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Higher Structures in Algebraic Quantum Field Theory
LMS/EPSRC Durham Symposium on Higher Structures in M-Theory

Marco Beninia and Alexander Schenkelb,∗

A brief overview of the recent developments of operadic
and higher categorical techniques in algebraic quantum
field theory is given. The relevance of such mathemat-
ical structures for the description of gauge theories is
discussed.

1 Background on AQFT

Algebraic quantum field theory (AQFT) is a mathematical
framework to formalize and investigate quantum field the-
ories (QFTs) on Lorentzian manifolds, i.e. on space-times
in the sense of general relativity. We have emphasized the
adjective Lorentzian because this is what makes AQFT
different from other mathematical approaches to QFT,
such as (extended) topological QFT [1, 2] or the factoriza-
tion algebra approach of Costello and Gwilliam [3]. The
original framework of Haag and Kastler [4] was restricted
to QFTs on Minkowski space-time, but a more flexible
version of AQFT that works on all (globally hyperbolic)
Lorentzian manifolds was later developed by Brunetti,
Fredenhagen and Verch [5]. AQFT turns out to be a very
powerful and successful framework not only for proving
model-independent results for QFTs, but also for studying
concrete applications with a high level of mathematical
rigor. We refer to [6] for an overview of some of the recent
advances in AQFT.

Before we can provide a definition of what an AQFT
is, we have to make precise on which space-times we
would like our QFTs to live. We refer to [7] for a concise
introduction to Lorentzian geometry. In order to avoid
pathologies, one typically considers only globally hyper-
bolic Lorentzian manifolds. These are Lorentzian mani-
folds M for which there exists a Cauchy surface Σ ⊂ M ,
i.e. a codimension 1 hypersurface that is intersected pre-
cisely once by every inextensible causal curve. We further
would like that M is oriented and time-oriented in order
to have a volume form and a way to distinguish between
future and past. We collect all oriented and time-oriented
globally hyperbolic Lorentzian manifolds (of a fixed di-

mension m ≥ 2) in a category that we denote by Loc. The
morphisms f : M → N in Loc are orientation and time-
orientation preserving isometric embeddings of M into
N such that the image f (M) ⊆ N is open and causally
convex, i.e. every causal curve in N that starts and ends
in f (M) is entirely contained in f (M). There exists a dis-
tinguished class W ⊆ MorLoc of Loc-morphisms, called
Cauchy morphisms, which is given by all f : M → N such
that the image f (M) ⊆ N contains a Cauchy surface of N .
Loosely speaking, one should think of f (M) ⊆ N as a ‘time
slab’ with respect to a time coordinate on N . The category
Loc may be endowed with a further structure that encodes
causal independence of subspace-times. We call a pair of
Loc-morphisms ( f1 : M1 → N , f2 : M2 → N ) to a common
target causally disjoint if their images f1(M1) ⊆ N and
f2(M2) ⊆ N are causally disjoint subsets of N , i.e. there
exists no causal curve connecting f1(M1) and f2(M2). The
collection of all causally disjoint pairs of Loc-morphisms
is denoted by ⊥Loc ⊆ MorLoc t×t MorLoc and we shall sim-
ply write f1 ⊥Loc f2 whenever ( f1, f2) ∈⊥Loc. The following
variant of AQFT was proposed in [5] and it is called locally
covariant QFT.

Definition 1.1. A locally covariant QFT is a functor A :
Loc → C∗Alg to the category of unital C∗-algebras that
satisfies the following properties:
i) Isotony: For all Loc-morphisms f : M → N , the ∗-

homomorphism A( f ) :A(M) →A(N ) is injective.
ii) Einstein causality: For all causally disjoint f1 ⊥Loc f2,

the induced commutator[
A( f1)(a),A( f2)(b)

]
A(N ) = 0 (1)

is zero, for all a ∈A(M1) and b ∈A(M2).
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iii) Time-slice axiom: For all Cauchy morphisms f ∈W ,
the ∗-homomorphism A( f ) :A(M) →A(N ) is an iso-
morphism.

The physical interpretation is as follows: The C∗-
algebra A(M) ∈ C∗Alg associated to M ∈ Loc describes
the quantum observables of the theory that one can mea-
sure in the space-time M . The ∗-homomorphism A( f ) :
A(M) →A(N ) associated to a Loc-morphism f : M → N
pushes forward observables along this space-time embed-
ding. The isotony axiom then says that no observables are
lost under such pushforwards, i.e. larger space-times are
not allowed to have less observables than smaller ones.
The Einstein causality axiom formalizes that spacelike
separated observables commute with each other. Finally,
the time-slice axiom implements a dynamical law or ‘time
evolution’ as it states that the observable algebra of a small
region containing a Cauchy surface is isomorphic to the
observable algebra of the full space-time.

It might be a bit surprising for some readers that we
did not mention Hilbert spaces in Definition 1.1, which
are the predominant structures in other approaches to
QFT. The reason is that AQFT splits the problem of de-
scribing a QFT in two separate steps: First, one constructs
a theory in the sense of Definition 1.1, which describes
the quantum observables as abstract C∗-algebras. Second,
one studies (algebraic) states on these algebras, i.e. linear
functionals ωM :A(M) →C that are positive ωM (a∗a) ≥ 0,
for all a ∈A(M), and normalized ωM (1) = 1. These states
then define Hilbert spaces via the GNS-construction. This
means that, while retaining a prominent role, in AQFT
Hilbert spaces enter the game only at a later stage, when
one analyzes the representation theory of a specific model.
The advantage of axiomatizing only the observable alge-
bras of a QFT, as it was done in Definition 1.1, is that
one does not have to make any a priori choice of a distin-
guished ‘vacuum’ state, but one treats all possible states
on an equal footing. The reason why it is particularly im-
portant to do so is two-fold: 1.) different states can induce
inequivalent Hilbert space representations, 2.) for QFTs
on curved space-times there is no distinguished choice of
vacuum state due to the lack of space-time symmetries.
Another more technical advantage is that the observable
algebras of a QFT behave local (cf. Einstein causality in
Definition 1.1), while states capture non-local quantum
features such as entanglement. Hence, one can employ
powerful local techniques for constructing and analyz-
ing examples of AQFTs, which is particularly useful when
discussing perturbatively interacting models and their
renormalization, see e.g. [8] for a recent overview.

We would like to add some comments about varia-
tions of Definition 1.1 that are considered in the literature.

We shall also explain why we think such variations are
reasonable for certain purposes.

Variation 1.2. Instead of the category C∗Alg of C∗-
algebras, one may consider also other categories to de-
scribe the observables of a QFT. For example, one may
consider the category ∗Alg of ∗-algebras or various cate-
gories of topological ∗-algebras, sometimes over the ring
of formal power series C[[ħ]]. Such choices are useful for
formalizing perturbatively interacting AQFTs, where one
does not have C∗-norms.

Variation 1.3. Instead of the category Loc of all oriented
and time-oriented globally hyperbolic space-times, one
may consider also other categories of space-times. For ex-
ample, one may take the full subcategory Loc¦ ⊆ Loc of all
space-times M whose underlying manifold is diffeomor-
phic to Rm . Note that our notions of causal disjointness
⊥Loc and Cauchy morphisms W restrict to this subcat-
egory, hence we can make sense of all axioms listed in
Definition 1.1 for functors A : Loc¦ →C∗Alg defined on
this subcategory. Physically, one interprets such AQFTs as
QFTs that are only defined on topologically trivial space-
times. As another example, one may take the category
COpen(M) of causally convex open subsets U ⊆ M of
a fixed space-time M . There exists an evident functor
COpen(M) → Loc along which we can pull back our no-
tion of causal disjointness ⊥Loc and the Cauchy mor-
phisms W . AQFTs on COpen(M) describe QFTs that are
defined on suitable subsets of a fixed space-time M , which
is in the spirit of the original Haag-Kastler approach [4].

Variation 1.4. The isotony axiom turns out to be too re-
strictive to capture important examples of QFTs that are
sensitive to topological data. For example, the functor
A : Loc →C∗Alg describing gauge-invariant observables
of Abelian Yang-Mills theory violates the isotony axiom
because of electric and magnetic charges living in certain
cohomology groups of the space-times. This feature was
observed first in [9] and it was later refined and general-
ized in [10–13]. Our current practice is to drop the isotony
axiom from the definition of AQFTs. In ongoing works, we
attempt to find a suitable replacement by a descent (i.e.
local-to-global) condition.

We would like to comment in more detail on the idea of
introducing a descent condition for AQFT. Loosely speak-
ing, descent means that the observable algebra A(M) on
a ‘complicated’ space-time M can be obtained by patch-
ing together the observable algebras A(Ui ) on a suitable
family of ‘simple’ subspace-times Ui ⊆ M . In practice, de-
scent would allow us to replace questions about the com-
plicated observable algebra A(M) by a family of simpler
questions about the algebras A(Ui ) and their interplay via
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embeddings. Such properties are prevalent in mathemat-
ics, with concrete manifestations given by sheaf or cosheaf
conditions. To our surprise, it seems that descent in AQFT
has not yet been studied systematically, at least according
to our best knowledge. The reason for this might be that
the most desirable kind of descent condition for AQFT,
namely a cosheaf condition, turns out to be very restric-
tive and in particular it fails even in the simplest examples
of non-interacting AQFTs. Recall that the cosheaf condi-
tion for the functor A : Loc →C∗Alg underlying an AQFT
states that, for every (suitable) cover {Ui ⊆ M } by causally
convex open subsets, the canonical morphism

colim

( ∐
i j
A(Ui j ) //

//
∐
i
A(Ui )

) ∼=−→ A(M) (2)

is an isomorphism of C∗-algebras. Here Ui j := Ui ∩U j

denotes the intersections,
∐

the coproduct in C∗Alg and
colim the colimit in C∗Alg. Looking at a simple example,
we shall illustrate in Appendix A that it is very hard to find
covers {Ui ⊆ M } such that this condition holds true.

A weaker but still useful descent condition can be ob-
tained by using ideas related to Fredenhagen’s universal al-
gebra [14–16]. We shall provide here only a rough sketch of
the idea and refer to Section 2.3 for a precise implementa-
tion. Let us denote by j : Loc¦→ Loc the full subcategory
embedding from Variation 1.3. We may restrict any AQFT
A : Loc →C∗Alg to a functor j∗A :=A◦ j : Loc¦→C∗Alg
on Loc¦. It is easy to see that this functor satisfies the ana-
logues for Loc¦ of the axioms in Definition 1.1, hence it
is an AQFT that is however only defined on space-times
with underlying manifold diffeomorphic to Rm . Apply-
ing Fredenhagen’s universal algebra construction to j∗A,
i.e. forming the left Kan extension along the embedding
functor j : Loc¦ → Loc (cf. [17]), defines another func-
tor Lan j j∗A : Loc →C∗Alg on all of Loc. Note that there
exists a canonical comparison natural transformation
εA : Lan j j∗A→A given by the counit of the adjunction
Lan j a j∗. We hence may formalize a descent condition
by demanding that εA is a natural isomorphism. In other
words, this descent condition formalizes the idea that the
AQFT A on Loc is completely determined by its values
on the category Loc¦ ⊆ Loc of space-times diffeomorphic
to Rm . This is similar to the descent condition in factor-
ization homology [18], which is a topological variant of
factorization algebras [3].

Let us mention the following issue with the latter de-
scent condition, which will be addressed and solved in
Section 2.3 once we have a more powerful mathematical
machinery available. Notice that there is no reason why
the functor Lan j j∗A : Loc →C∗Alg should satisfy the ax-
ioms from Definition 1.1, i.e. Lan j j∗A is not necessarily

an AQFT in the sense of Definition 1.1, even if we drop
the isotony axiom as in Variation 1.4. This has as a conse-
quence that not even simple examples of AQFTs, such as
the free Klein-Gordon theory, satisfy the present version
of the descent condition. (They however satisfy a slightly
weaker descent condition obtained by replacing Loc by
the full subcategory Loc0 ⊆ Loc of connected space-times,
cf. [17].) A solution to this problem is to use a more refined
version of Fredenhagen’s universal algebra construction
that is obtained by methods from operad theory. This will
be explained in Section 2.3.

2 AQFT from an algebraic perspective

The aim of this section is to identify a colored operad
that controls the algebraic structures underlying AQFT.
The main advantages of this operadic perspective are as
follows: 1.) It provides a suitable framework for studying
universal constructions for AQFTs, for example via op-
eradic left Kan extensions. This will in particular allow us
to formulate a precise version of the descent condition
sketched in Section 1. 2.) It provides a suitable starting
point for investigating higher structures in AQFT by im-
porting ideas and techniques from the homotopy theory
of algebras over operads, see e.g. [19,20]. The second point
will be discussed in detail in Section 4. For details on the
material presented below we refer to [21]. A generalization
to other types of field theories (e.g. classical, linear, etc.)
can be found in [22] and in Bruinsma’s contribution to
these proceedings [23].

2.1 Orthogonal categories and AQFTs

For the rest of this paper we shall adopt a very broad and
flexible definition of AQFTs in which the space-time cate-
gory Loc is generalized to a so-called orthogonal category
[21]. This allows us to treat different flavors of AQFTs, such
as locally covariant QFTs, AQFTs on a fixed space-time and
chiral conformal AQFTs, on an equal footing.

Definition 2.1. An orthogonal category is a pair C :=
(C,⊥) consisting of a small category C and a subset ⊥⊆
MorC t×t MorC of the set of pairs of morphisms with a
common target (called orthogonality relation), such that
the following conditions hold true:
i) Symmetry: If ( f1, f2) ∈⊥, then ( f2, f1) ∈⊥.
ii) ◦-Stability: If ( f1, f2) ∈⊥, then (g f1 h1, g f2 h2) ∈⊥, for

all composable C-morphisms g , h1 and h2.
We denote orthogonal pairs ( f1, f2) ∈ ⊥ also by f1 ⊥ f2.
An orthogonal functor F : C → D is a functor F : C → D
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such that F ( f1) ⊥D F ( f2) for all f1 ⊥C f2. We denote by
OrthCat the category of orthogonal categories and or-
thogonal functors.

Example 2.2. The pair Loc = (Loc,⊥Loc) discussed in
Section 1 is an orthogonal category. Endowing the sub-
categories j : Loc¦ → Loc and jM : COpen(M) → Loc
from Variation 1.3 with the pullback orthogonality re-
lations j∗(⊥Loc) and j∗M (⊥Loc) defines orthogonal cate-

gories Loc¦ and COpen(M). The embedding functors

j : Loc¦ → Loc and jM : COpen(M) → Loc are orthogo-
nal functors. For an example that is not directly related
to Lorentzian geometry, consider the category Int(S1) of
open intervals I ⊂S1 of the circle with morphisms given
by subset inclusions I ⊆ J ⊂ S1. We define an orthogo-
nality relation on Int(S1) by declaring two morphisms
I1, I2 ⊆ J ⊂S1 to be orthogonal if and only if I1∩I2 =; are
disjoint intervals. The corresponding orthogonal category

Int(S1) features in chiral conformal QFT, see e.g. [24].

Throughout the whole section we shall fix a closed
symmetric monoidal category M = (M,⊗, I ), which we
further assume to be bicomplete, i.e. all small limits and
colimits exist in M.

Definition 2.3. Let C = (C,⊥) be an orthogonal category.
An M-valued AQFT on C is a functor A : C → AlgAs(M) to
the category of associative and unital algebras in M that
satisfies the ⊥-commutativity property: For all ( f1 : c1 →
c) ⊥ ( f2 : c2 → c), the diagram

A(c1)⊗A(c2)

A( f1)⊗A( f2)
��

A( f1)⊗A( f2)
// A(c)⊗2

µc

��

A(c)⊗2

µ
op
c

// A(c)

(3)

in M commutes, where µ(op)
c denotes the (opposite) mul-

tiplication in the algebra A(c). The category of M-valued
AQFTs on C is defined as the full subcategory

QFT(C) ⊆ AlgAs(M)C (4)

of the functor category that consists of all ⊥-commutative
functors.

