus, a general field operator is of the form F (f) = E(fE) + B(fB), where the test
function is a pair

f(x) = (fEb1...bh(x), f
B
b1...bh

(x))

of completely symmetric traceless tensors.
Also the higher Maxwell equations look the same as for h = 1, namely E and B are

divergence-free and

εabc∇aEbb2...bh = −∂tBcb2...bh , εabc∇aBbb2...bh = ∂tEcb2...bh (4.14)

(which of course holds in every index).
Test functions that arise by smearing the Maxwell equations belong to the kernel of the

two-point function, and hence are zero as elements of the one-particle Hilbert space. Thus,
in the one-particle space, test functions of the form

(∇bgḃ, 0)
.
= 0, (0,∇bgḃ)

.
= 0,

(εabc∇agcḃ, 0)
.
= (0,−∂tgb), (0, εabc∇agcḃ)

.
= (∂tgb, 0). (4.15)

Because the higher Maxwell equations imply the wave equation, also

((~∇2 − ∂2t )g
E , (~∇2 − ∂2t )g

B)
.
= 0

are zero in the one-particle space.

4.2 Counting currents

The space of “test functions” for the fields restricted to the time axis is spanned by f =
(fEb , f

B
b ) where3

fXb (x) = fXb;a(t)∇aδ(x) ≡ fXb1...bh;a1...ak(t) · ∇a1 . . .∇akδ(~x) (X = E,B)

(summation over a = ai . . . ak understood), k = 0, 1, 2, . . . . We call Tk the subspace of such
functions with a fixed number k of spatial derivatives and T the union of all the Tk.

3That Wightman fields can be restricted to ~x = 0 is a result due to Borchers [3]. It ensures that the scalar
product is well-defined on test functions involving δ(~x).
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The space of the test functions fXb , modulo the kernel of the scalar product, defines
the one-particle Hilbert space H of the field strength F , and by Haag duality K(OI) =
{F (f)Ω : f ∈ T, Supp f ⊂ I} ⊂ H(OI) cf. [3]. Furthermore, by conformal covariance, the
modular group of the double cone subspace H(OI) implements a one-parameter group of
conformal transformations fixing the time axis (see [16]) and any Tk (the whole representa-
tion Ũ |Möb fixes Tk, cf. (4.17)). Now one can see that T + iT is cyclic in H since the scalar
product in the Hilbert space H can be decomposed as (f, g) =

∫
p0dp0

∫
p0·S2

(f, g)pdσ where

p0 · S2 is the sphere of radius p0, dσ is the SO(3)-invariant measure on p0 · S2 and
(
·, ·
)
p
is

a quadratic form involving 2h factors of pµ = (p0, ~p) = p0(1, ~nσ).
4 Then, by Lemma 3.1 we

have that K(OI) = H(OI).
Because of the symmetry of the tensors E and B, it suffices to take fXb;a to be symmet-

ric and traceless in the b-indices; and because of the wave equation, it suffices to take it
also symmetric and traceless in the a-indices. Thus, the test functions carry (twice) the
representation Ds ⊗Dk.

The one-particle Hilbert space is defined by taking the quotient by the null space, which
is the kernel of the two-point function. Thus, we may identify test functions according
to (4.15). In particular, every test function in Tk with coefficients fXb;a involving a factor
δbiaj is zero in the one-particle space; and every test function in Tk with coefficients anti-
symmetric in a pair bi, aj is identified with (the time derivative of) a test function in Tk−1.
Therefore, the one-particle Hilbert space for the restricted fields is spanned by the spaces
T̃k (k = 0, 1, 2 . . . ) with elements

(fEc1...ch+k
, fBc1...ch+k

) ∈ T̃k

where fXc (X = E,B) are completely symmetric and traceless, hence carrying (twice) the

representation Dh+k of SO(3). All other subrepresentations of Dh ⊗Dk belong to the null
space. In particular T̃k are mutually orthogonal.

