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1 Symmetries in quantum theory

“Symmetry” is an extremely broad and versatile concept in physics in general. The realization
of symmetries acquires more facets and shadings in quantum theory, than it already exhibits in
classical physics. Rather than attempting a full coverage of the topic, I just start by recalling in
a schematic way of the richness of the notion in quantum theory, before I turn to a more specific
discussion of symmetries in the context of quantum field theory, and finally turn to concentrate
on its relation with superselection structure. This relation strongly depends on the number of
spacetime dimensions.

Already terminology is quite diverse, and never uniform across contexts. Let us say that, most
generally speaking, a “transformation” 7 is a prescription to associate new object(s) to given objects:

T
Xl—)XT.

It is called a “symmetry” if it preserves some pertinent feature of interest: e.g., the dynamics of a
physical system (equations of motion, Hamiltonian), relational structures (algebras), concrete real-
izations (solutions of equations of motion, states of quantum systems). Noether’s groundbreaking
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work taught us that symmetries of the (classical) Hamiltonian are related to dynamical conservation
laws, providing a priori knowledge about the physical system under consideration, that may be of
eminent importance for both practical applications and structural understanding.

In quantum theory, transformations or symmetries can be given at various levels, indicated with
increasing mathematical restrictiveness from left to right and from top to bottom in a schematic
diagram for the case of continuous transformations of an algebra:

integrable?
or (- — ar(:)
implementable? ! ! implementable?
_ self-adjoint?
i[Or,"] — Ur - U;

The “-” is a placeholder for algebra elements. The first line refers to the purely algebraic perspec-
tive: ar may stand for a one-parameter group of automorphisms of an algebra, and 67 for the
associated infinitesimal derivation. Derivations may not be integrable, and conversely groups of
automorphisms may not be differentiable. The situation depends on manifold domain questions in
Banach spaces. The second line refers to the “spatial” perspective when the algebra is realized by
operators on a Hilbert space. Whether a derivation is implementable by a self-adjoint generator, or
whether an automorphism is implemented by a unitary operator, depends on the representations.
(The right column pertains also to discrete transformations.)

The questions addressed by the diagram pose nontrivial and possibly hard mathematical problems,
which this nontechnical contribution is not the place to discuss. They reach far beyond group
theory and representation theory, requiring methods from Functional Analysis. E.g., the issue of
self-adjointness of generators to ensure unitary one-parameter groups (Stone-von Neumann) lies
at the origin of spectral theory. Suffice it to state that answers will depend on the specific physical
system under consideration.

In a “third dimension” to be added to the diagram, one may ask whether several derivations form
a Lie algebra, and whether this Lie algebra can be integrated to a possibly non-Abelian group of
automorphisms. The corresponding questions in the second line are of cohomological nature and
lead to the theory of projective representations and the Bargmann theorem about the conditions
under which the latter give rise to true representations of a covering group.

When dynamical quantum systems are addressed, one could add yet another “dimension” to the
diagram, concerning distinguished states, and ask whether ground states (or KMS states) are
invariant under derivations, automorphisms, or unitaries. If they are not, the symmetry of the
algebra is said to be “spontaneously broken” by the state.

2  Quantum field theory

Quantum field theory knows the distinction between spacetime symmetries (usually given by the
Poincaré or conformal group), and “inner symmetries”, that affect only inner degrees of freedom
of quantum fields (“multiplets”) but neither the localization of field operators in spacetime nor
the momentum transfer on states induced by them. Spacetime symmetries in the first place act
on the spacetime, but are expected to lift to unitary operators acting on the Hilbert space or to
automorphisms acting on the field algebra, changing the localization in a geometric way.
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The Coleman-Mandula theorem of QFT [Coleman and Mandula (1967)] states that (under standard
assumptions) inner and spacetime symmetries “cannot interfere” with each other: they must com-
mute and form a direct product of groups. An exception is supersymmetry (admitting fermionic
generators) [Haag et al. (1975)]. An intriguing feature is that the Hamiltonian arises as the square
of a supersymmetry generator, implying that it is automatically positive.