Remark 2.4. The following remarks are in order:
i) Motivated by Variation 1.4, we decided to omit the

isotony axiom in Definition 2.3 because it is often
violated in examples.

ii) Comparing Definitions 2.3 and 1.1, it seems at first
sight that we neglect the time-slice axiom in Defini-
tion 2.3. This is however not the case. We shall prove

in Proposition 2.6 below that the time-slice axiom
may be encoded by localizing the orthogonal category
Loc at all Cauchy morphisms W ⊆ MorLoc, which de-

fines another orthogonal category Loc[W −1].
iii) Note that Definition 2.3 does not refer explicitly to

∗-involutions on algebras. These can be included in
a relatively straightforward way by choosing as target
category M an involutive closed symmetric monoidal
category, see [25] for the technical details.

Open Problem 2.5. Coming back to the last point of the
previous remark, we would like to emphasize that, even
though it is clear how to include ∗-algebras in Definition
2.3, capturing C∗-algebras as in Definition 1.1 is more sub-
tle and still an open problem. The reason is that the cat-
egory C∗Alg of C∗-algebras is not (or at least not known
to be) a category of ∗-algebras in a suitable involutive
closed symmetric monoidal category. There are proposals
in the literature [26,27] to replace C∗Alg by the category of
∗-algebras in the involutive closed symmetric monoidal
category of operator spaces in order to obtain a categorical
approach to the theory of operator algebras. To the best
of our knowledge, such an approach has not been applied
to AQFT yet.

As promised in Remark 2.4, we shall now prove that
Definition 2.3 includes the case of AQFTs satisfying the
time-slice axiom. Let C = (C,⊥) be any orthogonal cate-
gory and W ⊆ MorC any subset of the set of morphisms.
We denote by C[W −1] the localization of the category C at
W and by L : C → C[W −1] the corresponding localization
functor. (We refer to [28, Section 7.1] for details on local-
izations of categories.) We define ⊥W to be the smallest or-
thogonality relation on C[W −1] such that L( f1) ⊥W L( f2),

for all f1 ⊥ f2. This implies that L : C → C[W −1] is an or-
thogonal functor. We shall denote by

QFT(C)W −const ⊆ QFT(C) (5)

the full subcategory of AQFTs satisfying the W -constancy
property, i.e. A( f ) : A(c) → A(c ′) is an isomorphism in
AlgAs(M), for all ( f : c → c ′) ∈W .

Proposition 2.6. The pullback functor L∗ := (−) ◦ L :

AlgAs(M)C[W −1] → AlgAs(M)C on functor categories re-
stricts to an equivalence of categories

L∗ : QFT(C[W −1])
∼−→ QFT(C)W −const . (6)

Proof. One immediately observes that, for every B ∈
QFT(C[W −1]) ⊆ AlgAs(M)C[W −1], the functor L∗B=B◦L :
C → AlgAs(M) is W -constant and ⊥-commutative. Hence,
L∗ restricts to (6). By definition of localization, L∗ is fully
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faithful and hence so is its restriction (6) to full subcat-
egories. It remains to show that (6) is essentially surjec-
tive. Given any A ∈ QFT(C)W −const, there exists by defi-
nition of localization a functor B : C[W −1] → AlgAs(M)
and a natural isomorphism A∼= L∗B. One easily checks

that B is ⊥W -commutative, i.e. B ∈ QFT(C[W −1]), by us-
ing that the orthogonality relation ⊥W is generated by
L( f1) ⊥W L( f2), for all f1 ⊥ f2.

Example 2.7. Applying this general proposition to the or-

thogonal localization L : Loc → Loc[W −1] of the usual
space-time category Loc at all Cauchy morphisms W

shows that QFT(Loc[W −1]) is equivalent to the category
of AQFTs satisfying also the time-slice axiom.

2.2 AQFT operads

From a category theoretical perspective, our Definition
2.3 of the category of AQFTs is neither elegant nor very
effective because we select a certain full subcategory of
a functor category by demanding additional properties.

For example, it is a priori unclear if the category QFT(C)
of AQFTs admits all limits and colimits. Another prob-
lem, which is related to our discussion of descent in
Section 1, is as follows: Given an orthogonal functor
F : C → D, it is a priori unclear if its left Kan exten-
sion LanF : AlgAs(M)C → AlgAs(M)D restricts to a func-
tor QFT(C) → QFT(D) between the corresponding AQFT
categories. More concretely, it is a priori unclear if con-
structions like Fredenhagen’s universal algebra define ⊥-
commutative functors, i.e. bona fide AQFTs according
to Definition 2.3. These problems were addressed and
solved in [21], where we have shown that there exists
a colored operad OC ∈ Op(Set) whose category of alge-

bras is the AQFT category QFT(C). In this approach ⊥-
commutativity is not formulated as a property, instead it
is encoded as a structure into the operad OC.

Let us recall that a colored operad O ∈ Op(Set) with
values in the category of sets Set is a generalization of the
concept of a category where morphisms are allowed to
have more than one input. The following picture visual-
izes this basic idea:

Category (1-to-1): Colored operad (n-to-1):

f

c ′

c

o

c ′

c1 cn
· · ·

(7)

More precisely, a colored operad O ∈ Op(Set) is described
by the following data:

i) an underlying set of objects, called colors in operad
theory;

ii) for each tuple (c, t) = ((c1, . . . ,cn), t) of colors a set
O

(t
c
) ∈ Set of operations from c to t ;

iii) composition maps γ : O
(t

c
)×∏n

i=1 O
(ci

bi

)→O
( t

(b1,...,bn )
)
;

iv) unit elements 1 ∈O
(

t
t

)
;

v) permutation group actions O (σ) : O
(t

c
) → O

( t
cσ

)
,

where σ ∈Σn is a permutation of n letters.
The composition maps are assumed to be associative in
the obvious sense, unital with respect to the unit opera-
tions and also equivariant with respect to the permutation
group actions. We refer to e.g. [29] for a detailed definition
of colored operads.

The AQFT operad OC ∈ Op(Set) for an orthogonal cate-

gory C admits the following simple presentation by gener-
ators and relations [21]:
i) Generators:

c ′

c

f

c

;

1c

c

c c

µc (8)

for all C-morphisms f ∈ MorC and all objects c ∈ C.
The first generator describes the pushforward of ob-
servables along the space-time embedding f : c → c ′
and the other two generators the unit and multiplica-
tion of observables in the space-time c.

ii) Functoriality relations:

c

c

1 =
c

c

idc

c ′′

c

g

f
=

c ′′

c

f g (9)

for all objects c ∈ C and all pairs of composable
C-morphisms ( f , g ). The first relation means that
the operadic units are identified with the identity
morphisms of the category C and the second re-
lation means that the operadic composition of C-
morphisms agrees with their categorical composition
in C.

iii) Algebra relations:

c

; c

µc1c
=

c

c

1 =
c

c ;

µc 1c

c

µc

µc

c c c

=

c

µc

µc

c c c

(10)

for all objects c ∈ C. These relations express unitality
and associativity of the multiplication of observables
in the space-time c.
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iv) Compatibility relations:

c ′

;
1c

f
=

c ′

;

1c ′

c ′

c c

µc

f
=

c ′

c c

µc ′
f f

(11)

for all C-morphisms f ∈ MorC. These relations ex-
press compatibility between the observable algebra
structure on each space-time and pushforwards of
observables along space-time embeddings.

v) ⊥-commutativity relations:

c

c1 c2

µc

f1 f2

=

c

c1 c2

µc

f2 f1 (12)

for all orthogonal pairs f1 ⊥ f2 of C-morphisms.
These are the key relations that encode the⊥-commu-
tativity property of Definition 2.3 as a structure into
the colored operad OC.

As an alternative to this graphical description of the
AQFT operad OC by generators and relations, there is the
following more algebraic description. See [21] for a proof
of the following theorem.

Theorem 2.8. The AQFT operad OC ∈ Op(Set) described
above is (isomorphic to) the colored operad specified by the
following data:
i) the set of colors is the set of objects of C;
ii) the set of operations from c = (c1, . . . ,cn) to t is the

quotient set

OC

(t
c
)= (

Σn ×
n∏

i=1
C(ci , t )

)/
∼⊥ , (13)

whereΣn is the permutation group on n letters, C(ci , t )
are the Hom-sets of C, and the equivalence relation is
defined as follows: (σ, f ) ∼⊥ (σ′, f ′) if and only if f =
f ′ and the right permutation σσ′−1 : f σ−1 → f σ′−1

is generated by transpositions of adjacent orthogonal
pairs;

iii) the compositions γ : OC

(t
c
) × ∏n

i=1 OC

(ci
bi

) →
OC

( t
(b1,...,bn )

)
are

γ
(
[σ, f ],

(
[σ1, g

1
], . . . , [σn , g

n
]
))

= [
σ(σ1, . . . ,σn), f (g

1
, . . . , g

n
)
]

, (14)

where σ(σ1, . . . ,σn) =σ〈kσ−1(1), . . . ,kσ−1(n)〉 (σ1 ⊕·· ·⊕
σn) is the product of the block permutation induced by

σ and the sum permutation induced by the σi , where
ki is the length of the tuple bi , and f (g

1
, . . . , g

n
) =(

f1 g11, . . . , f1 g1k1 , . . . , fn gn1, . . . , fn gnkn

)
is given by

composition in the category C;
iv) the units are [e, idt ] ∈OC

(
t
t

)
, where e ∈Σ1 is the iden-

tity permutation and idt : t → t the identity morphism
in C;

v) the permutation actions are OC(σ′) : [σ, f ] 7→
[σσ′, f σ′].

The relevance of the AQFT operad OC ∈ Op(Set) is that

its category of algebras is precisely the category QFT(C)
of AQFTs defined in Definition 2.3. But what are alge-
bras over operads? Loosely speaking, an M-valued algebra
over a colored operad O ∈ Op(Set) is something like a
‘representation’ of the operations described by O as M-
morphisms between a colored family of objects Ac ∈ M,
for all colors c. The following picture visualizes this basic
idea:

o

c ′

c1 cn
· · ·

represent
//

( n⊗
i=1

Aci

A(o)
// Ac ′

)
(15)

Observe how the input and output colors match on
both sides of this picture. There are of course certain
compatibility conditions to be fulfilled, namely these M-
morphisms must be compatible with operadic compo-
sitions, operadic units and the permutation actions. We
refer to e.g. [29] and [21] for a detailed definition of alge-
bras over colored operads. The main theorem justifying
the relevance of the colored operads OC ∈ Op(Set) is as
follows. See [21] for a proof.

Theorem 2.9. For every orthogonal category C, the cat-
egory AlgOC

(M) of algebras over the AQFT operad OC ∈
Op(Set) is (isomorphic to) the category QFT(C) of M-
valued AQFTs on C from Definition 2.3.

Remark 2.10. It is instructive to have a closer look at the
action of the operations [σ, f ] ∈ OC

(t
c
)

of the AQFT op-
erad on a ⊥-commutative functor A : C → AlgAs(M). One
observes that the corresponding M-morphism

A
(
[σ, f ]

)
:

n⊗
i=1

A(ci ) −→ A(t ) (16a)

is concretely given by

A
(
[σ, f ]

)(
a1 ⊗·· ·⊗an

)
=A( fσ−1(1))

(
aσ−1(1)

) · · ·A( fσ−1(n))
(
aσ−1(n)

)
. (16b)
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In words, this means that one first pushes forward each
observable ai ∈ A(ci ) along the space-time embedding
fi : ci → t and then multiplies the resulting observables
in A(t ) according to the order prescribed by the permuta-
tion σ. Note that this is well-defined on the equivalence
classes of operations (cf. Theorem 2.8) because A is a ⊥-
commutative functor, i.e. one is allowed to interchange
the order of multiplication for observables obtained by
pushforward along orthogonal pairs of C-morphisms.

2.3 Universal constructions

The result of Theorem 2.9 that AQFTs are algebras over a
colored operad OC ∈ Op(Set) is very useful for studying
universal constructions in AQFT. For our first observation,
let us recall that the target category M is by assumption
bicomplete.

Proposition 2.11. For every orthogonal category C, the
category QFT(C) of M-valued AQFTs on C admits all small
limits and colimits.

Proof. By Theorem 2.9, we have that QFT(C) ∼= AlgOC
(M)

is the category of algebras over a colored operad. The
latter category is known to be bicomplete whenever the
target category M is bicomplete. See e.g. [30, Proposition
1.3.6] for a direct proof in the case of uncolored operads,
which generalizes easily to colored operad.

Using this result, it is possible to build new AQFTs on
C by forming limits or colimits of diagrams of AQFTs on
the same orthogonal category C. We expect that such con-
structions might be relevant for formalizing the algebraic
adiabatic limit in perturbative AQFTs (see e.g. [31]), how-
ever we did not look into this in any detail.

Let us now consider a more interesting class of univer-
sal constructions that relate AQFTs on different orthogo-
nal categories. Let us recall that such constructions are
relevant e.g. for discussing descent, which involves AQFTs
on both the space-time category Loc and the category
Loc¦ of space-times whose underlying manifold is dif-
feomorphic to Rm . The key observation that allows us to
develop such constructions is that the assignment C 7→OC
of the AQFT operad to an orthogonal category is functo-
rial O(−) : OrthCat → Op(Set). This means that given any
orthogonal functor F : C → D, we obtain a colored operad
morphism OF : OC → OD and hence a pullback functor
O∗

F : AlgOD
(M) → AlgOC

(M) between the corresponding

categories of algebras. Under the natural identification
QFT(−) ∼= AlgO(−)

(M) given in Theorem 2.9, the pullback
functor O∗

F gets identified with the restriction of the pull-
back functor F∗ := (−)◦F : AlgAs(M)D → AlgAs(M)C to the

full subcategories of AQFTs from Definition 2.3. This func-
tor always admits a left adjoint.

Theorem 2.12. For every orthogonal functor F : C → D,
there exists an adjunction

F! : QFT(C) // QFT(D) : F∗oo , (17)

where the right adjoint F∗ is the restriction of the pullback
functor on functor categories to the subcategories of AQFTs.

Proof. The operadic pullback functor O∗
F : AlgOD

(M) →
AlgOC

(M) admits a left adjoint given by operadic left Kan

extension, see e.g. [21] for a brief review. The natural iden-
tification of Theorem 2.9 then proves our claim.

Using the adjunctions from Theorem 2.12, one can de-
velop and study interesting universal constructions that
relate AQFTs on different orthogonal categories. Before
looking at concrete examples inspired by physics, let us
first note the following structural result for the full sub-
category QFT(C) ⊆ AlgAs(M)C of AQFTs from Definition
2.3. Given any orthogonal category C = (C,⊥), we form
the orthogonal category (C,;) with the trivial (empty) or-
thogonality relation and observe that the identity functor
defines an orthogonal functor pC := idC : (C,;) → C. Note

that QFT(C,;) = AlgAs(M)C is the functor category. The
following result is immediate.

Proposition 2.13. For every orthogonal category C, the
adjunction

pC!
: AlgAs(M)C // QFT(C) : pC

∗oo (18)

corresponding to the canonical orthogonal functor pC =
idC : (C,;) → C exhibits QFT(C) as a full reflective subcate-
gory of the functor category AlgAs(M)C.

A corollary of this result is that the left adjoint func-
tor F! from Theorem 2.12 can be related to the ordi-
nary left Kan extension LanF : AlgAs(M)C → AlgAs(M)D

of AlgAs(M)-valued functors.