We write the two-point function for f = (fEc , f
B
c ) ∈ T̃k as

(
f, f

)
k
=

∫
p20 dp0
p0

∫
dσ

(
f̂(p0, ~p), f̂(p0, ~p)

)
p

(4.16)

where f̂(p0, ~p) = (f̂Ec1...ch+k
(p0)pch+1

. . . pch+k
, f̂Bc1...ch+k

(p0)pch+1
. . . pch+k

) are homogeneous

polynomials of degree k in ~p. Extracting powers of |~p| = p0, this becomes

(
f, f

)
k
=

∫
p1+2h+2k
0 dp0

∫
dσ

(
f̂(p0, ~nσ), f̂(p0, ~nσ)

)
(1,~nσ)

.

The integration dσ yields the scalar product for Dh+k ⊕Dh+k, while the Möbius transfor-
mations are characterized by the dependence on p0.

The concluding argument is the same as in [7]: The time translations and dilations
trivially restrict to the time axis by

Pf(t) = i∂tf(t), Df(t) = i(t∂t − (h+ k))f(t).

4By the Stone theorem polynomials are dense in the continuous functions on the sphere. Then (vector)
continuous functions are dense in the L2-space w.r.t. the scalar product

∫
p0·S2

(f, g)pdσ.
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The conformal inversion I acts geometrically on test functions by (t, ~x) 7→ (−t, ~x)/(t2−~x2),
hence also its restricted action on the time axis is geometric by t 7→ −1/t. Because it
commutes with SO(3), it preserves the spaces T̃k and must act on it as

(If)(t) = G(t)f(I(t)) (4.17)

where G(t) is a 2×2-matrix in the commutant of Dh+k⊕Dh+k, possibly mixing the electric
and magnetic components. Now the argument of the Lemma 3.6 applies, and we conclude
that G(t) = t2(h+k)12, and the subgroup Möb× SO(3) of C acts on T̃k as Uh+k+1⊗ (Dh+k ⊕
Dh+k).

We have proved the following theorem.

Theorem 4.2. Let Uh be the irreducible helicity-h representation of the Poincaré group.
Let U = Uh ⊕ U−h, and Ũ its extension to the conformal group C, then

Ũ |Möb×SO(3) =
⊕∞

k=0
U (h+k+1) ⊗ (Dh+k ⊕Dh+k). (4.18)

Corollary 4.3. Let Uh be the irreducible helicity-h representation of the Poincaré group
and Ũh its extension to the conformal group C, then

Ũh|Möb×SO(3) =
⊕∞

k=0
U (h+k+1) ⊗Dh+k. (4.19)

Proof. The PCT symmetry respects the Möb × SO(3) decomposition. Its anti-unitary
implementation J intertwines Uh, U−h and their restrictions to Möb × SO(3). Irreducible
unitary sub-representations in Ũ |Möb×SO(3) of Möb× SO(3) are tensor products of the form

U j+1 ⊗ Dj that anti-unitarily extend to Möb2 × SO(3). In particular, Ũh|Möb×SO(3) and

Ũ−h|Möb×SO(3) are unitarily equivalent, and by the decomposition in Theorem 4.2 we get
the claim. �

5 Trace class and split property for finite helicity fields

Definition 5.1. (Split Property) [11]. Let (N ⊂ M,Ω) be a standard inclusion of von
Neumann algebras, i.e., Ω is a cyclic and separating vector for N , M and N ′ ∩M.

A standard inclusion (N ⊂ M,Ω) is split if there exists a type I factor B such that
N ⊂ B ⊂ M.

A Poincaré covariant net (A, U,Ω) satisfies the split property if the von Neumann algebra
inclusion (A(O1) ⊂ A(O2),Ω) is split, for every compact inclusion of bounded causally closed
regions O1 ⋐ O2.

The following result relates the trace class property of the partition function in the first
and second quantization nets.

Lemma 5.2. [7, 22] Let A ∈ B(H) be a selfadjoint operator s.t. 0 ≤ A < 1, then Tr Γ(A) <
∞ iff Tr A <∞, where Γ is the second quantization functor.