Yet, also without supersymmetry, the interplay of the axioms of Locality and Covariance (including
positive energy) provide an indirect relation, when continuous inner symmetries are assumed to
be implemented by generators that are associated with covariant and local conserved currents. In
this case, the relation (the Goldstone theorem) is of spectral nature: the non-preservation of the
vacuum state under the symmetry (“spontaneous symmetry breakdown’) requires the presence of
massless excitations of the vacuum, known as “Goldstone modes”’. More differentiated versions of
the theorem, according to which the precise situation depends on the decay behavior of correlations,
have been elaborated by [Ezawa and Swieca (1967), Buchholz et al. (1992)].

Inner symmetries are often regarded as “global gauge symmetries”. “Global” is understood in
the sense that they transform fields in the same way irrespective of their localization; ‘“gauge”
in the sense that only the invariant quantities are considered as observables. Because the latter
commute with the unitary representation U of the gauge group G, its centre U(G)” splits the
representation of the fields into inequivalent representations of the observables. These are called
superselection sectors, because observables cannot make transitions among them. (Historically,
the first recognition of this fact was the superselection rule that local operators cannot interpolate
between states of integer and half-inter spin.) The gauge-variant fields are then rather auxiliary
mathematical tools whose role is to create from the vacuum “charged states” carrying quantum
numbers that cannot be accessed by observables.

“Local gauge transformations” cannot be realized on Hilbert spaces (and consequently many
mathematical theorems do not apply; e.g., the Goldstone theorem must fail in order to allow for
the so-called Higgs mechanism). They do not relate physical states to each other. They act only on
unphysical auxiliary “states” appearing at intermediate levels in the course of the construction of a
model. In a famous panel dicussion it was acceded that they should not be regarded as “symmetries”
at all [Zichichi (1984)]. Their main role is in fact their seminal power of selecting of renormalizable
interactions that lie at the basis of the Standard Model of particles, without being a symmetry of
the final quantum theory. Local gauge symmetry falls outside the scope of this contribution and
shall not be addressed further. For an alternative method to predict and deal with the interactions
of the Standard Model without “quantum field theory on indefinite state spaces”, see [Rehren and
Schroer (2025)].

The traditional Wightman axiomatics [Streater and Wightman (1964)] of quantum field theory
assumes that (globally) gauge-variant fields obey the same axioms as observable quantum fields,
with the only exception that they may be “anti-local”. The (analytic) Spin-Statistics theorem
of [Streater and Wightman (1964), Jost (1965)] asserts that they cannot be local if they transform
in a representation of the Poincaré group with half-integer spin or helicity. The theorem actually
implies anti-locality only, when the axioms only offer the two options “local” or “anti-local”.
Relaxing this axiom, many new possibilities arise, see [Rehren and Schroer (2025)].

Algebraic quantum field theory, or “Local Quantum Physics” (LQP) [Haag (1992)], avoids to
talk (and make assumptions about) non-observable fields altogether. Instead, it axiomatizes the



structural properties of observables with the emphasis on their localization properties. Localization
and locality in LQP are algebraic properties: An observable is called “localized” in a region if it
commutes with all observables localized at spacelike distance from that region. They can therefore
by formulated in terms of a C* algebra without reference to a specific Hilbert space representation.
From algebraic axioms imposed on the assignment of localized subalgebras to spacetime regions
(the “local net”), LQP allows to draw conclusions about possible states and representations in which
these properties possibly can be realized, see Sect. 3.

One may dwell on the “relative” character of algebraic localization, as just defined. This feature
opens the way to re-assign different geometric localizations to “the same elements” of the C*
algebra, as long as they are again consistent with locality in the new interpretation. One can thus
“transplant” QFT models from one spacetime to another, such as Minkowski, Einstein universe,
deSitter and Robertson-Walker [Guido and Longo (2003), Buchholz and Summers (2001)]; or re-
interpret QFT models on anti-deSitter spacetime as conformal QFTs on the conformal boundary
of AdS (which is a completion of Minkowski spacetime) [Rehren (2000)]. The abstract group of
spacetime symmetries and its unitary representations are the same, but the geometric interpretation
of the group actions on regions are different. In a local setting adapted to curved spacetime,
allowing the transplantation of patches of one spacetime into another spacetime in terms of a
functor between categories of subregions and categories of subalgebras of C* algebras, one can
give a rigorous meaning to the notion of “the same physics on different spacetimes” [Fewster and
Verch (2012)].