Corollary 2.14. For every orthogonal functor F : C → D,
there exists a natural isomorphism of functors

F!
∼= pD! ◦LanF ◦pC

∗ : QFT(C) −→ QFT(D) , (19)

where F! is the left adjoint from Theorem 2.12, LanF the
ordinary categorical left Kan extension and p! a p∗ the
adjunction from Proposition 2.13.

Our first concrete example for an adjunction as in The-
orem 2.12 is motivated physically by our goal to intro-
duce a descent condition for AQFTs. Let D be any orthog-
onal category and C ⊆ D a full orthogonal subcategory, i.e.

7
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C ⊆ D is a full subcategory such that f1 ⊥C f2 if and only
if f1 ⊥D f2. For instance, D may be the space-time cate-
gory Loc from Example 2.2 and C the category Loc¦ of
space-times whose underlying manifold is diffeomorphic
to Rm . In general, one should interpret D as a category of
‘all space-times’ and C ⊆ D as a full subcategory of ‘nice
space-times’. Embedding the full subcategory defines an
orthogonal functor that we shall denote by j : C → D. As a
consequence of Theorem 2.12, we obtain an adjunction

j! : QFT(C) // QFT(D) : j∗oo (20)

between AQFTs on ‘nice space-times’ and AQFTs on ‘all
space-times’. The right adjoint functor j∗ should be in-
terpreted as a restriction functor that restricts an AQFT
A ∈ QFT(D) that is defined on all of D to an AQFT j∗A ∈
QFT(C) on the full orthogonal subcategory C. More inter-
estingly, the left adjoint j! is a universal extension functor
that extends an AQFT B ∈ QFT(C) that is defined only
on ‘nice space-times’ in C ⊆ D to all of D. In contrast
to Fredenhagen’s universal algebra construction [14–17],
which is given by left Kan extension Lan j : AlgAs(M)C →
AlgAs(M)D of the underlying functors, our left adjoint
j! always defines an AQFT j!B ∈ QFT(D) on D and not
only a functor Lan jB : D → AlgAs(M) that might violate
the ⊥-commutativity axiom from Definition 2.3. (It was
shown in [21] that Lan jB violates ⊥-commutativity on
non-connected space-times.) The following result states
an important technical property of the adjunction (20).

Proposition 2.15. For every full orthogonal subcategory
embedding j : C → D, the adjunction (20) exhibits QFT(C)
as a full coreflective subcategory of QFT(D).

Remark 2.16. Let us explain in more detail why this re-
sult is crucial for the interpretation of j∗ as a restriction
functor and j! as an extension functor. Given an AQFT
B ∈ QFT(C), we form the extension j!B ∈ QFT(D) and ask
if this alters the values of the AQFT on the subcategory
C ⊆ D, i.e. if the restriction j∗ j!B of the extension is iso-
morphic to the original theory B. Proposition 2.15 states
that this is the case and that the unit ηB : B → j∗ j!B
of the adjunction (20) provides such an isomorphism. In
other words, the extension functor j! does not alter the
values of AQFTs on the full subcategory C ⊆ D.

We now can formalize our sketchy ideas from Section
1 about a descent condition in AQFT.

Definition 2.17. An AQFT A ∈ QFT(D) is called j -local
if the corresponding component εA : j! j∗A → A of
the counit of the adjunction (20) is an isomorphism.
We denote the full subcategory of j -local AQFTs by
QFT(D) j−loc ⊆ QFT(D).

Corollary 2.18. For every full orthogonal subcategory em-
bedding j : C → D, the adjunction (20) restricts to an ad-
joint equivalence j! : QFT(C)�QFT(D) j−loc : j∗.

Remark 2.19. The physical interpretation is that j -local
AQFTs A ∈ QFT(D) j−loc are those AQFTs on D that are
completely determined by their restriction to the subcate-
gory C ⊆ D. In the case of Loc¦ ⊆ Loc, this means that the
value A(M) of a j -local AQFT on any space-time M ∈ Loc
is completely determined by the values of A on the sub-
category Loc¦ of space-times with underlying manifold
diffeomorphic toRm . Hence, j -locality is a type of descent
condition for AQFTs.

Example 2.20. From the results in [17] and [21] one can
conclude that the free Klein-Gordon AQFT is j -local in
the above sense for j : Loc¦→ Loc.

Our second concrete example for an adjunction as
in Theorem 2.12 is motivated by the time-slice axiom of
AQFTs. Let C be any orthogonal category and W ⊆ MorC
any subset of the set of morphisms. The corresponding

orthogonal localization functor L : C → C[W −1] (see the
text before Proposition 2.6) defines an adjunction

L! : QFT(C) // QFT(C[W −1]) : L∗oo (21)

between AQFTs on C and AQFTs on C[W −1]. The following
result is a direct consequence of Proposition 2.6.

Proposition 2.21. For every orthogonal localization L :

C → C[W −1], the right adjoint functor L∗ in (21) is fully
faithful and its essential image is the full subcategory
QFT(C)W −const ⊆ QFT(C) of W -constant AQFTs. Hence,

the adjunction (21) exhibits QFT(C[W −1]) as a full reflec-
tive subcategory of QFT(C) and it restricts to an adjoint

equivalence L! : QFT(C)W −const �QFT(C[W −1]) : L∗.

An immediate corollary of this result is that there exist
equivalent characterizations of W -constant AQFTs.

Corollary 2.22. Let A ∈ QFT(C). Then the following are
equivalent:
i) A is W -constant, i.e. for all f ∈ W the AlgAs(M)-

morphism A( f ) :A(c) →A(c ′) is an isomorphism.
ii) The component ηA :A→ L∗L!A of the unit of the ad-

junction (21) is an isomorphism.

Remark 2.23. We would like to stress that our adjunctions
from this section are not only theoretically interesting,
but they already found concrete applications to physical
problems. We refer to [32] for a study of AQFTs on space-
times with time-like boundaries from this perspective.
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3 Higher structures in gauge theory

The aim of this section is to explain in rather non-
technical terms the structural differences between ‘or-
dinary’ field theories, such as Klein-Gordon theory, and
gauge theories, such as Yang-Mills theory. The latter are
instances of higher structures and therefore require re-
fined concepts of category theory for their formalization,
e.g. ∞-category theory [33, 34] or model category theory
[35, 36]. The incorporation of such higher structures into
AQFT will be discussed in Section 4.

3.1 Groupoids of gauge fields

The main difference between ‘ordinary’ field theories and
gauge theories is of course the presence of gauge symme-
tries. Even though this observation sounds like a tautology,
it has profound consequences on how one should think
of the spaces of fields in these situations. For ‘ordinary’
theories, the collection of all fields F has the structure of
a set, i.e. given two fields Φ,Φ′ ∈ F, we can ask if these
fields are the same or not by testing whether Φ=Φ′ holds
true. In a gauge theory this becomes more complicated
because in addition to gauge fields A one also has gauge

transformations A
g−→ A′ between gauge fields. Hence,

the collection of all gauge fields G has the structure of
a groupoid and not that of a set! The following picture
visualizes the basic idea:

‘Ordinary’ field theory: Gauge theory:

Φ

Φ′

Φ′′ A

A′

A′′

g

g
′

g ′′
(22)

This groupoid structure drastically changes the way one
should think of two gauge fields as being the same. In
contrast to sets, being the same in a groupoid is not any-
more a property, but rather a structure in the sense that

one needs a gauge transformation A
g−→ A′ in order to

witness that A and A′ are the same. As visualized in (22),
there might exist different witnesses for two gauge fields
being the same, and in particular there are generically
non-trivial ‘loops’ in the groupoid of gauge fields. These
loops should be understood as higher order structures in
the groupoid of gauge fields that cannot be seen at the
level of the naive ‘gauge orbit space’. Recall that the naive
‘gauge orbit space’ is obtained by forming gauge equiva-
lence classes of gauge fields, i.e. it is the zeroth homotopy
group π0G of the groupoid of gauge fields G. This con-
struction however neglects information on the loops in G,

which is contained in the first homotopy groups π1(G, A),
for A ∈G. Hence, the groupoid of gauge fields G includes
more refined information on the gauge theory than the
naive ‘gauge orbit space’. We shall explain later why this
additional information is crucial.

Remark 3.1. The same way of reasoning of course also ap-
plies to gauge transformations themselves. In particular,
if there are gauge transformations of gauge transforma-
tions, then the collection of gauge fields is described by a
2-groupoid. If there are gauge transformations of gauge
transformations of gauge transformations, then one gets
a 3-groupoid, and so on. Hence, the natural framework in
which to study gauge theories and higher gauge theories
is that of ∞-groupoids. Because of the chain of inclusions

Set ,→ Grpd ,→ 2Grpd ,→··· ,→∞Grpd , (23)

all ordinary field theories, gauge theories, 2-gauge theo-
ries, . . . , can be regarded as particular examples of theo-
ries in the sense of ∞-groupoids. In what follows we will
mostly focus on the case of 1-groupoids in order to sim-
plify our presentation. However, everything said below
generalizes to ∞-groupoids and in particular our model
categorical framework for AQFT in Section 4 applies to
higher gauge theories as well.

Example 3.2. As a very concrete example, let us con-
sider principal G-bundles with connections on a Carte-
sian space U ∼=Rm . Because all principal G-bundles on U
are trivializable, the groupoid of gauge fields on U is

BGcon(U ) =


Obj: A ∈Ω1(U ,g)

Mor: A
g−→ A/ g := g−1 Ag + g−1dg

with g ∈C∞(U ,G)

,

(24)

where g is the Lie algebra of the structure Lie group G .
For the Abelian cases G =U (1) or G =R, one easily com-
putes the homotopy groups and obtains π0BGcon(U ) ∼=
Ω1(U )

/
dΩ0(U ) and π1(BGcon(U ), A) ∼= G . Hence, the

naive ‘gauge orbit space’ does not distinguish between
the two different structure groups, but the higher order
information contained in π1 does. In other words, the
groupoid perspective on gauge theory is truly more re-
fined than the naive ‘gauge orbit space’ perspective.

Working with groupoids requires some additional care
because the correct notion of two groupoids being the
same is via categorical equivalence rather than isomor-
phism. This is because the category of groupoids Grpd is
actually a 2-category, whose objects are all groupoids G,
1-morphisms are functors F : G→G′ and 2-morphisms

9
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are natural isomorphisms ζ : F → F ′ between functors
F,F ′ :G→G′. The equivalences in this 2-category are the
usual categorical equivalences, i.e. functors F : G→G′
that can be ‘inverted up to 2-morphisms’ in the sense that
there exists a functor F ′ : G′ →G, going in the opposite
direction, together with natural isomorphisms F ′ F ∼= idG

and F F ′ ∼= idG′ . Recall that these equivalences can be
characterized as fully faithful and essentially surjective
functors F :G→G′. As a side-remark, let us briefly men-
tion that the category of ∞-groupoids is not only a 2-
category, but actually an ∞-category [33]. Hence, the
higher the gauge theory one considers, the higher one
has to climb up on the categorical ladder.

For our purposes, it will be convenient to adopt a
slightly different, but related, point of view and regard
Grpd (and also ∞Grpd) as a model category. A model cat-
egory is a bicomplete category C that is endowed with
three distinguished classes of morphisms – called weak
equivalences, fibrations and cofibrations – that have to
satisfy a list of conditions. See e.g. [36,35] for details. These
axioms are designed in such a way that the weak equiv-
alences define a consistent notion of two objects being
the same. In particular, this notion is preserved under cer-
tain (derived) functorial constructions. Let us expand on
the latter point because it is crucial. Given any functor
F : C → D between two model categories C and D, it is
in general not true that F maps weak equivalences in C
to weak equivalences in D. This will of course introduce
inconsistencies, because weakly equivalent objects are
regarded as being the same according to the philosophy
of model category theory. Considering only those functors
F : C → D that do preserve weak equivalences would be
too restrictive, because several natural constructions, e.g.
limit and colimit functors, are not of this type. The way
out of this dilemma is to ‘deform’ (in a controlled way) the
functor F : C → D to obtain a functor that does preserve
weak equivalences. That is precisely what derived functors
do for us! The usual context in which the theory of derived
functors applies is when one has a Quillen adjunction be-
tween model categories, i.e. an adjunction F : C�D : G in
which the right adjoint functor G preserves fibrations and
acyclic fibrations (i.e. morphisms that are both a fibration
and a weak equivalence). Choosing a natural cofibrant
replacement (Q : C → C, q : Q

∼→ idC) for C and a natural
fibrant replacement (R : D → D,r : idD

∼→ R) for D, one
can define the left derived functor

LF := F Q : C −→ D (25a)

and the right derived functor

RG :=G R : D −→ C (25b)

corresponding to the Quillen adjunction F aG . It can be
shown that both derived functors preserve weak equiv-
alences and that different choices of (co)fibrant replace-
ments define naturally weakly equivalent derived functors
[36, 35].

Let us now look at model categories and derived func-
tors in action in order to better understand what they do
for us and why they are crucial. We first recall that the
category Grpd of groupoids is a model category with re-
spect to the following choices (see e.g. [37]): A morphism
F :G→H (i.e. functor) between two groupoids is
i) a weak equivalence if it is fully faithful and essentially

surjective;
ii) a fibration if it is an isofibration, i.e. for each object

x ∈ G and H-morphism g : F (x) → y there exists a
G-morphism f : x → x ′ such that F ( f ) = g ;

iii) a cofibration if it is injective on objects.
Note that the weak equivalences in this model structure
are precisely the equivalences one obtains when thinking
of Grpd as a 2-category. Given any small category D, we
consider the functor category GrpdD of all functors from
D to Grpd, which we interpret as diagrams of shape D
in Grpd. The constant diagram functor const : Grpd →
GrpdD admits both a left and a right adjoint functor, re-
spectively given by the colimit functor colim : GrpdD →
Grpd and the limit functor lim : GrpdD → Grpd. Let us
focus on the adjunction const a lim, whose right adjoint
is the limit functor, and note that this is a Quillen adjunc-
tion when one endows GrpdD with the injective model
category structure, i.e. a GrpdD-morphism ζ : X → Y is a
cofibration (respectively, a weak equivalence) if all compo-
nents ζd : X (d) → Y (d), for d ∈ D, are cofibrations (respec-
tively, weak equivalences) in Grpd. The corresponding
right derived functor

holim :=R lim : GrpdD −→ Grpd (26)

is called the homotopy limit functor. In contrast to the
ordinary limit functor lim, the homotopy limit functor
holim has the important property that it preserves weak
equivalences.

For our gauge-theoretic example below, we shall need
a concrete model for homotopy limits of cosimplicial
groupoids, see e.g. [37] for details. Let D =∆ be the sim-
plex category and consider the corresponding functor
category Grpd∆. An object G• ∈ Grpd∆ is a cosimplicial
groupoid, which one may visualize as follows

G• =
(
G0

d 0

//

d 1

// G1 //
//

// G
2

//
//
//
//
· · ·

)
, (27)

where as usual we suppressed the codegeneracy maps si .
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Lemma 3.3. Let G• ∈ Grpd∆ be any cosimplicial groupoid.
The following groupoid defines a model for the homotopy
limit holimG• ∈ Grpd:
i) objects are pairs (x,h) consisting of an object x ∈G0

and a G1-morphism h : d 1(x) → d 0(x), such that
s0(h) = idx and d 0(h)◦d 2(h) = d 1(h) in G2;

ii) morphisms g : (x,h) → (x ′,h′) are G0-morphisms g :
x → x ′, such that the diagram

d 1(x)

h
��

d 1(g )
// d 1(x ′)

h′
��

d 0(x)
d 0(g )

// d 0(x ′)

(28)

in G1 commutes.