The next proposition relates the trace class and the split properties of conformal nets
on the circle.
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Proposition 5.3. [7] Let A be a von Neumann algebra net on the circle satisfying the trace
class condition

Tr e−βL0 <∞ for every β > 0,

then every inclusion A(I) ⊂ A(Ĩ), with I ⋐ Ĩ, is a split inclusion.

The results of the previous section allow us to conclude

Proposition 5.4. Let Uh be a finite helicity representation of P↑
+ and Ũh its extension

to the conformal group C. Consider the restriction Ũh|Möb and let L0 be the conformal
Hamiltonian, i.e., the generator of the rotation subgroup of Möb. Then e−βL0 is a trace
class operator.

Proof. By Corollary 4.3 any representation of highest weight n+ 1 in the decomposition
of Uh|Möb×SO(3) appears with multiplicity equal to the dimension of Dn when n ≥ s:

Ũh|Möb×SO(3) ≃
⊕∞

k=0
U (h+k+1) ⊗Dh+k.

Furthermore, the trace of L0 in Uh+k+1 is equal to e−(h+k+1)β

1−e−β . We conclude that

Tr (e−βL0) =
∑∞

n=h
(2n+ 1)

e−(n+1)β

1− e−β
,

which converges for all β > 0 as before. �

Proposition 5.5. Let Ah be the helicity-h free net of von Neumann algebras (whose one-
particle space carries the representation Uh⊕U−h if h > 0) and I 7→ Ah(I)

.
= Ah(OI) be its

restriction to the time axis. Then Ah(I) ⊂ Ah(Ĩ) is a split inclusion when I ⋐ Ĩ.

Proof. The net Ah is the second quantization of the BGL standard subspace net Hh

associated to U = Uh⊕U−h. By Lemma 5.2 and Proposition 5.4, we have that Tr Γ(e−βL0) <
∞, thus the net

I 7→ Ah(OI)

satisfies the split property, by Proposition 5.3. �

Theorem 5.6. The free finite helicity fields satisfy the split property.

Proof. For inclusion of algebras related to double cones on the time axis, we conclude by
Proposition 5.5.

For a general inclusion of double cones O ⋐ Õ, choose a Poincaré transformation g such
that g(Õ) = OĨ is a double cone on the time axis. Then there is an inclusion OI ⋐ OĨ of
another double cone on the time axis such that g(O) ⊂ OI . Then Ah(g(O)) ⊂ Ah(OĨ) =

Ah(g(Õ)) is split because Ah(g(O)) ⊂ Ah(OI), and hence Ah(O) ⊂ Ah(Õ) is split by
covariance. �

21



As a corollary of Proposition 5.4 we also have the L2-nuclearity property, which is
stronger than the split property.

Corollary 5.7. (L2-nuclearity) Let Ah be the helicity-h free net of von Neumann algebras
and I 7→ Ah(I)

.
= Ah(OI) be its restriction to the time axis. Then for I ⋐ Ĩ the operator

∆
1/4

A(Ĩ),Ω
∆

−1/4
A(I),Ω is trace class.

The proof of the corollary is analogous to the one given in [7].

6 Outlook: torwards a new construction of finite helicity
fields

Disjoint unitary representations of a given locally compact group G can have unitary equiv-
alent restrictions to subgroups. This fact can be used to reconstruct inequivalent represen-
tations of G, by perturbing generators in the complement of a subgroup H ⊂ G. In [12]
the authors proved that inequivalent highest weight representations of the Möb group have
unitary equivalent restrictions to the translation-dilation subgroup, cf. Sect. 2.3. In partic-
ular one can recover the full Möb representation U (h) with lowest weight-h by perturbing
the conformal inversion operator of the lowest weight-1 representation U (1). On the other
hand, the covariance of associated nets is not preserved in this perturbation procedure. For
instance, one can see that U (h) acts covariantly only a subnet of the U(1)-current (which
anyway coincides with the U(1)-current on half-lines) [12].