A Quantum Noether theorem. As emphasized in [Haag (1992)], a local net of observables
together with the unitary representation of the Poincaré group determines “all the physics”, includ-
ing the scattering behaviour (from which phenomenologists are used to “deduce” the interaction
Lagrangian). An interesting example how information about the field content is “encoded” in the
net (even if the net refers only to algebras and not individual fields), is the “Quantum Noether
theorem” of [Doplicher and Longo (1983)], as follows.

A local net is said to satisfy the split property if two von Neumann algebras of observables
localized in two spacelike-separated spacetime regions with a finite distance generates an algebra
that is isomorphic to the tensor product of the two algebras. This property is related to phase-
space properties (localization and momentum transfer), and has been established in several classes
of models. It cannot be expected to hold when there is no finite distance because UV quantum
fluctuations create correlations between the two regions that are incompatible with a tensor product.

The tensor product structure allows to show that if a global gauge group is unitarily implemented,
then there exist also local implementers, i.e., unitary operators that implement the symmetry on
one of the two algebras, and commute with the other algebra. They share this property with
exponentiated local charge operators, although it was not assumed that the theory possesses a
conserved current. Instead, the local implementers are taken as the LQP counterpart of the latter.

Poincaré symmetry and Modular Theory. Although the focus of this contribution is on the
relation between superselection sectors and global “inner symmetries”, see Sect. 3 and Sect. 4,
we include a paragraph that sheds a new light on spacetime symmetries, and their relations to the
Tomita-Takesaki modular theory [Summers (2006), Borchers (2000)].



In a nutshell: Modular theory assigns to a von Neumann algebra M and a cyclic and separating
vector in a Hilbert space, a unitary one-parameter “modular group” and an anti-unitary “modular
conjugation”. The former acts by automorphisms on M, and the latter maps M to its commutant
M'’. The assignment is intrinsic and enjoys many non-trivial “functorial” algebraic features.

A “wedge” W is a Poincaré transform of the spacetime region Wy := {x € R* : x' > |x9|}. Its
causal complement is denoted by W’. Let A(W) be the von Neumann algebra associated with
quantum fields localized in a wedge, and €2 the vacuum vector. [Bisognano and Wichmann (1976)]
showed that in QFT satisfying the Wightman axioms, the modular group of the pair (A(W), Q) is
the subgroup of the Poincaré group of the Lorentz boosts that preserve the wedge, and the modular
conjugation is a PCT transformation mapping A(W) to A(W’).

Let now M a von Neumann algebra with a cyclic and separating vector Q € H, and U(a) a
unitary one-parameter group on H, leaving Q fixed. Assume the property U(a)MU(a)* ¢ M
for a > 0 (which is characteristic for lightlike translations acting on wedge algebras in QFT).
[Borchers (1992)] showed: If U(a) has a positive generator, then the modular group V(s) and
the modular conjugation of the pair (M, Q) satisfy the same commutation relations with U(a) as
the boosts and the PCT transformation of a two-dimensional QFT with the lightlike translations
(“Borchers’ theorem™). Also the converse is true: The commutation relations imply positivity
of the generator [Wiesbrock (1992)]. [Wiesbrock (1993)] showed a stronger result with two von
Neumann algebras M| c M such that the modular group V (s) of M satisfies V(s)M |V (s)* C M,
for s > 0 (“half-sided modular inclusion”). In this case, it is possible to extract from the two
modular groups of M| and M another unitary one-parameter group U(a) with positive generator
and the commutation relations with V(i) as before.