Remark 3.4. We note that in general the homotopy limit
holimG• is not weakly equivalent to the ordinary limit
lim G•. The latter is given by the groupoid whose objects
are all x ∈ G0 satisfying the equality d 1(x) = d 0(x) and
whose morphisms are all G0-morphisms g : x → x ′ be-
tween such objects that additionally satisfy d 1(g ) = d 0(g ).
The homotopy limit is weaker than the ordinary limit in
the sense that the equality d 1(x) = d 0(x) is promoted to
the additional datum of a G1-morphism h : d 1(x) → d 0(x)
witnessing that d 1(x) and d 0(x) are isomorphic objects in
G1. This will be crucial in the example below.

Example 3.5. Recall from Example 3.2 the groupoid
BGcon(U ) ∈ Grpd of gauge fields with structure group G
on a Cartesian space U . The assignment U 7→ BGcon(U ) is
contravariantly functorial on the category Cart of Carte-
sian spaces, i.e. we have a functor BGcon : Cartop → Grpd.
We now shall show that homotopy limits allow us to com-
pute from this information the groupoid of gauge fields
on a general manifold M . Let us choose any good open
cover {Ui ⊆ M } and form its Čech nerve

U• :=
( ∐

i
Ui

∐
i j

Ui joo
oo · · ·oo

oo

oo
)

, (29)

where as usual we denote intersections by Ui1...in :=Ui1 ∩
·· · ∩Uin . Using that by hypothesis all non-empty inter-
sections are Cartesian spaces, we can apply the func-
tor BGcon : Cartop → Grpd and obtain a cosimplicial
groupoid

BGcon(U•) :=
( ∏

i
BGcon(Ui ) //

//
∏
i j

BGcon(Ui j ) //
//

// · · ·
)

(30)

associated to the cover {Ui ⊆ M }. Computing the cor-
responding homotopy limit holimBGcon(U•) ∈ Grpd ac-
cording to Lemma 3.3, we obtain the groupoid whose

i) objects are pairs of families ({Ai ∈ Ω1(Ui ,g)}, {gi j ∈
C∞(Ui j ,G)}), satisfying
i) A j |Ui j = Ai |Ui j / gi j , for all i , j ,
ii) gi i = e is the identity of G , for all i , and
iii) the cocycle condition gi j |Ui j k g j k |Ui j k = gi k |Ui j k ,

for all i , j ,k;
ii) morphisms ({Ai }, {gi j }) → ({A′

i }, {g ′
i j }) are families

{hi ∈C∞(Ui ,G)}, satisfying
i) A′

i = Ai /hi , for all i , and
ii) g ′

i j = h−1
i |Ui j gi j h j |Ui j , for all i , j .

Observe that this groupoid is precisely the groupoid
of gauge fields on M , expressed in terms of Čech data
with respect to the good open cover {Ui ⊆ M }. In con-
trast to this, the ordinary limit lim BGcon(U•) ∈ Grpd is
given by the groupoid whose objects are 1-forms A ∈
Ω1(M ,g) on M and whose morphisms are A → A / h,
with h ∈ C∞(M ,G). Note that the latter groupoid de-
scribes only gauge fields on the trivial principal G-bundle
pr1 : M ×G → M , while the correct construction by the
homotopy limit holimBGcon(U•) ∈ Grpd is much richer
as it captures all possible principal G-bundles on M . We
also refer to [38, 39] for a more philosophical perspective
on gauge fields, groupoids and aspects of richness.

3.2 The role of stacks

The groupoid perspective on gauge theories that we have
introduced in the previous section is incomplete because
it neglects the smooth structure on spaces of gauge fields.
We shall now explain how the concept of stacks resolves
this issue. We refer to [37] for technical details on the
model categorical approach to 1-stacks that we review be-
low, and to [40] for analogous developments for ∞-stacks.
We also refer to [33] for an ∞-categorical approach to
stacks and to [41] for a broad overview, including applica-
tions to physics.

The way how stacks formalize smooth structures is
more abstract than the standard approach adopted in dif-
ferential geometry, which amounts to endowing a space
with an atlas of charts. In order to illustrate the basic ideas,
let us first explain how one can describe manifolds from
such a more abstract perspective. Let Man be the cate-
gory of (finite-dimensional) manifolds and smooth maps.
Instead of describing a manifold M ∈ Man by looking for
suitable charts, we shall study the sets C∞(T, M) ∈ Set of
smooth maps from all test manifolds T ∈ Man into M .
Note that these sets capture a lot of (in fact, all) informa-
tion about the manifold M , for example:

i) C∞(R0, M) describes the points in M ,
ii) C∞(R1, M) describes the smooth curves in M , and
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iii) C∞(R2, M) describes the smooth surfaces in M , etc.

In particular, the sets C∞(T, M) see the smooth structure
on M . Observe that the assignment T 7→C∞(T, M) is con-
travariantly functorial, i.e. it defines a functor C∞(−, M) :
Manop → Set to the category of sets. This is called the
functor of points of the manifold M . Because smooth
functions between manifolds can be glued, we further
observe that C∞(−, M) ∈ Sh(Man) is a sheaf on the site of
manifolds Man with the usual open cover Grothendieck
topology. As a consequence of the Yoneda Lemma, the
assignment

Man −→ Sh(Man) , M 7−→C∞(−, M) (31)

is a fully faithful functor, i.e. smooth maps M → N be-
tween two manifolds can be identified with natural trans-
formations C∞(−, M) →C∞(−, N ) between their functors
of points. Finally, because each manifold admits a good
open cover, the category Sh(Man) of sheaves on Man is
equivalent to the category Sh(Cart) of sheaves on the
site of Cartesian spaces Cart with the good open cover
Grothendieck topology.

Summing up, we observed that the category Man of
manifolds can be identified with a full subcategory

Man ⊆ H0 := Sh(Cart) (32)

of the category of Set-valued sheaves on the site of Carte-
sian spaces Cart. This means that one can equivalently
study manifolds and smooth maps between manifolds
from the perspective of their functors of points. In par-
ticular, the smooth structure of a manifold M is encoded
entirely in the smooth mappings Rn → M from general
test spaces Rn , for n ≥ 0, into M .

Note that the category H0 is ‘vastly bigger’ than the
category of manifolds Man. Objects X ∈ H0 that are not
(isomorphic to) manifolds should be thought of as gen-
eralized smooth spaces, where the smooth structure is
encoded, in the spirit of functors of points, by the sets of
H0-morphisms Rn → X , for all n ≥ 0. There are plenty of
interesting generalized smooth spaces that feature in field
theory. The following is a small list of concrete examples.

Example 3.6. Let M and N be two manifolds, which we
regard as objects in H0. Because H0 is a Cartesian closed
category (even better, it is a topos), one can form the inter-
nal hom object [M , N ] ∈ H0. This is a generalized smooth
space that describes the space of smooth mappings from
M to N . Why is that so? To answer this question, let us first
look at the points R0 → [M , N ] of this generalized smooth
space. Using that [M ,−] is the right adjoint functor of

(−)×M , we can compute the set of points via

HomH0 (R0, [M , N ]) ∼= HomH0 (R0 ×M , N )

∼= HomH0 (M , N ) ∼= C∞(M , N ) , (33)

where in the last step we used that the inclusion Man →
H0 is fully faithful. Thus, the underlying set of points of
[M , N ] is precisely the set of all smooth maps from M to
N . In order to get some feeling for the smooth structure
of [M , N ], we note that a similar computation shows that

HomH0 (Rn , [M , N ]) ∼= C∞(Rn ×M , N ) . (34)

In particular, the smooth curves R1 → [M , N ] are precisely
the smooth functions R1 × M → N , which matches the
naive expectation for a smooth structure on a mapping
space. We refer to [42] for an application of topos theoretic
techniques to non-linear field theories.

Example 3.7. For p ≥ 0, consider the functor Ωp :
Cartop → Set , Rn 7→Ωp (Rn) that assigns p-forms to Carte-
sian spaces. This functor defines a sheaf on Cart and
hence a generalized smooth space Ωp ∈ H0. This space
is called the classifying space of p-forms because H0-
morphisms M →Ωp from a manifold into this space cor-
respond precisely to p-forms on M . Let us provide the
relevant argument: For M = Rn , this is a direct conse-
quence of the Yoneda Lemma. For a general manifold
M , one chooses any good open cover {Ui ⊆ M } and uses
that colim(

∐
i j Ui j â ∐

i Ui ) → M is an isomorphism in
H0. It follows that a morphism M →Ωp is precisely a fam-
ily of p-forms ωi ∈Ωp (Ui ) satisfying ωi |Ui j = ω j |Ui j , for
all i , j . The sheaf property of p-forms then implies that
this data can be glued to a single p-formω ∈Ωp (M) on the
manifold M . As a side-remark, we would like to mention
that the classifying space Ωp ∈ H0 can be used to define
a concept of p-forms on any generalized smooth space
X ∈ H0 in terms of H0-morphisms X →Ωp . For example, a
p-form on the mapping space [M , N ] ∈ H0 from Example
3.6 is simply an H0-morphism [M , N ] →Ωp .

Let us now turn our attention to stacks. Loosely speak-
ing, a stack resembles a generalized smooth space in the
sense above, however with the crucial difference that its
functor of points is valued in Grpd instead of Set. (Recall
from the previous section that groupoids play a funda-
mental role in gauge theory.) In contrast to the strict sheaf
condition for generalized smooth spaces in H0, stacks sat-
isfy a weaker homotopy sheaf condition. More precisely,
we have the following definition [37].

Definition 3.8. A stack is a presheaf of groupoids X :
Cartop → Grpd that satisfies the homotopy sheaf condi-
tion: For each U ∈ Cart and good open cover {Ui ⊆U }, the
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canonical map

X (U )
∼−→ holim

( ∏
i

X (Ui ) //
//
∏
i j

X (Ui j )
//

//
// · · ·

)
(35)

is a weak equivalence in the model category Grpd, where
holim is the homotopy limit of a cosimplicial groupoid (cf.
Lemma 3.3).

It was shown in [37] that stacks are (the fibrant) objects
in a suitable model category H1. Let us briefly explain this
crucial point without going too much into the details. As
a first step, let us consider the category PSh(Cart,Grpd)
of groupoid-valued presheaves on Cart. The model struc-
ture on Grpd induces the projective model structure on
this functor category, i.e. a morphism ζ : X → Y is a fi-
bration (respectively, a weak equivalence) if all compo-
nents ζU : X (U ) → Y (U ), for U ∈ Cart, are fibrations (re-
spectively, weak equivalences) in Grpd. This model struc-
ture is however not yet quite right, because it does not
take into account the Grothendieck topology on Cart.
Given any good open cover {Ui ⊆ U } of some U ∈ Cart,
we form its Čech nerve as in (29), which defines a simpli-
cial object U• ∈ PSh(Cart,Grpd)∆

op
by regarding Ui1···in ∈

PSh(Cart,Grpd) via the Yoneda embedding. One then de-
fines the model category

H1 := PSh(Cart,Grpd)loc (36)

by left Bousfield localization of the projective model struc-
ture at the set of morphisms{

U ←− hocolimU• : {Ui ⊆U } good open cover
}

, (37)

where hocolim : PSh(Cart,Grpd)∆
op → PSh(Cart,Grpd) is

the homotopy colimit with respect to the projective model
structure on PSh(Cart,Grpd). The relationship between
stacks and H1 is explained in the following proposition,
which was proven in [37].

Proposition 3.9. Stacks according to Definition 3.8 are
precisely the fibrant objects in H1.

Example 3.10. Each manifold M ∈ Man defines a stack by
composing its functor of points C∞(−, M) : Cartop → Set
with the inclusion Set → Grpd. We shall denote the stack
corresponding to a manifold simply by M ∈ H1. More gen-
erally, we have an inclusion H0 → H1 of the category of
generalized smooth spaces into H1 that takes values in
stacks.

Example 3.11. Recall from Example 3.2 the presheaf
of groupoids BGcon : Cartop → Grpd. From the cal-
culation in Example 3.5, it follows that this defines a
stack BGcon ∈ H1, which is called the classifying stack

of principal G-bundles with connections. This requires
some further explanations. Let M be a manifold, re-
garded as an object M ∈ H1. Computing the naive
groupoid homH1 (M ,BGcon) ∈ Grpd of H1-morphisms
M → BGcon (see e.g. [43]), one obtains the groupoid
whose objects are A ∈ Ω1(M ,g) and morphisms are
gauge transformations A → A / h, for h ∈ C∞(M ,G).
At first sight that seems very strange, because the lat-
ter groupoid does not describe non-trivial principal G-
bundles on M and hence the name classifying space
for BGcon seems unjustified. So what went wrong? It
turns out that computing the groupoids of H1-morphisms
homH1 : Hop

1 × H1 → Grpd is one of the (many) in-
stances where derived functors are crucial. So what went
wrong is that we forgot to derive this functor! Because
BGcon ∈ H1 is a fibrant object by Proposition 3.9, a model
for the derived groupoid of H1-morphisms is given by
RhomH1 (M ,BGcon) = homH1 (QM ,BGcon), where QM →
M is a cofibrant replacement of the manifold M in H1. Us-
ing as in [43, Appendix B] a good open cover {Ui ⊆ M }
to define a cofibrant replacement of M , one immedi-
ately realizes that RhomH1 (M ,BGcon) ∈ Grpd can be com-
puted precisely as the homotopy limit of the cosimplicial
groupoid displayed in (30). Therefore, recalling Example
3.5, RhomH1 (M ,BGcon) ∈ Grpd is the correct groupoid of
all principal G-bundles with connections on M (together
with their gauge transformations), eventually justifying
the interpretation of BGcon as classifying stack of princi-
pal G-bundles with connections.

Example 3.12. Our original aim of this section was to
describe a smooth structure on the groupoids of gauge
fields. This can now be achieved by working within the
framework of stacks that we discussed above. Let us briefly
review how a moduli stack of gauge fields can be con-
structed by performing (derived functorial) constructions
in the model category H1. As input data, we choose any
manifold M (on which the gauge fields should live) and
any Lie group G (the structure group of the gauge the-
ory). Recalling the previous two examples, we obtain
the two stacks M ∈ H1 and BGcon ∈ H1. Using that H1

is a Cartesian closed model category (even better, it is
a higher topos), one can form the derived internal hom
object R[M ,BGcon] ∈ H1, which one should interpret sim-
ilarly to Example 3.6 as a stack of mappings from M to
BGcon. From Example 3.11, we know that the groupoid of
points R0 → R[M ,BGcon] is the groupoid of all principal
G-bundles with connections on M , i.e. the groupoid of
all gauge fields. Unfortunately, the smooth structure on
the mapping stack R[M ,BGcon] is not the desired one, be-
cause, as one can show by a direct computation (cf. [43]),
a smooth curve R1 → R[M ,BGcon] is given by a princi-
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pal G-bundle with connection on the product manifold
R1 ×M and not by an R1-parametrized family of principal
G-bundles with connections on M . The solution to this
issue that was proposed in [41] and refined in [43] is to per-
form a differential concretification of the mapping stack
R[M ,BGcon]. Loosely speaking, this is a model categorical
construction that ‘kills off’ the bundles and connections
on the test spaces Rn ∈ Cart. (This can be interpreted in
terms of vertical geometry with respect to the projection
pr1 :Rn ×M →Rn onto test spaces.) As this construction
is quite technical, we refer to the original papers for the
details. This defines a new stack ConG (M) ∈ H1, called the
differential concretification of R[M ,BGcon] ∈ H1, which
describes our desired moduli stack of principal G-bundles
with connections on a manifold M . This construction is
functorial in the sense that ConG : Manop → H1 defines
a functor taking values in stacks. (Strictly speaking, this
requires the choice of a functorial cofibrant replacement
for manifolds, e.g. the one in [43, Appendix B].) As a last
remark, we would like to add that moduli stacks of so-
lutions to, e.g., the non-Abelian Yang-Mills equation or
the Chern-Simons equation can also be constructed from
such a perspective. See [43] for the details on Yang-Mills
theory and [44] for Chern-Simons theory.