In this paper we established the split property for free finite helicity fields. The funda-
mental step is the factor decomposition of the restriction of Ũh, the extension of Uh to the
conformal group C, to the subgroup Möb × SO(3). The rotation group SO(3) is a type I
group, hence irreducible representations ofMöb×SO(3) have to be tensor products U (h)⊗Ds,
where U (h) is the lowest weight-h representation of Möb and Ds is the spin-s representation
of SO(3). By inspection of the decomposition of Ũh|Möb×SO(3) in Corollary 4.3, we observe

that Ũh1 |Möb×SO(3) is a sub-representation of Ũh2 |Möb×SO(3) when h1 − h2 ∈ Z and h1 ≥ h2.
One can think of a perturbation argument. Consider the projection Ph on the subspace

supporting
⊕h−1

k=0(U
k+1 ⊗Dk) and cut Ũ0|Möb×SO(3) along the complementary space 1−Ph.

By Corollary 4.3 the representation U0|Möb×SO(3)(1−Ph) extends to a representation of he-
licity h by redefining the spatial translations, suitably perturbing the translation generators
in the scalar representation on (1 − Ph)H0. Namely, the spatial translations together with
the time translations and the conformal inversion, contained in Möb, generate the confor-
mal group. This can be further seen by looking at the proof of Proposition A.4, where
we disintegrate the spectrum in rotation-translation invariant fibers, and (A.21) shows that
Wh,p0|SO(3) ≤ Wk,p0 |SO(3), for k ≤ h. Thus one can address the perturbation argument
already at the level of the euclidean subgroup, cf. Appendix A.

Let us comment on inclusions of standard subspace nets on the time axis. Firstly,
the BGL-net associated to the P↑

+-representation U0 extends to a conformal net, and the
Bisognano-Wichmann property for boosts and dilations is a consequence of conformal co-
variance, cf. [10]. Then, we note that the projection Ph+1 −Ph commutes with U0|Möb (and
with U0|Möb×SO(3)). In particular, the net on the time axis I 7→ H0(OI) decomposes as the
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direct sum of Möb-covariant nets of subspaces

I 7→ H0(OI) =
∞⊕

h=0

(Ph+1 − Ph)H0(OI)

according to (4.19). Indeed, by the Bisognano-Wichmann property the modular groups
of the interval subspaces implement interval dilations, the interval modular conjugations
implement the PCT symmetry, and it is easy to see that the Tomita operators of the
interval subspaces commute with Ph+1 − Ph.

Once we identify the representations

(Ũh ⊕ Ũ−h)|Möb×SO(3) = ((1− Ph)⊕ (1− Ph)) (Ũ0 ⊕ Ũ0)|Möb×SO(3) ((1− Ph)⊕ (1− Ph)) ,

by Proposition 3.5, we can also identify Hh(I) as a subnet of H0(I) ⊕ H0(I): take two
copies of the massless scalar one particle net (U0 ⊕ U0,H0 ⊕ H0) and consider the net on
the time axis I 7→ H0(OI) ⊕H0(OI); then consider the Möb × SO(3) invariant projections
(1− Ph)⊕ (1− Ph) and the new net on the time axis

I 7→ Hh(I)=̇ ((1− Ph)⊕ (1− Ph)) (H0(OI)⊕H0(OI)) ,

undergoing theMöb (andMöb×SO(3))-action through (Ũh⊕Ũ−h)|Möb×SO(3). The projection
1−Ph does not commute with the U0-translations since U0 is irreducible, and on the subspace
((1− Ph)⊕ (1− Ph)) (H0 ⊕H0) one has to define new translations to obtain the Uh ⊕ U−h

representation of the Poincaré group (the group generated by Möb × SO(3) and space
translations contains the Poincaré group). Afterwards, one can define by covariance double
cone subspaces and the helicity-h free net of standard subspaces, namely

Hh(O)=̇ (Uh(g) ⊕ U−h(g))Hh(OI)

for a general double cone O = gOI . It remains an interesting open problem to explicitly
provide or characterize the necessary perturbation of the U0-translations in order to obtain
the Uh-translations on the proper subspace.