These results are most remarkable because they provide the entrance gate to extend the “modular
nature” of Lorentz boosts to the Poincaré group. They can be turned around in various ways, and
extended to the Poincaré group in four-dimensional spacetime (4D):

(1) A “Borchers triple” (see, e.g., [Buchholz et al. (2011)]) is a von Neumann algebra M with a
cyclic and separating vector Q € H, a unitary positive-energy representation U of the translation
group on H that leaves Q invariant and acts on M such that the semigroup of translations inside
Wo maps M into itself. In two spacetime dimensions, these data suffice to construct a full-
fledged Poincaré covariant net of local algebras A(W) for all wedge regions. Namely, for the
reference wedge, A(Wp) := M and all other wedge algebras are defined by acting with U. The
conditions of the Borchers triple ensure that the resulting net of wedges is a local net. Algebras of
observables localized in doublecones (= intersections of a left and a right wedge) may be defined by
intersections of the wedge algebras. Since the local net determines all the physics (including, e.g.,
the S-matrix, [Haag (1992)]), one has, in principle, a completely “non-Lagrangian” way to construct
dynamical models “out of symmetries” in two spacetime dimensions. The difficulty is to ensure that
Q is cyclic and separating also for algebras of compactly localized observables. These methods
have been pivotal for the construction of models with factorizing S-matrices [Lechner (2008)].
See [Cadamuro and Lechner (2025)].

In four dimensions, Borchers’ theorem does not suffice to construct the Lorentz boosts in all
directions. One might add further assumptions concerning the rotations. A stronger result, not
even assuming the translations, is:

(i1) The modular groups of a small number of von Neumann algebras with a common cyclic and



invariant vector and in a “suitable modular position” relative to each other [Kdhler and Wies-
brock (2001)] suffice to construct a unitary positive-energy representation U of the Poincaré group.
As before, by identifying the algebra of a reference wedge with one of the given von Neumann
algebras and acting with the Poincaré group, one obtains a net of wedge algebras, and by inter-
sections, one obtains a net of doublecone algebras. This is, in principle, another non-Lagrangian
way to construct dynamical models including their spacetime symmetry by Modular Theory. A
particularly elegant version of this result applying to chiral conformal QFT (see Sect. 4) was given
by [Guido et al. (1998)].

3 Superselection sectors in 4D

The highlight of the analysis of representations of local nets of C* algebras is the theory of
superselection sectors developped by Doplicher, Haag and Roberts [Doplicher et al. (1971, 1974)]
(DHR theory). There is a detailed account in [Buchholz and Fredenhagen (2025)]. It is presented
here rather briefly as a “benchmark” to which the theory of superselection sectors in conformal
QFT in two dimensions (Sect. 4) should be compared.

The authors concentrate on states (considered as “relevant for scattering theory”) that belong to
positive-energy representations of the Poincaré group, and that are indistinguishable from states in
the vacuum sector by measurements in the causal complement of any open spacetime region. Thus,
the inequivalence from the vacuum representation is a global feature, generically called “charge”, to
label superselection sectors = inequivalent representations of the local net. The selection criterium
excludes, say, thermal states in which only number or charge densities are defined but no total
particle number or charge operators.

The authors assume that the local observables satisfy a strengthened version of Locality: Haag
duality. It asserts that the von Neumann algebras generated by observables localized in doublecone
regions O and by observables localized in the causal complement O’, are exactly each others’
commutants. Under this maximality assumption, they discovered that one can define a “tensor
product” among the charged representations. This then turns the latter into the objects of a C*
tensor category, equipped with an intrinsic unitary symmetry in terms of “‘statistics operators” which
relate the tensor product (in the sense of the category) of representations with the opposite tensor
product. The statistics operators in their turn define a representation of the infinite permutation
group. From these data, one can then extract two intrinsic quantum numbers which are invariants
of the superselection sectors: the “statistical dimension” and a sign. The statistical dimension is
necessarily a positive integer (possibly infinite), and the sign is —1 if and only if the representation
of the Poincaré group in the sector has half-integer spin (an algebraic Spin-Statistics theorem).