Remark 3.13. We conclude this section by briefly com-
menting on how to describe ∞-stacks from a model
categorical perspective. See e.g. [40, 45] for the details.
Let us recall that an explicit model for the ∞-category
∞Grpd is given by endowing the category sSet = Set∆

op

of simplicial sets with the usual Kan-Quillen model struc-
ture. The fibrant objects in this model category are the
Kan complexes, which are a model for ∞-groupoids. In-
stead of Grpd-valued presheaves on Cart, the description
of ∞-stacks starts from the category PSh(Cart,sSet) of
presheaves with values in sSet. The left Bousfield localiza-
tion of the projective model structure at all hypercovers
defines the model category

H∞ := PSh(Cart,sSet)loc . (38)

∞-stacks are then by definition the fibrant objects in H∞.
Similarly to Definition 3.8 and Proposition 3.9, ∞-stacks
can be characterized by a suitable homotopy sheaf con-
dition with respect to hypercovers. Finally, the inclusions
from Remark 3.1 generalize to

H0 ,→ H1 ,→ H2 ,→··· ,→ H∞ , (39)

which means that all generalized smooth spaces, stacks,
2-stacks,. . . , can be regarded as particular examples of
∞-stacks.

3.3 Smooth cochain algebras on stacks

In the previous sections we have seen that higher struc-
tures are crucial for the description of ‘spaces’ of gauge
fields, which are in fact higher categorical spaces called
stacks. Thinking ahead towards QFT, which requires a con-
cept of observable algebras, we would like to explain what
it means to form ‘function algebras’ on stacks. Our state-
ments below are formulated for the more general case of
∞-stacks in H∞, because this does not lead to any further
complications compared to the case of 1-stacks in H1.

Before explaining our concept of smooth cochain alge-
bras on ∞-stacks, we would like to start with the related,
but simpler, case of cochain algebras on simplicial sets.
See e.g. [46] for a more extensive review. In the following
k will be a field of characteristic 0, e.g. k =R or k =C, and
Ch(k) the symmetric monoidal model category of (pos-
sibly unbounded) chain complexes of k-vector spaces,
see e.g. [35]. Let us recall that in this model structure a
morphism f : V →W between two chain complexes is
i) a weak equivalence if it is a quasi-isomorphism, i.e. it

induces an isomorphism H•( f ) : H•(V ) → H•(W ) in
homology;

ii) a fibration if it is degree-wise surjective;
iii) a cofibration if it has the left lifting property with

respect to all acyclic fibrations.
Recall that to every simplicial set S ∈ sSet, one can asso-
ciate the chain complex N∗(S,k) ∈ Ch(k) of normalized k-
valued chains on S. The functor N∗(−,k) : sSet → Ch(k) is
the left adjoint of a Quillen adjunction between the model
category sSet, with the Kan-Quillen model structure, and
the model category Ch(k). Composing N∗(−,k) with the
internal hom functor [−,k] : Ch(k) → Ch(k)op for chain
complexes, which is also a left Quillen functor, defines a
left Quillen functor N∗(−,k) : sSet → Ch(k)op that assigns
to a simplicial set its normalized k-valued cochains. By
[47], the latter are canonically E∞-algebras, i.e. homotopy-
coherently commutative differential graded algebras. (We
refer to Section 4 for more details on homotopy algebras
over operads.) Summing up, we obtained a left Quillen
functor

N∗(−,k) : sSet −→ AlgE∞ (Ch(k))op (40)

that assigns to each simplicial set S ∈ sSet its normalized
cochain algebra N∗(S,k) ∈ AlgE∞ (Ch(k)). Because all sim-
plicial sets are cofibrant in the Kan-Quillen model struc-
ture, this functor preserves weak equivalences and does
not have to be derived.

Example 3.14. Every set S ∈ Set can be regarded as a con-
stant simplicial set that we also denote by S ∈ sSet. The
normalized cochain algebra in this case is a chain com-
plex concentrated in degree 0 with trivial differential, i.e.
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it is just a vector space. A concrete calculation shows that
N∗(S,k) = Map(S,k) is the usual commutative algebra of
k-valued functions on the set S.

Example 3.15. More interestingly, let G ∈ Grpd be a
groupoid and consider its nerve BG ∈ sSet. Then the
normalized cochain algebra N∗(BG,k) is precisely the
usual k-valued groupoid cohomology dg-algebra, see e.g.
[48]. Note that this is in general not a strictly commuta-
tive dg-algebra, but an E∞-algebra. Thinking of G ∈ Grpd
as a groupoid of gauge fields, the dg-algebra N∗(BG,k)
describes both functions of gauge fields (in degree 0)
and functions of ghost fields (in homological degree < 0,
or in cohomological degree > 0). In fact, N∗(BG,k) is
a groupoid version of the usual Chevalley-Eilenberg dg-
algebra from Lie algebroid cohomology.

The construction of cochain algebras above can be
generalized to the case of ∞-stacks. We shall provide a
brief sketch and refer to [46] for the technical details. Let
us consider for the moment the case where all presheaf
categories (with values in model categories) are endowed
with the projective model structures. Applying the normal-
ized chain functor N∗(−,k) : sSet → Ch(k) object-wise on
presheaves defines a left Quillen functor that we denote
with abuse of notation by the same symbol

N∗(−,k) : PSh(Cart,sSet) −→ PSh(Cart,Ch(k)) . (41)

Concretely, given a presheaf of simplicial sets X : Cartop →
sSet, then N∗(X ,k) : Cartop → Ch(k) is the presheaf of
chain complexes defined by N∗(X ,k)(U ) := N∗(X (U ),k) ∈
Ch(k), for all U ∈ Cart. Assuming in the following that
k = R or k = C, we can promote k to an object k ∈
PSh(Cart,Ch(k)) by setting k(U ) := C∞(U ,k) to be the
vector space of k-valued smooth functions, for all U ∈
Cart. Because PSh(Cart,Ch(k)) is enriched over Ch(k)
and k is a fibrant object, there is a left Quillen functor

[−,k]∞ : PSh(Cart,Ch(k)) −→ Ch(k)op (42)

that assigns chain complexes of morphisms. This functor
should be understood as taking smooth k-valued func-
tions. Concretely, given any object V ∈ PSh(Cart,Ch(k)),
one has an explicit description by an end

[V ,k]∞ =
∫

U∈Cartop

[
V (U ),k(U )

]
, (43)

where [−,−] denotes the internal hom functor in Ch(k).
Composing (41) and (42) defines a left Quillen functor

N∞∗(−,k) : PSh(Cart,sSet) −→ AlgE∞(Ch(k))op (44)

that assigns E∞-algebras because of [47]. We shall call this
the smooth normalized cochain algebra functor.

Proposition 3.16. The left derived functor LN∞∗(−,k) of
(44) restricts to a homotopical functor on the full subcat-
egory St∞ ⊆ H∞ of ∞-stacks (the fibrant objects in H∞),
i.e.

LN∞∗(−,k) : St∞ −→ AlgE∞ (Ch(k))op (45)

is a functor that preserves weak equivalences between ∞-
stacks.

Remark 3.17. In contrast to normalized cochain algebras
on simplicial sets, the functor (44) must be derived be-
cause not every presheaf of simplicial sets is a cofibrant
object. A relatively concrete model for cofibrant replace-
ment in this case is given by Dugger in [45].

Example 3.18. Let C be a category (of space-times) and
F : Cop → St∞ ⊆ H∞ a functor that assigns to each space-
time c ∈ C an ∞-stack F(c) of gauge fields on c. For exam-
ple, this could be the functor ConG : Manop → St∞ assign-
ing the moduli stacks of principal G-bundles with con-
nections (cf. Example 3.12) or the functor YMG : Locop →
St∞ assigning the moduli stacks of solutions of the Yang-
Mills equation (cf. [43]). Applying (45) defines for each
space-time c ∈ C an E∞-algebra

A(c) := LN∞∗(
F(c),k

) ∈ AlgE∞ (Ch(k)) (46)

that one should interpret as a classical observable alge-
bra for the gauge fields on c. Functoriality of this con-
struction implies that A : C → AlgE∞(Ch(k)) is a covari-
ant functor on C, which is very similar to the structures
considered in AQFT, cf. Section 2. There are however two
main differences: 1.) The observable algebras that are as-
signed here are dg-algebras, i.e. associative and unital
algebras in chain complexes, not ordinary algebras in vec-
tor spaces. The higher structures in the ∞-stacks of gauge
fields are represented by higher homology groups of these
dg-algebras. 2.) Even though no quantization happened
so far, the observable algebras are not strictly commuta-
tive, but commutative up to coherent homotopies. There-
fore, in order to understand gauge theories in AQFT, one
is naturally lead to consider homotopy-coherent algebraic
structures. This will be formalized in Section 4.

Open Problem 3.19. For applications to gauge theory, the
∞-stacks X typically carry a Poisson structure (or sym-
plectic structure) which is determined by the action func-
tional. It is currently unclear to us how one can construct
(in a homotopically meaningful way) a Poisson bracket
on the E∞-algebra LN∞∗(X ,k). It is even more unclear to
us how one can quantize (in a homotopically meaningful
way) such homotopy-coherent versions of Poisson dg-
algebras, which is required for constructing examples of
quantum gauge theories. Quite recently there have been
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impressive developments in derived algebraic geometry
[49,50] that focus on related questions and we hope to see
some fruitful interplay with this discipline in the future.

3.4 Derived geometry of linear gauge fields

There is a second kind of higher structures in (gauge) field
theory that has a different origin than the groupoid (or ∞-
groupoid) structures discussed in the previous sections.
Summarizing the latter in a single sentence, groupoids
and stacks become important whenever one divides out
gauge symmetries that usually do not act freely on the
gauge fields. (Recall the role of stabilizers at the begin-
ning of Section 3.1.) In a (gauge) field theory one typically
starts from a space or stack F of fields together with an ac-
tion functional S :F→R. The aim is then to describe the
space of solutions of the corresponding Euler-Lagrange
equations, which can be obtained from the following con-
struction: First, one considers the variation of the action
S, which defines a section dS :F→ T ∗F of the cotangent
bundle over the space (or stack) of fields. Informally, the
space of solutions is the ‘subspace’ Sol ⊆ F on which
dS : F → T ∗F coincides with zero section 0 : F → T ∗F.
This is formalized by forming the (homotopy) pullback

Sol

��

// F

h

��

dS
��

F
0

// T ∗F

(47)

in the appropriate (model) category of spaces or stacks.
Geometrically, one can interpret this construction as com-
puting the intersection of dS with the zero section 0.

For a generic action functional S, the intersection in
(47) will be far away from being transversal and hence the
space (or stack) Sol can be badly behaved. Furthermore,
it ignores more refined information about the intersection
problem, such as the multiplicities of multiple intersec-
tions. A solution to these problems is proposed by derived
algebraic geometry [49,50], where a more refined concept
of spaces, called derived ∞-stacks, is developed.

Let us explain very briefly the basic idea behind de-
rived ∞-stacks, without going into any technical details.
Recall from Section 3.2 that an ∞-stack is described by
its functor of points X : Cartop → sSet that assigns to each
Cartesian space U ∈ Cart the ∞-groupoid X (U ) of points
of shape U in X . Recall that the latter encode both the
gauge fields and the (higher) gauge symmetries. A derived
∞-stack is a more refined concept that is described by a
functor of points of the form X : cCartop → sSet, where

cCart = Cart∆ are cosimplicial test spaces. (In algebraic
geometry, these are described by the opposite category
of simplicial commutative k-algebras sCAlgk , cf. [49, 50].)
Note that there are two opposite degrees appearing in a
derived ∞-stack: The ‘stacky’ simplicial degree in the tar-
get category sSet and the ‘derived’ cosimplicial degree in
the source category cCart. Morally speaking, the former
encodes refined aspects of gauge symmetries and the lat-
ter encodes refined aspects of intersections. We will later
see that these two different degrees are related to ghost
fields and anti fields in the BRST/BV formalism.

Working with derived ∞-stacks is very hard. In partic-
ular, we are not yet able to describe physically interesting
examples of solutions spaces of gauge theories within this
approach. (Toy-models of such are discussed in [49, 50].)
In what follows we shall focus on a certain approxima-
tion of the structures appearing in derived algebraic ge-
ometry, which however encodes some of the crucial fea-
tures of this approach. Let us motivate this approxima-
tion. As mentioned above, derived ∞-stacks come with
two degrees, ‘stacky’ degrees in sSet and ‘derived’ de-
grees in cCart. If one restricts to linear spaces and linear
maps between them, the Dold-Kan correspondence al-
lows us to describe the ‘stacky’ degrees by non-negatively
graded chain complexes Ch≥0(k) and the ‘derived’ de-
grees by non-positively graded chain complexes Ch≤0(k).
Our working assumption below is thus that unbounded
chain complexes Ch(k) capture linear features of derived
∞-stacks. A similar perspective is taken in the work of
Costello and Gwilliam [3].

Let us now focus on a very simple example to illus-
trate the main features of derived ∞-stacks in field theory.
In what follows we fix k = R and take any oriented and
time-oriented globally hyperbolic Lorentzian manifold
M ∈ Loc, interpreted as space-time. We consider Abelian
gauge fields with structure group G =R. Because there are
no non-trivial principal R-bundles, the groupoid of gauge
fields (cf. Example 3.2) on M is given by

BGcon(M) =


Obj: A ∈Ω1(M)

Mor: A
ε−→ A+dε

with ε ∈C∞(M)

. (48)

Following [51], one easily computes the nerve of this
groupoid and, after applying the Dold-Kan correspon-
dence to the resulting simplicial vector space, obtains the
chain complex

F=
( (0)

Ω1(M)
(1)

Ω0(M)
d
oo

)
, (49)

where we indicated in round brackets the homological
degrees and identified functions with 0-forms Ω0(M) =
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C∞(M). As expected, this chain complex has only ‘stacky’
positive degrees and no ‘derived’ negative degrees.

As action functional we take the ordinary Abelian Yang-
Mills action on the space-time M , i.e. S = ∫

M
1
2 dA∧∗dA,

where ∗ is the Hodge operator. A naive variation of this
action leads to the Abelian Yang-Mills equation δdA = 0,
where δ is the codifferential, i.e. the formal adjoint of d
with respect to the inner product 〈ω,λ〉 = ∫

M ω∧∗λ on p-
forms. We would like to describe the space of solutions of
the Abelian Yang-Mills equation from the perspective of
derived geometry by computing a homotopy pullback as
in (47), which is also called the derived critical locus. For
this we have to introduce a cotangent bundle T ∗F over the
space of fields F. In line with our working assumption that
F ∈ Ch(k) models a ‘linear space’ (in the sense of being
a chain complex of k-vector spaces), it is reasonable to
define the cotangent bundle

T ∗F := F×F∗ ∈ Ch(k) (50)

as the product in Ch(k) of the chain complex of fields and
an appropriate choice of linear dual of that. Choosing the
‘smooth dual’

F∗ :=
( (−1)

Ω0(M)
(0)

Ω1(M)
−δ
oo

)
, (51)

one obtains

T ∗F =
( (−1)

Ω0(M)
(0)

Ω1(M)×Ω1(M)
−δπ2
oo

(1)

Ω0(M)
ι1d
oo

)
, (52)

where ι1 : Ω1(M) →Ω1(M)⊕Ω1(M) =Ω1(M)×Ω1(M) is
the inclusion of the first factor and π2 :Ω1(M)×Ω1(M) →
Ω1(M) the projection on the second factor.