This further suggests another way of constructing finite helicity free nets. One can start
with the representation of Möb × SO(3) in the right-hand side of (4.19). It extends to
the representation of the Poincaré group of helicity h or −h. Consider two copies of such a
Möb×SO(3)-representation, and the associated one-particle net on the line can be identified
with the time axis theory of the helicity-h free net. Then there is a proper choice of the
translation generators and the PCT operator which allows to construct the free net on the
full Minkowski space by covariance.

A Appendix: Restriction of finite helicity representations to

the euclidean subgroup

We comment on the restriction of finite helicity representations to the euclidean group.

Definition A.1. [25] Let G be a separable locally compact group.
Closed subgroupsG1 and G2 of G are said to be regularly related if there exists a sequence

E0, E1, E2, . . . of measurable subsets of G each of which is a union of G1 : G2 double cosets
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such that E0 has Haar measure zero and each double coset not in E0 is the intersection of
the Ej which contain it.

Because of the correspondence between orbits of G/G1 under G2 and double G1 : G2

cosets, G1 and G2 are regularly related if and only if the orbits outside of a certain set of
measure zero form the equivalence classes of a measurable equivalence relation.

Consider the map s : G → G1\G/G2 carrying each element of G into its double coset.
Then equip G1\G/G2 with the quotient topology given by s and consider a finite measure
µ on G which is in the same measure class of the Haar measure. It is possible to define µ on
the Borel sets of G1\G/G2 by µ(E) = µ(s−1(E)). We shall call µ an admissible measure in
G1\G/G2. The definition is well posed since any two of such measures have the same null
measure sets.

We recall two well-known theorems.

Theorem A.2 (Mackey’s subgroup Theorem). [26]. Let G1, G2 regularly related in G. Let
π ∈ Rep(G1). For each x ∈ G consider Gx = G2 ∩ (x−1G1x) and set

Vx = IndGx↑G2(π ◦ adx).

Then Vx is determined to within equivalence by the double coset x to which x belongs. If ν
is an admissible measure on G1\G/G2, then

(IndG1↑G π) |G2 ≃

∫

G1\G/G2

Vx dν(x).

If G is a compact group, let π and ρ be two unitary representations of G, we shall
denote with C(π, ρ) the space of intertwining operators of the representations π and ρ and
with mult(π, ρ) the multiplicity (of the unitary class) of π in ρ.

Theorem A.3 (Frobenius Reciprocity theorem). [13]. Let G a compact group, H a closed
subgroup, π a unitary representation of the group G, and σ an irreducible unitary represen-
tation of H. Then,

C(π, IndH↑G(σ)) ≃ C(π|H , σ) and mult (π, IndH↑G(σ)) = mult (π|H , σ).

In this section we shall indicate with χ a one dimensional representation (a character)
of an abelian group. Let E(n) = SO(n) ⋉ Rn be the inhomogeneous symmetry group of
n-dimensional Euclidean space. The universal covering is the semi-direct product Ẽ(n) =

S̃O(n) ⋉ Rn. Representations are obtained by induction. Consider a character χq in the

dual of the translation group and its orbit σq through the dual action of Ẽ(n). We shall call

Stabq and Stabq = Stabq ⋉Rn the stabilizers of χq through the S̃O(n) and Ẽ(n) actions,
respectively. Note that the dual action of the translations is trivial on χq. When there is
no ambiguity we will write q instead of χq.

There are two main families of irreducible representations (cf. e.g. [29, 13]):

• U = Ind
Stab0↑Ẽ(n)

χ0V = V is induced from a product of the trivial character χ0 of

R
n and an irreducible representation V of Stab0 = S̃O(n). Thus U is the irreducible

representation V of S̃O(n) lifted to Ẽ(n), trivial on translations;
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• U = IndStabq↑Ẽ(n)χqV
′ is induced from a product of a nontrivial character χq of Rn

and an irreducible representation V ′ of Stabq . In such a case orbits are spheres of
radius r = |q| and up to unitary equivalence it is possible to choose q = (0, r) where
0 is the null vector in Rn−1.