There is no assumption that the observables arise as the invariants of a larger “field algebra” of
unobservable operators, under the action of an inner symmetry. To the contrary, the analysis was
crowned by the “duality result” of [Doplicher and Roberts (1990)]: The DHR symmetric tensor
category of representations of the local net is isomorphic to the category of representations of a
compact group G, such that the statistical dimension is identified with the natural dimension of
the associated representation of G. Then, one can construct a field algebra as a graded-local net
with the grading given by the Spin-Statistic theorem, such that the observables are the invariants
under an action of G by inner symmetry automorphisms (global gauge group). Thus, the above



scenario with a global symmetry being “responsible” for the existence of superselection sectors
can be deduced, rather than assumed. It is a subtle consequence of locality and covariance of the
observables in states “sufficiently close” to the vacuum state.

The axioms of the DHR approach have to be relaxed in various cases of physical relevance.
Roberts [Roberts (1976)] pointed out that one of the main assumptions, Haag duality in the
vacuum sector, does not hold in theories with spontaneously broken global symmetries. As a
consequence, spontaneously broken symmetries do not give rise to superselection rules. [Buchholz
and Roberts (2014)] addressed the fact that there are “too many” charged sectors in QED, because
of long-range electromagnetic fields accompanying the charges which would produce continuously
many inequivalent sectors for each total electric charge. But these sectors cannot be distinguished
by measurements within future lightcones (which are the only options experimenters have). By
relaxing the notion of sector accordingly, the authors could define more appropriate, coarser
equivalence classes and establish (for sectors of statistical dimension 1) the same sector structure
as in DHR theory.

QFTs with long-range interactions or topological charges admit superselection sectors that do not
satisfy the DHR selection criterium (localization in doublecones). For charged states of QED,
“photon clouds” extending to infinity define inequivalent sectors [Frohlich et al. (1979)]. Their
electric flux cannot be compactly localized but possibly along infinite spacelike cones, while the
restriction of sectors to lightcones can distinguish only their total electric charge [Buchholz (1982)],
see above. Motivated by the search for confinement criteria, [Buchholz and Fredenhagen (1982)]
showed for theories with a mass gap that the intrinsic localization of sectors cannot be worse
than arbitrary spacelike cones. It is rather clear from the DHR analysis, that in such cases, the
reconstruction as in [Doplicher and Roberts (1990)] cannot give rise to a graded-local field net.
Instead, the charged fields can only be localized, relative to the local observables, along spacelike
cones.

The Wightman axiomatics is therefore too restrictive for realistic quantum field theories. A pertur-
bative constructive scheme, in which string-localized charged quantum fields naturally emerge, is
the topic of [Rehren and Schroer (2025)].

4 Superselection sectors in conformal QFT in 2D

In two spacetime dimensions (2D), the causal complement of a doublecone is not connected. This
circumstance is responsible for the fact that in the DHR theory of superselection sectors, the tensor
category of representations of the (chiral or 2D) observables is braided, i.e., it is not equipped with
a unitary representation of the infinite permutation group but of the infinite braid group [Frohlich
and Gabbiani (1990), Fredenhagen et al. (1989)]. Namely, the cohomological argument to show
that the statistics operators (the representers of transpositions) are their own inverses, fails.

Braided tensor categories are much richer than symmetric ones. In particular, a general duality
theorem as in [Doplicher and Roberts (1990)] does not exist, and there is no obvious analogue of a
global gauge group that can a posteriori be made “responsible” for the presence of superselection
sectors, as is the case in 4D. The statistical dimensions of sectors are in general positive but not
integer numbers; they can therefore not be identified with the natural dimension of a representation



of some compact group (or Hopf algebra) —it is rather the square root of the Jones index of a subfactor
that characterizes the failure of Haag duality in the sector under consideration [Longo (1989)]. Also,
the sign of the statistics (distinguishing fermions from bosons in 4D) may be rather a complex phase.