Open Problem 3.20. Note that the ‘smooth dual’ F∗ we
have chosen in (51) is not obtained via the categorical con-
cept of dual chain complexes. In fact, the dualizable ob-
jects in Ch(k) are perfect complexes, i.e. chain complexes
that are quasi-isomorphic to a bounded chain complex of
finite-dimensional k-vector spaces, however F ∈ Ch(k) is
clearly not perfect. As a consequence, it is presently not
clear to us if the construction of the cotangent bundle
T ∗F preserves weak equivalences in Ch(k). According to
our best knowledge, it is an open problem how to formal-
ize a model categorical (or higher categorical) concept of
‘smooth duals’ as in (51).

The variation of the action S defines a Ch(k)-mor-
phism dS :F→ T ∗F that is concretely given by

0

0
��

Ω1(M)
0

oo

(id,δd)
��

Ω0(M)
d

oo

id
��

Ω0(M) Ω1(M)×Ω1(M)
−δπ2

oo Ω0(M)
ι1d

oo

(53)

Moreover, the zero section 0 : F → T ∗F is the Ch(k)-
morphism given by

0

0
��

Ω1(M)
0

oo

(id,0)
��

Ω0(M)
d

oo

id
��

Ω0(M) Ω1(M)×Ω1(M)
−δπ2

oo Ω0(M)
ι1d

oo

(54)

Proposition 3.21. Consider as above Abelian Yang-Mills
theory with structure group G =R on a space-time M ∈ Loc.
A model for the corresponding homotopy pullback (47) in
Ch(k) is given by

Sol=
( (−2)

Ω0(M)
(−1)

Ω1(M)
δ
oo

(0)

Ω1(M)
δd
oo

(1)

Ω0(M)
d
oo

)
. (55)

Proof. By [52, Corollary 13.1.3], Ch(k) is a right proper
model category because each object is fibrant. As a con-
sequence of [52, Corollary 13.3.8], one can compute the
homotopy pullback (47) in terms of an ordinary pullback if
we replace the zero section 0 :F→ T ∗F by a weakly equiv-
alent fibration. Because the zero section is the Cartesian
product of the Ch(k)-morphisms id :F→F and 0 : 0 →F∗,
the problem reduces to finding a fibration that is weakly
equivalent to the zero map 0 : 0 →F∗.

For this let us introduce the chain complex

D :=
( (−1)

k
(0)
k

id
oo

)
∈ Ch(k) , (56)

which allows us to factorize the unique Ch(k)-morphism
0 → k into an acyclic cofibration 0 → D followed by a
fibration D → k. (Concretely, the latter map is given by
id : k → k in degree 0 and 0 : k → 0 in degree −1.) Taking
the tensor product (−)⊗F∗ of the factorization 0 → D → k
yields a factorization

0 // D ⊗F∗
p
// F∗ (57)

of the zero map 0 : 0 → F∗ into a weak equivalence 0 →
D ⊗F∗ followed by a fibration p : D ⊗F∗ →F∗. Hence, we
have constructed a replacement

0̃ := id×p : T̃ ∗F :=F× (D ⊗F∗) −→ F×F∗ = T ∗F (58)
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of the zero section 0 : F → T ∗F by a weakly equivalent
fibration.

Let us now compute explicitly the ordinary pullback

Sol

��

// F

��

dS
��

T̃ ∗F
0̃

// T ∗F

(59)

in Ch(k), which provides a model for the desired homo-
topy pullback (47). For this we use that the chain complex
D ⊗F∗ is concretely given by

D ⊗F∗ =
( (−2)

Ω0(M)
(−1)

Ω1(M)×Ω0(M)
δπ1+π2
oo

(0)

Ω1(M)
(id,−δ)
oo

)
(60)

and that the Ch(k)-morphism p : D ⊗F∗ →F∗ reads as

Ω0(M)

0
��

Ω1(M)×Ω0(M)
δπ1+π2
oo

π2
��

Ω1(M)
(id,−δ)
oo

id
��

0 Ω0(M)
0

oo Ω1(M)
−δ

oo

(61)

One easily computes the lower horizontal arrow in (59)
and confirms that the pullback is given by (55).

Remark 3.22. The following remarks are in order:
i) As a graded vector space, the model Sol for the de-

rived critical locus established in Proposition 3.21
agrees with the shifted cotangent bundle over F.
Hence, the above proof of Proposition 3.21 provides
a homological explanation for the appearance of
shifted cotangent bundles in the calculation of de-
rived critical loci.

ii) The chain complex Sol in (55) has both ‘stacky’ posi-
tive degrees and ‘derived’ negative degrees. The dif-
ferent components have a physical interpretation in
terms of the BRST/BV formalism: Fields in degree 0
are called gauge fields A ∈Ω1(M) and fields in degree
1 ghost fields c ∈Ω0(M). The fields in negative degrees
are called anti fields A‡ ∈Ω1(M) and c‡ ∈Ω0(M).

Let us now compute the homologies of the chain com-
plex (55). In degree 1 we obtain the zeroth de Rham coho-
mology of the space-time M

H1(Sol) ∼= H 0
dR(M) ∼= Rπ0(M) , (62)

where π0(M) denotes the set of connected components
of M . Note that this is always non-zero and it agrees with
our computation of π1(BGcon(U ), A) for the groupoid of

gauge fields in Example 3.2. In degree 0 we obtain the
space of gauge equivalences classes of solutions of the
Abelian Yang-Mills equation

H0(Sol) ∼=
{

A ∈Ω1(M) : δdA = 0
}

dΩ0(M)
. (63)

Working out the homology in degree −1 is slightly more
complicated. Because M is by hypothesis a globally hyper-
bolic space-time, one can show that the inhomogeneous
Abelian Yang-Mills equation δdA = j , for j ∈Ω1(M), has a
solution A ∈Ω1(M) if and only if j is δ-exact, i.e. j = δη for
some η ∈Ω2(M). (Hint: Apply a gauge transformation to A
to fulfill the Lorenz gauge condition δA = 0 and then use
standard techniques from the theory of wave equations
[7].) Hence,

Im
(
δd :Ω1(M) →Ω1(M)

) = δΩ2(M) (64)

is the space of δ-exact 1-forms and the degree −1 homol-
ogy of (55) is

H−1(Sol) ∼= H 1
δ(M) ∼= H m−1

dR (M) , (65)

where H•
δ

is the cohomology of the codifferential. (Recall
that m is the dimension of M .) Finally, the degree −2 ho-
mology of (55) is trivial

H−2(Sol) ∼= H 0
δ(M) ∼= H m

dR(M) ∼= 0 , (66)

because the underlying manifold of a globally hyperbolic
space-time is diffeomorphic to M ∼=R×Σ, withΣ an m−1-
dimensional manifold. Note that this calculation shows
that the Ch(k)-morphism

Ω0(M) Ω1(M)
δ
oo Ω1(M)

δd
oo Ω0(M)

d
oo

0

0

OO

Ω1
δ

(M)

⊆
OO

0

oo Ω1(M)

id
OO

δd

oo Ω0(M)

id
OO

d

oo

(67)

is a quasi-isomorphism, where by Ω1
δ

(M) we denoted the
δ-closed 1-forms.

Corollary 3.23. For every globally hyperbolic Lorentzian
space-time M ∈ Loc, the solution complex Sol in (55) is
weakly equivalent to the smaller chain complex

S̃ol :=
( (−1)

Ω1
δ

(M)
(0)

Ω1(M)
δd
oo

(1)

Ω0(M)
d
oo

)
. (68)

We would like to conclude this section with a comment
on the time-slice axiom in the present setting. Let us take
any Cauchy morphism f : M → N in Loc, i.e. f (M) ⊆ N
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contains a Cauchy surface of N . Pullback of differential
forms defines a Ch(k)-morphism

f ∗ : Sol(N ) −→Sol(M) (69)

from the chain complex of solutions on N to the one on
M . One easily observes that f ∗ is not an isomorphism in
Ch(k), but rather a quasi-isomorphism. (The same state-
ments hold true for the smaller complex in (68).) Thinking
ahead towards homotopical AQFT, this means that one
should not expect a strict time-slice axiom to hold true in
such gauge theoretic examples, but rather a homotopy-
coherent generalization of it.

4 Homotopy theory of AQFTs

We develop a general framework for AQFTs with values in
the symmetric monoidal model category Ch(k) of chain
complexes of k-modules. This is motivated by the higher
structures arising in gauge theory that we explained in
Section 3 above. Concrete examples that fit into our frame-
work are models which are constructed via the perturba-
tive BRST/BV formalism for AQFT, see e.g. [53–56]. We
will assume throughout the whole section that k ⊇ Q is
a commutative unital ring that includes the ring of ratio-
nal numbers as a subring. (The physically relevant exam-
ples are complex numbers k =C and formal power series
k =C[[ħ]].) This will considerably simplify our model cat-
egorical considerations and arguments. For details on the
material presented below we refer to [46].

4.1 Homotopy theory of algebras over dg-operads

Colored dg-operads are similar to the Set-valued colored
operads from Section 2.2, however with the difference that
they have chain complexes of n-ary operations. In more
detail, a colored dg-operad O ∈ Op(Ch(k)) is described by
the following data:

i) an underlying set of colors;
ii) for each tuple (c, t ) = ((c1, . . . ,cn), t ) of colors, a chain

complex O
(t

c
) ∈ Ch(k) of operations from c to t ;

iii) composition Ch(k)-morphisms
γ : O

(t
c
)⊗⊗n

i=1 O
(ci

bi

)→O
( t

(b1,...,bn )
)
;

iv) unit Ch(k)-morphisms 1 : k →O
(

t
t

)
;

v) permutation action Ch(k)-morphisms O (σ) : O
(t

c
)→

O
( t

cσ
)
.

This data has to satisfy the usual associativity, unitality
and equivariance conditions, see e.g. [29]. Given any Set-
valued colored operad P ∈ Op(Set), one can define a col-

ored dg-operad P ⊗k ∈ Op(Ch(k)) by tensoring

P
(t

c
)⊗k := ∐

p∈P
(t

c
)k (70)

each set of operations with the monoidal unit k ∈ Ch(k).
To every colored dg-operad O ∈ Op(Ch(k)) one can

assign its category of algebras AlgO (Ch(k)) with values in
the symmetric monoidal model category Ch(k) of chain
complexes. Concretely, an O-algebra A ∈ AlgO (Ch(k)) is a
collection of chain complexes Ac ∈ Ch(k), for all colors c,
together with Ch(k)-morphisms

A : O
(t

c
)⊗ n⊗

i=1
Aci −→ At (71)

that encode the actions of the chain complexes of oper-
ations. Of course, various compatibility conditions with
the operad structure on O must be fulfilled, see e.g. [29].

Recalling that Ch(k) is a (symmetric monoidal) model
category, with weak equivalences the quasi-isomor-
phisms, it is natural to ask whether AlgO (Ch(k)) is a model
category too. In general, this turns out to be a compli-
cated question and there is a large amount of literature on
model structures for operad algebras in model categories,
see e.g. [19, 57–60, 20, 61]. The case of relevance to us has
been understood by Hinich [19, 20], who has proven the
following result.

Theorem 4.1. Let O ∈ Op(Ch(k)) be any colored dg-
operad. Define a morphism κ : A → B in AlgO (Ch(k)) to
be
i) a weak equivalence if each component κc : Ac →

Bc is a weak equivalence in Ch(k), i.e. a quasi-
isomorphism;

ii) a fibration if each component κc : Ac → Bc is a fibra-
tion in Ch(k), i.e. degree-wise surjective;

iii) a cofibration if it has the left lifting property with re-
spect to all acyclic fibrations.

If k ⊇ Q, then these choices endow AlgO (Ch(k)) with the
structure of a model category. In this model structure every
object A ∈ AlgO (Ch(k)) is fibrant.

Let us now consider any Op(Ch(k))-morphismφ : O →
P between two colored dg-operads. There is an associ-
ated pullback functorφ∗ : AlgP (Ch(k)) → AlgO (Ch(k)) be-
tween the categories of algebras, which admits a left ad-
joint given by operadic left Kan extension, i.e. we obtain
an adjunction

φ! : AlgO (Ch(k)) // AlgP (Ch(k)) : φ∗oo . (72)

It is easy to see that this adjunction is compatible with the
model structures in Theorem 4.1.
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Proposition 4.2. For every Op(Ch(k))-morphism φ : O →
P , the adjunction (72) is a Quillen adjunction. Moreover,
the right adjoint φ∗ preserves weak equivalences.

Remark 4.3. In general, the left adjoint functor φ! in
(72) does not preserve weak equivalences and has to
be derived. Choosing any natural cofibrant replacement(
Q : AlgO (Ch(k)) → AlgO (Ch(k)), q : Q

∼→ id
)
, we define as

usual the left derived functor by

Lφ! := φ! Q : AlgO (Ch(k)) −→ AlgP (Ch(k)) . (73)

By construction, Lφ! does preserve weak equivalences.
Because by Theorem 4.1 each object in AlgP (Ch(k))
is fibrant, we will always choose in what follows the
trivial fibrant replacement

(
R = id : AlgP (Ch(k)) →

AlgP (Ch(k)),r = id : id
∼→ R

)
, which means that the right

derived functor

Rφ∗ := φ∗ R = φ∗ : AlgP (Ch(k)) −→ AlgO (Ch(k)) (74)

agrees with the underived functor.

Next, we shall briefly discuss the concept of Σ-cofi-
brant resolutions of colored dg-operads and the asso-
ciated concept of homotopy algebras. In what follows
we fix a non-empty set C ∈ Set of colors and consider
the subcategory OpC(Ch(k)) ⊆ Op(Ch(k)) of colored dg-
operads with fixed set of colors C and morphisms acting
as the identity on colors. Under our hypothesis k ⊇ Q,
Hinich’s results [19, 20] imply that OpC(Ch(k)) is a model
category with weak equivalences and fibrations defined
component-wise and cofibrations defined by the left lift-
ing property. Let us introduce the following standard ter-
minology.

Definition 4.4. A C-colored dg-operad O ∈ OpC(Ch(k)) is
called Σ-cofibrant if each component O

(t
c
)

is a cofibrant
object in the projective model structure on the functor
category Ch(k)Σc , whereΣc ⊆Σn is the stabilizer subgroup
of the tuple c = (c1, . . . ,cn) of colors.

Cofibrant dg-operads, i.e. cofibrant objects in the
model category OpC(Ch(k)), are in particular Σ-cofibrant,
cf. [57, Proposition 4.3]. However, the converse is not
true since e.g. the commutative dg-operad Com is Σ-
cofibrant but not cofibrant. The relevance of Σ-cofibrant
dg-operads is that their categories of algebras behave well
with respect to weak equivalences. More precisely, the
relevant result [19, 20] is as follows.

Theorem 4.5. Let φ : O → P be a weak equivalence be-
tween Σ-cofibrant colored dg-operads O ,P ∈ OpC(Ch(k)).
Then the corresponding Quillen adjunction (72) is a
Quillen equivalence.

With this preparation we can now finally define the
concept of homotopy algebras over colored dg-operads.

Definition 4.6. Let O ∈ OpC(Ch(k)) be a colored dg-
operad.
i) A Σ-cofibrant resolution of O is a Σ-cofibrant colored

dg-operad O∞ ∈ OpC(Ch(k)) together with an acyclic
fibration w : O∞ →O in OpC(Ch(k)).

ii) The model category of homotopy O-algebras is the
model category AlgO∞(Ch(k)) of algebras over a Σ-
cofibrant resolution w : O∞ →O .