In the three-dimensional euclidean case, if q = (0, 0, r) with r > 0 then Stabq = U(1), double
covering of SO(2). Induced representations are of the form

Wh,r = IndStabq↑Ẽ(3) χqχh, h ∈
1

2
Z,

where χh is the 2h-character U(1)-representation and q defines a character of R3 of length
r. The induced representation acts on the Hilbert space L2(Sr, dp δ(p

2 − r2)) where Sr is
the sphere with center in the origin and radius r.

Proposition A.4. Let Uh be a massless helicity-h representation. Consider the restriction
of Uh to T × E(3), where T is the time-translation group, then

Uh|T×E(3) =

∫

R+

dp0 (χp0 ⊗ Wh,p0) . (A.20)

Furthermore,

Wh,p0 |SO(3) =

∞⊕

l=|h|

Dl (A.21)

and

Uh|T×SO(3) =

∞⊕

l=|h|

∫

R+

dp0

(
χp0 ⊗ Dl

)
(A.22)

Proof. We prove the proposition in the bosonic case, namely h ∈ Z. The proof is analogous
in the Fermionic case.

Let q = (1, 0, 0, 1), with the definitions in Sect. 2.2, the helicity-h representation is

Uh = Ind
Stabq↑P

↑
+
χqVh

where Stabq = E(2)⋉R
4 ⊂ P↑

+. Let T be the time translation group. When we restrict Uh

to T × E(3), we get

Uh|T×E(3) =

∫

R+

dp0 χp0 Up0 (A.23)

where Up0 are representations of E(3) of radius p0. This follows since

(Uh(a,A)φ)(p) = eia·pVh(B
−1
p ABA−1p)φ(A

−1p), (a,A) ∈ P↑
+, φ ∈ L2(∂V+, θ(p0)δ(p

2)d4p),

and we can choose B−1
p = Λ3(− ln p0)Rp, where p 7→ Rp is a Borel map from the R3-sphere

Sp0 of radius p0 (we are considering the set (p0, Sp0) ⊂ R
1+3) to SO(3) such that, for any

p, Rp p = qp0=̇(p0, 0, 0, p0) and Λ3 is the x0-x3 boost s.t. Λ3(− ln p0)qp0 = q = (1, 0, 0, 1)
(cf. [29]). Thus, with Up0 = eia·pVh(R

−1
p ARA−1p)ψ(A

−1p) where (a,A) ∈ E(3) and ψ ∈
L2((p0, Sp0), δ(p

2)δ(p0)d
4p), the direct integral representation of T ×E(3) in the right hand

side of (A.23) extends to the representation of the Poincaré group Uh.
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Now, let δt : p 7→ eλp be the dilation group, by dilation covariance of Uh

U |T×E(3) =

∫

R+

dp0 Up0χp0 = U(δt)

(∫

R+

dp0 Up0χp0

)
U(δt)

∗ =

∫

R+

dp0 Uδ−tp0χδ−tp0 ,

thus Up0χp0 = Uδ−tp0χδ−tp0 for a.e. λ ∈ R. In particular, Up0 is irreducible for almost every
p0 ∈ R

+ because the Uh-translation algebra is multiplicity free.
Since the stabilizer of qp0 under the (T × E(3))-action is contained in E(2) ⋉ R4 ⊂ P↑

+

(the stabilizer of qp0 under the Poincaré action) and Vh is trivial on E(2)-translations, then
one can see that for almost every p0 ∈ R+, Up0 = IndSO(2)⋉R3↑E(3) χhχqp0

and we get

Uh|E(3) =

∫

R+

dp0Wh,p0χp0 .

Now, we apply Theorem A.2 to Wh,p0 with G = E(3), G1 = SO(2)⋉R3, G2 = SO(3) (note
that G1\G/G2 = 1). By Theorem A.3, we get the second statement, i.e.

Wh,p0|SO(3) =
∞⊕

l=|h|

Dl.

(A.21) does not depend on the radius p0, thus we conclude (A.22). �
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