A natural question arises: are there other “reconstructions” of an algebra of fields that create
the superselection sectors of the given observables, and what are the algebraic properties of the
“charged fields”? The question is void, though, for massive quantum field theories in which the
split property (see Sect. 2) holds for wedge regions: [Miiger (1998)] has shown that such theories
do not have any DHR sectors besides the vacuum sector.

On the other hand, a conformal quantum field theory (CQFT) neither has a mass gap, nor does the
split property hold for wedge regions. The latter is because two wedges at a finite distance can
be mapped by a conformal transformation to a pair of doublecones touching each other in a point.
Indeed, large classes of models of CQFT in 2D have a rich superselection structure.

We therefore limit the subsequent discussion to the case of CQFT in 2D.

Geometric preliminaries. Conformal quantum field theory is QFT in which the Poincaré group
is extended to the conformal group. In two spacetime dimensions, due to the factorization of the
metric ds? = dt* — dx* = d(t — x)d(t + x), the conformal group is infinite-dimensional. It acts
geometrically on a “conformal completion” of the spacetime. The latter can be visualized with the
help of the Cayley map (the inverse of the stereographic projection)

1+ius 0.

Uy =TExXH 74 =

which maps the left and right chiral lightrays to the sphere S' ¢ C. The completion is the addition of
the points z. = —1. Thus, the conformal spacetime is S! xS!. The 2D Einstein universe is a covering
space of S x S! respecting the spacelike periodicity (64, 6_) = (64 +2m,0_ — 27). The conformal
group is then (a covering of) Diff, (S') x Diff, (S'), where Diff,(S!) are the orientation-preserving
diffeomorphisms of the circle.

The conformal completion “at infinity” (where opposite wedges touch each other) is the reason
why the split property for wedges fails, as stated above.

Conformal quantum fields. Before we turn to the DHR superselection theory of CQFT in two
dimensions, we explain that conformal symmetry is a very restrictive property for the structure of
conformal fields.

The challenge for conformal quantum field theory (CQFT) in 2D is to understand how conformal
symmetry can be implemented as an action on algebras of local quantum fields on a Hilbert
space. A first, and most prominent in the sequel, indicator for the individual fields is the “scaling
dimension”, that characterizes their transformation law under the scale transformations of the
(embedded) Minkowski spacetime.

The remarkable fact about CQFT is the existence of “chiral fields”, depending on only one of the
lightcone coordinates ¢ + x. The name comes from the left- or right-handed massless free Dirac
fields in 2D which are chiral in the present sense. Beyond this example, every conserved symmetric
and traceless tensor field of rank r (e.g., conserved currents of rank 1 or the stress-energy tensor of

8



rank 2) has only two linearly independent components, and these provide a pair of chiral fields if and
only its scaling dimension equals its rank r. Thus, chiral fields abound in conformal field theories
whenever there are symmetries associated with conserved tensor fields of canonical dimension.

When the Hamiltonian is positive, correlation functions are boundary values of analytic functions
with ordered imaginary parts of the time variables. Under the Cayley map, this ordering becomes
“radial ordering” in the complex variables z.. In the complex domain, z; and z_ are independent
complex variables, and chiral fields are holomorphic functions of either z, or z_. At the “Euclidean
points” with real x and imaginary time (where the metric becomes Euclidean), one has u_ = —u,
and (after the Cayley map) z- = z;. This justifies the popular terminology “holomorphic” and
“anti-holomorphic” [di Francesco et al. (1997)].

In the “Euclidean” formulation, conformal field theory has a non-relativistic interpretation as critical
equilibrium points of systems of Statistical Mechanics with infinitely many degrees of freedom in
two spatial dimensions. Namely, conformal invariance emerges at critical points by the loss of a
finite correlation length to set a scale.

Most of the structures of CQFT “in real time” (Lorentzian metric) can be “translated” to Euclidean
CFT. However, Euclidean CFT is much less restrictive than CQFT which needs a Hilbert space,
and not every Euclidean model will have correlation functions obeying the Osterwalder-Schrader
positivity conditions, so as to be the “Wick rotation” of a relativistic QFT. In particular, many of
the classification results for symmetries and representations of CQFT will not apply, or have to be
extended to Euclidean CFT.