Remark 4.7. It is natural to ask whether the concept
of homotopy O-algebras depends on the chosen resolu-
tion. Given two Σ-cofibrant resolutions w : O∞ →O and
w ′ : O ′∞ → O , and taking also a cofibrant replacement
q : QO →O , we obtain a commutative diagram

O∞
w
// O O ′∞

w ′
oo

QO
l

dd
q
OO

l ′

::
(75)

in OpC(Ch(k)). The dashed arrows exist due to the left
lifting property, because QO is by construction a cofibrant
dg-operad and w, w ′ are acyclic fibrations. By Proposition
4.2 we obtain a zig-zag

AlgO∞(Ch(k))
l∗
// AlgQO (Ch(k))

l!
oo

l ′!
// AlgO ′∞(Ch(k))

l ′∗
oo (76)

of Quillen adjunctions. Because O∞, O ′∞ and also the cofi-
brant dg-operad QO are Σ-cofibrant, Theorem 4.5 implies
that this is a zig-zag of Quillen equivalences and hence
that the model categories AlgO∞ (Ch(k)) and AlgO ′∞ (Ch(k))
of homotopy O-algebras are equivalent in this sense.

Example 4.8. The following are standard examples of ho-
motopy algebras:
i) A∞-algebras are homotopy algebras over the associa-

tive operad As;
ii) E∞-algebras are homotopy algebras over the commu-

tative operad Com;
iii) L∞-algebras are homotopy algebras over the Lie op-

erad Lie;
iv) homotopy-coherent diagrams are homotopy algebras

over the diagram operad DiagC.

4.2 AQFT model categories and Quillen adjunctions

Let C = (C,⊥) be any orthogonal category and OC ∈
Op(Set) the corresponding AQFT operad from Theorem
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2.8. The following result is fundamental for the develop-
ments throughout the whole section.

Theorem 4.9. For every orthogonal category C, the cat-
egory QFT(C) of Ch(k)-valued AQFTs on C (cf. Defini-
tion 2.3) is a model category with respect to the follow-
ing choices: A morphism ζ : A → B in QFT(C) (i.e. a
natural transformation between the underlying functors
C → AlgAs(Ch(k))) is
i) a weak equivalence if each component ζc : A(c) →

B(c) is a quasi-isomorphism;
ii) a fibration if each component ζc : A(c) → B(c) is

degree-wise surjective;
iii) a cofibration if it has the left lifting property with re-

spect to all acyclic fibrations.

Proof. This is a direct consequence of Theorem 4.1 and
the chain of isomorphism QFT(C) ∼= AlgOC

(Ch(k)) ∼=
AlgOC⊗k (Ch(k)). The first step is Theorem 2.9 and for

the second step one easily checks that the category
AlgOC

(Ch(k)) of Ch(k)-valued algebras over the Set-valued

AQFT operad OC ∈ Op(Set) is (isomorphic to) the category
AlgOC⊗k (Ch(k)) of algebras over the corresponding AQFT

dg-operad OC ⊗k ∈ Op(Ch(k)).

Remark 4.10. Our rigorous concept of weak equivalences
for Ch(k)-valued AQFTs established in Theorem 4.9 agrees
with the less formal notions used in concrete applications
of the BRST/BV formalism, cf. [53–55]. In particular, the
usual technique of ‘adding auxiliary fields without chang-
ing homologies’ can be understood rigorously from our
model categorical perspective.

In the context of Ch(k)-valued AQFTs, the universal
constructions from Section 2.3 have to be derived in order
to be consistent with the concept of weak equivalences
introduced in Theorem 4.9. Recall from Theorem 2.12 that
every orthogonal functor F : C → D defines an adjunction

F! : QFT(C) // QFT(D) : F∗oo (77)

between the corresponding categories of Ch(k)-valued
AQFTs. As a direct consequence of Proposition 4.2, we
obtain the following result.

Proposition 4.11. For every orthogonal functor F : C → D,
the adjunction (77) is a Quillen adjunction. Moreover, the
right adjoint F∗ preserves weak equivalences.

As explained in Remark 4.3, the left adjoint functor
F! has to be derived, e.g. by choosing a natural cofibrant
replacement. This has consequences for the examples of
universal constructions discussed in Section 2.3.

Example 4.12. Let j : C → D be a full orthogonal sub-
category embedding and consider as in (20) the ex-
tension/restriction adjunction j! a j∗ for Ch(k)-valued
AQFTs. By Proposition 4.11, this is a Quillen adjunction
and hence we can construct the left derived extension
functor L j! := j! Q : QFT(C) → QFT(D). We would like to
emphasize again that it is the derived functor L j! that
defines a meaningful local-to-global extension for Ch(k)-
valued AQFTs and not the underived functor j!, because
the latter in general does not preserve weak equivalences.
(See [46, Appendix A] for concrete examples.) This in par-
ticular means that our definition of descent via j -locality
(cf. Definition 2.17) has to be adapted in order to be
homotopically meaningful. Following [22], we say that
A ∈ QFT(D) is homotopy j -local if the corresponding com-
ponent

L j! j∗A= j!Q j∗A
j!q j∗A

// j! j∗A
εA
// A (78)

of the derived counit is a weak equivalence. It is easy
to prove that the derived extension L j!B of every B ∈
QFT(C) is homotopy j -local. Toy-models of homotopy
j -local AQFTs that are inspired by gauge theory are pre-
sented in Section 4.4 below.

Example 4.13. Let L : C → C[W −1] be an orthogonal lo-
calization and consider as in (21) the time-slicification
adjunction L! a L∗ for Ch(k)-valued AQFTs. By Propo-
sition 4.11, this is a Quillen adjunction and hence we
can construct the left derived time-slicification functor
LL! := L! Q : QFT(C) → QFT(C[W −1]). Our concept of W -
constancy from Corollary 2.22 has to be adapted in or-
der to be homotopically meaningful. Following [22], we
say that A ∈ QFT(C) is homotopy W -constant if the corre-
sponding component

QA
ηQA
// L∗L!QA= L∗LL!A (79)

of the derived unit is a weak equivalence. Note that ho-
motopy W -constancy can be interpreted as a homotopy
theoretic generalization of the time-slice axiom. We ex-
pect that this will be useful for formalizing the weaker
concept of time-slice axiom appearing in derived geome-
try, see the end of Section 3.4.

Open Problem 4.14. The formal properties of the de-
rived unit and counit of the time-slicification adjunction
L! a L∗ are harder to understand than the ones for the ex-
tension/restriction adjunction j! a j∗. In particular, even
though the underived counit ε is a natural isomorphism
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by Proposition 2.21, it is unclear if the derived counit

LL!L∗ = L!QL∗
L!qL∗

// L!L∗ ε
// id (80)

is a natural weak equivalence. As a consequence, it is
currently unclear to us if theories of the form L∗B, for

B ∈ QFT(C[W −1]), are homotopy W -constant.

4.3 Homotopy-coherent AQFTs

The aim of this section is to study homotopy algebras over
the AQFT dg-operad OC ⊗k ∈ Op(Ch(k)), which we shall
also call homotopy AQFTs. The following fundamental the-
orem is proven in [46]. Recall from Definitions 4.4 and 4.6
the concepts of Σ-cofibrant dg-operads and Σ-cofibrant
resolutions.

Theorem 4.15. Let us assume as before that k ⊇ Q in-
cludes the rationals. For every orthogonal category C, the
AQFT dg-operad OC ⊗k ∈ Op(Ch(k)) is Σ-cofibrant. As a
consequence of Theorem 4.5, every Σ-cofibrant resolution
w : O∞ →OC ⊗k induces a Quillen equivalence

w! : AlgO∞ (Ch(k)) // QFT(C) : w∗oo . (81)

Remark 4.16. This result can be interpreted as a stricti-
fication theorem for homotopy AQFTs. Indeed, given any
homotopy AQFT A∞ ∈ AlgO∞ (Ch(k)), a cofibrant replace-
ment and the derived unit of w! a w∗ defines a zig-zag

A∞ QA∞
qA∞
oo

ηQA∞
// w∗Lw!A∞ (82)

of weak equivalences between A∞ and the strict AQFT
w∗Lw!A∞.

So does this mean that homotopy AQFTs are not inter-
esting and important at all? The answer to this question is
clearly no, because certain interesting constructions natu-
rally define non-strict homotopy AQFTs. For instance, let
us recall from Example 3.18 that taking derived smooth
normalized cochain algebras on a functor F : Cop → St∞ ⊆
H∞ that assigns ∞-stacks of gauge fields to space-times
defines a functor A := LN∞∗(F(−),k) : C → AlgE∞(Ch(k))
with values in E∞-algebras. We shall show in Example 4.20
below that this can be interpreted as a non-strict homo-
topy AQFT. A further class of examples is given in Section
4.5. Note that even though each of these non-strict ho-
motopy AQFTs can be strictified by Theorem 4.15, such
strictifications are hard to describe explicitly and thus it is

often useful in practice to work directly with the weaker
model.

There exist of course many different Σ-cofibrant reso-
lutions of the AQFT dg-operad OC ⊗k ∈ Op(Ch(k)), which
describe homotopy AQFTs whose algebraic structures
(functoriality, associativity, ⊥-commutativity, etc.) are
weakened in a homotopy-coherent sense by a certain
extent. The strictest possible resolution is given by the
identity id : OC ⊗k → OC ⊗k and homotopy AQFTs with
respect to this resolution are precisely strict AQFTs. A
very weak resolution, called the Boardman-Vogt resolu-
tion, has been studied for our AQFT operads by Yau in
[62]. The resulting homotopy AQFTs are, roughly speaking,
homotopy-coherent diagrams of A∞-algebra that satisfy
a homotopy-coherent ⊥-commutativity property. Moti-
vated by our examples from Example 3.18 and Section
4.5, we shall study below a particular Σ-cofibrant resolu-
tion w : OC ⊗E∞ →OC ⊗k of the AQFT dg-operad that is
obtained by a component-wise tensoring with the Barratt-
Eccles E∞-operad E∞ ∈ Op(Ch(k)). This describes homo-
topy AQFTs that are strictly functorial, however with a
homotopy-coherent ⊥-commutativity property.

Without going into any details, let us recall from [47]
that the Barratt-Eccles dg-operad E∞ ∈ Op(Ch(k)) is a Σ-
cofibrant resolution w : E∞ → Com of the commutative
dg-operad. The usual Op(Ch(k))-morphism As → Com
from the associative to the commutative dg-operad fac-
tors through E∞, i.e. we have a chain of operad maps

As
i
// E∞

w
// Com . (83)

The induced Quillen adjunctions imply that each commu-
tative dg-algebra C ∈ AlgCom(Ch(k)) can be interpreted as
a strictly commutative E∞-algebra w∗C ∈ AlgE∞(Ch(k)).
Moreover, each E∞-algebra A ∈ AlgE∞(Ch(k)) has an un-
derlying dg-algebra i∗A ∈ AlgAs(Ch(k)), which is in gen-
eral noncommutative unless the E∞-algebra is strictly
commutative.

For every orthogonal category C, we define a colored
dg-operad OC ⊗E∞ ∈ Op(Ch(k)) by the component-wise
tensoring(
OC ⊗E∞

)(t
c
)

:= OC

(t
c
)⊗E∞(n) ∈ Ch(k) (84)

of the AQFT operad with the Barratt-Eccles E∞-operad,
where n is the length of the tuple of colors c . The following
result was proven in [46].

Theorem 4.17. Let us assume as before that k ⊇ Q in-
cludes the rationals. For every orthogonal category C, the
Op(Ch(k))-morphism

wC := id⊗w : OC ⊗E∞ −→OC ⊗Com∼=OC ⊗k (85)
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defines a Σ-cofibrant resolution of the AQFT dg-operad.
These resolutions are natural in the orthogonal category
C ∈ OrthCat.

Definition 4.18. Let C be an orthogonal category. We de-
note by

QFT∞(C) := AlgOC⊗E∞(Ch(k)) (86)

the model category of homotopy AQFTs on C that corre-
spond to the Σ-cofibrant resolution from Theorem 4.17.

Remark 4.19. Our universal constructions for strict
Ch(k)-valued AQFTs from Section 4.2 immediately gen-
eralize to the case of homotopy AQFTs. In particular, for
every orthogonal functor F : C → D one obtains a Quillen
adjunction

F! : QFT∞(C) // QFT∞(D) : F∗oo (87)

between the corresponding model categories of ho-
motopy AQFTs. Interesting examples are again exten-
sion/restriction adjunctions induced by full orthogonal
subcategory embeddings or time-slicification adjunctions
induced by orthogonal localizations.

Example 4.20. Given any small category C, we can
choose the maximal orthogonality relation

⊥max := MorC t×t MorC (88)

and define an orthogonal category C
max

:= (C,⊥max). One
easily checks that the category

QFT(C
max

) ∼= AlgCom(Ch(k))C (89)

of strict AQFTs on C
max

is the category of functors from C
to commutative dg-algebras and that the category

QFT∞(C
max

) ∼= AlgE∞ (Ch(k))C (90)

of homotopy AQFTs (in the sense of Definition 4.18) on
C

max
is the category of functors from C to E∞-algebras. In

particular, the derived smooth normalized cochain alge-
bras on diagrams of ∞-stacks from Example 3.18 define
examples of such homotopy AQFTs.

4.4 Derived local-to-global constructions

In this section we shall present concrete results on derived
local-to-global extensions in a simplified setting. In par-
ticular, we shall show that certain simplified toy-models
for topological AQFTs satisfy a homotopy j -locality prop-
erty in the sense of Example 4.12. Physically, these results

should be interpreted as a homotopical descent condition
for such AQFTs. For the technical details we refer to [46].

Let Man be the category of oriented m-dimensional
manifolds of finite type with morphisms given by ori-
entation preserving open embeddings. We endow Man
with the maximal orthogonality relation from Example
4.20, which defines an orthogonal category Man

max
:=

(Man,⊥max). Let further Disk
max ⊆ Man

max
be the full or-

thogonal subcategory of all manifolds diffeomorphic to
Rm and denote the corresponding full orthogonal sub-

category embedding by j : Disk
max → Man

max
. We are

interested in describing the left derived functor L j! of the
associated Quillen adjunction

j! : QFT∞(Disk
max

) // QFT∞(Man
max

) : j∗oo . (91)

The following technical theorem is the key ingredient for
our computations. Its proof uses Lurie’s Seifert-van Kam-
pen theorem [34, Appendix A.3.1] and is presented in [46].

Theorem 4.21. Suppose that A ∈ QFT∞(Disk
max

) is
weakly equivalent to a constant functor Disk →
AlgE∞ (Ch(k)) whose value we denote by A ∈ AlgE∞ (Ch(k)).

Then the derived extension L j!A ∈ QFT∞(Man
max

) may be
computed object-wise for each M ∈ Man by

(
L j!A

)
(M) = Sing(M)

L⊗ A ∈ AlgE∞(Ch(k)) , (92)

where Sing(M) ∈ sSet is the simplicial set of singular sim-

plices in M and
L⊗ is the derived sSet-tensoring for E∞-

algebras, cf. [63, 64].

Remark 4.22. In [64] the E∞-algebra Sing(M)
L⊗ A is also

referred to as the derived higher Hochschild chains on
Sing(M) with coefficients in A.