Models of Euclidean CFT exhibit a mathematically far richer structure, including rational models

with “forbidden” central charges (see below) like the Yang-Lee model with ¢ = —25—2, or logarithmic
CFT models with not completely decomposable fusion structure (appearing, e.g., in percolating

systems), that have no counterpart in CQFT.

Classifications and superselection structure. It was known by [Liischer and Mack (1976)] that
a conserved symmetric and traceless stress-energy tensor in two spacetime dimensions, without
any further model input, splits into two chiral components, whose commutation relations are a
position-space version of (two copies of) the Virasoro algebra. Conversely, the Virasoro algebra
is a mode expansion of the chiral stress-energy tensor. The Virasoro algebra is the unique central
extension of the Lie algebra of Diff,(S!), where the eigenvalue of the central extension is called
the “central charge” c¢. This parameter is the only model-dependent quantum number of conformal
stress-energy tensors.

It is worth noting here, that the Virasoro generators L, with |n| < 1 including the “conformal
Hamiltonian” L serve a double role: as the generators of the “unbroken” Mdbius subgroup of
Diff, (S 1), under which the vacuum vector is invariant, and as field observables (integrals over the
chiral stress-energy tensor). This is the reason why the vacuum state cannot be invariant under the
infinite-dimensional conformal group: the stress-energy tensor would have to be zero.

A breakthrough in CQFT in two spacetime dimensions was made by [Friedan et al. (1984)]: There
are many inequivalent positive-energy representations of the Virasoro algebra, characterized by
their “lowest weight” & (= lowest eigenvalue of L() which is interpreted as the scaling dimension
of an associated quantum field. The surprising discovery (already anticipated in [Liischer and
Mack (1976)]) is that in the range ¢ < 1, the possible values of ¢ and 4 are discretely quantized
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by Hilbert space positivity. (Later, many other nontrivial classification results could be achieved
along similar lines.)

The kinematics of chiral fields is particularly simple and often allows to determine their correlation
functions and commutation relations. The “more interesting” fields of CQFT are non-chiral local
fields that can coexist with the chiral ones. Among the non-chiral fields there must be “primary”
ones with a pair (h4, h_) of chiral scaling dimensions so that &, — h, is the spin. They create
states from the vacuum which belong to representations of the chiral Virasoro algebras with lowest
weights /i, and h_, respectively. Conversely, the a priori classification of admissible values of A
is taken as signal for the existence of fields with these quantum numbers.

A second breakthrough discovery was made by [Belavin et al. (1984)]: the fulfilment of the
quantization conditions in [Friedan et al. (1984)] leads to Ward identities for the correlation
functions of putative primary fields. These are linear differential equations which can be used to
actually compute the correlation functions (up to a finite number of undetermined coefficients), and
to derive “fusion rules” for the operator product expansion of these fields. Although obtained in a
completely different way, these result are in a certain sense comparable to the reconstruction of a
field algebra [Doplicher and Roberts (1990)] out of the representation theory of the observables (see
Sect. 3), with the fusion rules corresponding to the tensor product of the category of representations.
The picture was completed by constructive proofs [Goddard et al. (1986)] that all admissible values
of (¢ < 1, h) can indeed be realized.

For a model-independent treatment, we turn to the DHR theory of superselection sectors. As said,
the theory of Sect. 3 can be adapted to CQFT, with the chiral stress-energy tensors (the local version
of the Virasoro algebra) or other chiral fields as algebras of observables. The main difference as
compared to 4D is that the tensor category of DHR representations is braided. As a consequence,
a duality theorem as in [Doplicher and Roberts (1990)] does not exist.