Example 4.23. Our first example is inspired by Dijkgraaf-
Witten theory. Let us consider a gauge theory whose fields
on M are described by the groupoid BunG (M) ∈ Grpd of
principal G-bundles on M for a finite nilpotent group G .
By [65, Lemma 2.8], the nerve BBunG (M) ∈ sSet is weakly
equivalent to the simplicial mapping space BGSing(M) ∈
sSet, where BG ∈ sSet is the nerve of the groupoid ∗//G .
We define a homotopy AQFT A ∈ QFT∞(Man

max
) by form-

ing on each M ∈ Man the normalized cochain algebra

A(M) := N∗(
BGSing(M),k

) ∈ AlgE∞(Ch(k)) . (93)

The restriction j∗A ∈ QFT∞(Disk
max

) to disks is weakly
equivalent to a constant functor with value N∗(BG ,k)
because Sing(U ) → ∗ is a weak equivalence for every
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U ∈ Disk. Hence, we can apply Theorem 4.21 and com-
pute

(
L j! j∗A

)
(M) ' Sing(M)

L⊗ N∗(BG ,k)

' N∗(
BGSing(M),k

)=A(M) , (94)

for all M ∈ Man. The second step follows from [18, Propo-
sition 5.3] and it uses that G is a finite nilpotent group.
Summing up, we have seen that the present toy-model
of a homotopy AQFT A ∈ QFT∞(Man

max
) on Man

max
is

weakly equivalent to the derived extension L j! of its re-
striction to disks. As a consequence, it is also homotopy
j -local in the sense of Example 4.12, which one should
interpret as a homotopical descent condition.

Example 4.24. Our second example is inspired by lin-
ear Chern-Simons theory with structure group R, i.e. flat
principal R-bundles with connections on 2-dimensional
surfaces. In what follows Man will denote the category
of 2-dimensional oriented manifolds and we take k = R.
From the perspective of derived geometry of linear gauge
fields (cf. Section 3.4), the linear classical observables for
this theory on M ∈ Man are described by the (−1)-shifted
compactly supported de Rham complex

Ω•
c (M)[−1] :=

( (−1)

Ω2
c (M)

(0)

Ω1
c (M)

d
oo

(1)

Ω0
c (M)

d
oo

)
. (95)

We define a homotopy AQFT A ∈ QFT∞(Man
max

) by form-
ing on each M ∈ Man the free E∞-algebra

A(M) := E∞
(
Ω•

c (M)[−1]
) ∈ AlgE∞ (Ch(k)) (96)

over this complex. One should interpret this as classical
polynomial observables for linear Chern-Simons theory.

The restriction j∗A ∈ QFT∞(Disk
max

) to disks is weakly
equivalent to a constant functor with value E∞(R[1]) be-
cause the integration map

∫
U :Ω•

c (U )[−1] →R[1] is a weak
equivalence for every U ∈ Disk. Hence, we can apply The-
orem 4.21 and compute

(
L j! j∗A

)
(M) ' Sing(M)

L⊗ E∞(R[1])

' Sing(M)⊗E∞(R[1])

' E∞
(
N∗(Sing(M),R)⊗R[1]

)
, (97)

for all M ∈ Man. In the second step we used that for free
E∞-algebras the derived sSet-tensoring is weakly equiva-
lent to the underived one. The third step is a direct com-
putation using the explicit formula for the latter from
[63]. One concludes that A ' L j! j∗A are weakly equiva-
lent because the 1-shifted R-valued normalized chains

N∗(Sing(M),R)⊗R[1] are weakly equivalent toΩ•
c (M)[−1]

as a consequence of de Rham’s theorem. Hence, this toy-
model also satisfies the homotopy j -locality condition
from Example 4.12.

Open Problem 4.25. The examples considered above are
only toy-models for the kind of homotopy AQFTs that
we are eventually interested in. This is because they are
1.) ‘too topological’ in the sense of being weakly equiva-
lent to a constant diagram and 2.) ‘not quantum’ in the
sense that they assign only homotopy-coherently commu-
tative observable algebras. It is an open problem to evalu-
ate the derived extension functor L j! and test homotopy
j -locality for more realistic full orthogonal subcategory
embeddings, e.g. j : Loc¦→ Loc from Example 2.2, which
is crucial for Lorentzian AQFTs.

4.5 Examples from homotopy invariants

We present another class of examples of homotopy AQFTs
in the sense of Definition 4.18. Let C be an orthogonal
category and π : D → C a category fibered in groupoids
over its underlying category C. Endowing D with the pull-
back orthogonality relation, we obtain an orthogonal
functor π : D → C that we call an orthogonal category
fibered in groupoids. The basic idea behind our construc-
tion below is as follows: Given any strict Ch(k)-valued
AQFT A ∈ QFT(D) on the total category D, we would
like to construct an AQFT Aπ on the base category C by
forming homotopy invariants along the groupoid fibers
π−1(c) ∈ Grpd, for all c ∈ C. We shall formalize this con-
struction and show that it naturally leads to a homotopy
AQFT Aπ ∈ QFT∞(C) on C.

Remark 4.26. The physical motivation behind this con-
struction is as follows: As usual, C is interpreted as a
category of space-times. The total category D of the or-
thogonal category fibered in groupoids π : D → C should
be interpreted as a category of space-times with addi-
tional geometric structures (which we call background
fields), e.g. spin structures, bundles and connections. The
functor π forgets this extra structure and hence its fibers
π−1(c) ∈ Grpd are the groupoids of background fields on
the space-time c ∈ C. Note that the morphisms in these
groupoids are interpreted as gauge transformations of
the background fields, cf. Section 3.1. Our construction
assigns to an AQFT A ∈ QFT(D) on space-times with back-
ground fields a homotopy AQFT Aπ ∈ QFT∞(C) on plain
space-times. This is achieved by assigning to each c ∈ C
the homotopy invariants of A along the action of the
groupoid π−1(c) of background fields over c. We refer to
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[66] for concrete examples and more details on the physi-
cal interpretation.

Without loss of generality, we can focus on the case
where our category fibered in groupoids is given by the
Grothendieck construction π : CF → C of a presheaf of
groupoids F : Cop → Grpd on C. This follows from the
strictification theorems in [37]. Forming homotopy invari-
ants along the groupoid fibers can be described by a ho-
motopy right Kan extension hoRanπ : Ch(k)CF → Ch(k)C

along π : CF → C of the underlying Ch(k)-valued functor
of an AQFTA ∈ QFT(CF ). By [46,66], we have the following
explicit model.

Proposition 4.27. Let F : Cop → Grpd be a presheaf of
groupoids and A : CF → Ch(k) a chain complex valued
functor on the corresponding Grothendieck construction.
Then the homotopy right Kan extension Aπ := hoRanπA :
C → Ch(k) along the projection functor π : CF → C can be
computed object-wise by the end

Aπ(c) =
∫

x∈F (c)

[
N∗

(
B(F (c) ↓ x),k

)
,A(c, x)

]
, (98)

for all c ∈ C. Here N∗(−,k) denotes the normalized chain
functor, [−,−] the internal hom in Ch(k) and B(F (c) ↓ x) ∈
sSet the nerve of the over-category F (c) ↓ x.

Remark 4.28. Note that Aπ(c) can also be understood as
the homotopy limit

Aπ(c) ' holim
(
A

∣∣
π−1(c) : F (c) → Ch(k)

)
(99)

of the restriction of A to the groupoid fiber π−1(c) ' F (c).
This is important for our interpretation of Aπ = hoRanπA
as forming fiber-wise homotopy invariants.

The main result of this section is that the collection of
chain complexes Aπ(c), for c ∈ C, obtained with the con-
struction above carries the structure of a homotopy AQFT
in a canonical way. The key ingredient for the proof is the
result in [47] that the normalized chain complex N∗(S,k)
of a simplicial set S carries a canonical E∞-coaction. This
fact, combined with the original OCF

-algebra structure on

A ∈ QFT(CF ), leads to the next theorem. We refer to [46]
for a detailed proof.

Theorem 4.29. Let C be an orthogonal category and F :
Cop → Grpd a presheaf of groupoids. Consider the orthog-
onal category fibered in groupoids π : CF → C that is ob-
tained by the Grothendieck construction of F . For every
strict Ch(k)-valued AQFT A ∈ QFT(CF ) on the total cat-
egory, the family of chain complexes Aπ(c) ∈ Ch(k) from
Proposition 4.27 carries canonically the structure of an
OC ⊗ E∞-algebra. Hence, Aπ ∈ QFT∞(C) is a homotopy
AQFT in the sense of Definition 4.18.

Remark 4.30. From a mathematical perspective, the ho-
motopy AQFT Aπ ∈ QFT∞(C) from Theorem 4.29 can be
interpreted in terms of fiber-wise normalized cochain al-
gebras on π : CF → C with coefficients in the strict Ch(k)-
valued AQFT A ∈ QFT(CF ). In other words, it is the fiber-
wise groupoid cohomology of π : CF → C with coefficients
A ∈ QFT(CF ). Similarly to ordinary groupoid cohomology,
the results of this construction can be interesting even
when the coefficients are concentrated in degree 0. Physi-
cal examples of this type have been discussed in [66] and
they include e.g. the case of Dirac fields on the groupoid
of all possible spin structures over a space-time.

A On the cosheaf condition in AQFT

In this appendix we shall analyze an analogue of the
cosheaf condition (2) for a simple toy-model of an AQFT.
Our main message will be that it is very hard to find covers
for which this condition holds true. This motivates and
justifies our alternative descent condition that we have
sketched at the end of Section 1 and stated precisely in
Definition 2.17.

The toy-model we consider is given by the scalar field
on the circle S1, which is not a Lorentzian AQFT in the
sense of Definition 1.1, but rather a chiral conformal
AQFT on the compactified light ray. (In particular, it is an
AQFT in the general sense of Definition 2.3.) Denoting by
Open(S1) the category of all open subsets of the circle S1,
our model is described by a functor A : Open(S1) → ∗Alg
to the category of ∗-algebras. To an open subset U ⊆S1,
it assigns the ∗-algebra A(U ) presented by the following
generators and relations:

i) Generators: ΦU (ϕ), for all compactly supported func-
tions ϕ ∈C∞

c (U );
ii) Relations:

i) R-linearity:ΦU (αϕ+βψ) =αΦU (ϕ)+βΦU (ψ), for
all α,β ∈R and ϕ,ψ ∈C∞

c (U );
ii) Hermiticity: ΦU (ϕ)∗ =ΦU (ϕ), for all ϕ ∈C∞

c (U );
iii) CCR:

[
ΦU (ϕ),ΦU (ψ)

]= i
∫
S1 ϕdψ1, for all ϕ,ψ ∈

C∞
c (U ).

To an open subset inclusion ιVU : U ⊆V , the functor assigns
the ∗-homomorphism A(ιVU ) : A(U ) → A(V ) that is de-
fined on the generators by ΦU (ϕ) 7→ΦV (ϕ). We note that
A satisfies the following variant of a causality condition
(or ⊥-commutativity condition in the sense of Definition
2.3); For every pair of disjoint open subsets U1,U2 ⊆V of
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some open subset V ⊆S1, the induced commutator[
A(ιVU1

)
(
ΦU1 (ϕ)

)
,A(ιVU2

)
(
ΦU2 (ψ)

)]
A(V )

= [
ΦV (ϕ),ΦV (ψ)

]
A(V ) = i

∫
S1
ϕdψ1= 0 (100)

is zero, for all ϕ ∈ C∞
c (U1) and ψ ∈ C∞

c (U2), because the
integrand is zero as a consequence of U1 ∩U2 =;.

For any open cover {Ui ⊆S1} of the circle, we define
the ∗-algebra

colimA(U•) := colim

( ∐
i j
A(Ui j ) //

//
∐
i
A(Ui )

)
, (101)

which also admits a simple presentation by generators
and relations:
i) Generators: ΦUi (ϕ), for all i and all ϕ ∈C∞

c (Ui );
ii) Relations:

i) R-linearity: ΦUi (αϕ+βψ) =αΦUi (ϕ)+βΦUi (ψ),
for all i , all α,β ∈R and all ϕ,ψ ∈C∞

c (Ui );
ii) Hermiticity: ΦUi (ϕ)∗ = ΦUi (ϕ), for all i and all

ϕ ∈C∞
c (Ui );

iii) CCR:
[
ΦUi (ϕ),ΦUi (ψ)

]= i
∫
S1 ϕdψ1, for all i and

all ϕ,ψ ∈C∞
c (Ui );

iv) Overlap relations: ΦUi (ϕ) = ΦU j (ϕ), for all i , j
and all ϕ ∈C∞

c (Ui j ).
Note that there are no a priori commutation relations be-
tween ΦUi (ϕ) and ΦU j (ψ) for different i 6= j . Depending
on the cover, there however exist certain induced com-
mutation relations that result by combining the CCRs for
individual i ’s and the overlap relations.

There exists a canonical ∗-homomorphism

colimA(U•) −→A(S1) , ΦUi (ϕ) 7−→ΦS1 (ϕ) (102)

to the ∗-algebra on the full circle. We would like to answer
the question for which covers {Ui ⊆S1} this is an isomor-
phism, i.e. for which covers the cosheaf condition holds
true for our example.

Proposition A.1. (102) is an isomorphism if and only if
the open cover {Ui ⊆S1} satisfies the condition

∀i , j ∃k : Ui ∪U j ⊆Uk . (103)

Proof. Choosing a partition of unity
∑

i χi = 1 subordinate
to {Ui ⊆S1}, we define for each ϕ ∈C∞

c (S1) an element

Φ̃(ϕ) := ∑
i
ΦUi (χiϕ) ∈ colimA(U•) . (104)

These elements are independent of the choice of partition
of unity: For any other choice

∑
i ρi = 1, we obtain∑

i
ΦUi (ρiϕ) =∑

i , j
ΦUi (ρiχ jϕ) =∑

i , j
ΦU j (ρiχ jϕ)

=∑
j
ΦU j (χ jϕ) = Φ̃(ϕ) , (105)

where in the second step we used the overlap relations
for ρiχ jϕ ∈C∞

c (Ui j ). The elements in (104) are clearly R-
linear in ϕ ∈C∞

c (S1) and Hermitian. Moreover, we have
that Φ̃(ϕ) 7→ΦS1 (ϕ) under the map (102). It follows that
(102) is an isomorphism, with inverse ΦS1 (ϕ) 7→ Φ̃(ϕ), if
and only if the Φ̃(ϕ)’s, for ϕ ∈ C∞

c (S1), satisfy the CCR.
These are equivalent to the commutation relations

[
ΦUi (ϕ),ΦU j (ψ)

] = i
∫
S1
ϕdψ 1 (106)

in colimA(U•), for all i , j and all ϕ ∈ C∞
c (Ui ) and ψ ∈

C∞
c (U j ), which are satisfied if and only if condition (103)

holds.

Lemma A.2. An open cover {Ui ⊆S1} satisfies (103) if and
only if one of its members is the whole circle S1.

Proof. The direction ‘⇐’ is obvious. To prove ‘⇒’, note
that each open cover of the compact space S1 has a finite
subcover, say U1, . . . ,UN ⊆ S1. Applying (103) iteratively,
we obtainS1 =U1∪U2∪·· ·∪UN ⊆Ui ∪U3∪·· ·∪UN ⊆ ·· · ⊆
Uk , i.e. there exists k such that Uk =S1 is the circle.

Corollary A.3. The AQFT A : Open(S1) → ∗Alg describing
the scalar field on S1 satisfies the cosheaf condition for an
open cover {Ui ⊆S1} if and only if S1 is a member of this
cover. In particular, it does not satisfy the cosheaf condition
for any open cover {Ii ⊆S1} by intervals.

Remark A.4. Clearly, a cosheaf condition for covers con-
taining the entire space holds trivially and hence has no
power. From the discussion above we deduce that even for
an elementary prototypical example of AQFT, such as the
scalar field on the circle S1, the cosheaf condition holds
only for covers that contain the circle itself. A similar be-
havior arises more generally also in AQFTs on Lorentzian
manifolds. The alternative descent condition j -locality,
inspired by Fredenhagen’s universal algebra construction
[14–16] and formalized in Definition 2.17, is better be-
haved in standard examples of AQFTs, cf. Example 2.20.
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