The absence of a group underlying the superselection structure of CQFT in 2D does not exclude
that CQFT models B can have actions of compact inner symmetry groups G. In this case, one may
descend to the invariant subalgebra A = B¢ (“orbifold model”). Then, as in 4D, the centre of U(G)
splits the vacuum representation of B into superselection sectors of A in correspondence with the
representations of the group. But due to the geometry of the 2D conformal spacetime, there arise
on top so-called “twisted sectors”. These are restrictions of solitonic sectors of B, differing at the
“left” and “right” infinity of spacetime by the action of group elements g € G. Because of the
twisted representations, the resulting tensor category of sectors of A is no longer isomorphic to the
tensor category of representations of G, but to the tensor category of the “Drinfel’d double” of G,
which is a Hopf algebra.

However, compact Hopf algebras still fall short as candidates for a symmetry notion, that could
be made responsible for the existence of superselection sectors in general. In particular, they
cannot account for non-integer statistical dimensions, that abound in the multitude of known
CQFT models. Instead, the fusion rules of minimal models suggest that quantum groups with the
deformation parameter g a root of unity may play a role. There is, however, for complex values of
q a conflict between their #-structure and their actions on C* algebras.

The notion of Q-system [Longo and Rehren (1995)] (also known as Frobenius algebra) allows to
characterize extensions of a local net A by local (or non-local) nets B which contain A as fixed
points of a global conditional expectation — an abstract generalization of averages over compact
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group actions. A Q-system is a set of data within the DHR tensor category of A, which determines
the vacuum Hilbert space of the extension B, its “field content” in an algebraic sense, as well as
the multiplication law of the new generators. Q-systems can be classified in terms of the (given)
tensor category, but there is no unique or maximal extension like the field algebra reconstructed
in [Doplicher and Roberts (1990)]. The method can be used both for “chiral extensions” where
A and B are chiral theories, or for two-dimensional extensions B of subtheories A = A, ® A_
which are tensor products of left and right chiral subtheories. This result “in principle’” answers the
quest for “generalized symmetries” that can be made responsible for the existence of superselection
sectors. However, the resulting notion of “symmetry” is very far from Hopf algebras or quantum
groups, and essentially resists a classification.

The fact that the tensor product of sectors is only braided-symmetric means that putative fields of
a field algebra that would create these sectors from the vacuum, are neither local nor anti-local,
but “anyonic” (with commutation relations controlled by complex phases or matrices, rather than
signs). A satisfactory general axiomatization of such fields is hardly possible beyond the mere
description of the structure of known models, see [Moore and Seiberg (1989)] or [Fredenhagen et
al. (1992)]. This is another instance where the traditional Wightman axiomatization falls short.

Modular tensor categories are braided tensor categories with a maximal non-degeneracy of the
braiding, that allows to distinguish sectors only in terms of their braiding with other sectors.
[Kawahigashi et al. (2001)] discovered that the superselection category of a chiral CQFT is in fact
modular, if the failure of Haag duality for disconnected chiral intervals gives rise to a subfactor of
finite Jones index (and a strong additivity property holds). Modular tensor categories share a new
kind of symmetry, known before from models [Cardy (1986)], namely a unitary representation of the
noncompact discrete group SL(2,7Z)/Z; on the fusion algebra, which in some cases can be realized
as an action on the (complex) temperature parameter of thermal partition functions associated
with the sectors [Cappelli et al. (1987)]. This new symmetry is also a necessary condition for the
validity of certain glueing prescriptions in the conformal wordsheet approach to (super-) String
theory. By [Kawahigashi et al. (2001)], it is automatic if the mentioned structural conditions are
satisfied.

The study of modular tensor categories revealed many highly non-trivial mathematical structures
[Fuchs et al. (2003), Fuchs et al. (2007)]. These structures could (not least) be identified [Bischoff
et al. (2016)] with constraints on the possibilities of “merging” one CQFT algebra with another,
i.e., the question whether and how the two algebras of their local fields can be defined on a common
Hilbert space where they are local relative to each other, and on imposing boundary conditions on
a given CQFT.

This is not the place to go into further details, or to relate all the many other branches of CQFT.
Suffice it to state that there exist not only large classes of “elementary” models like the minimal
models of [Belavin et al. (1984), Goddard et al. (1986)] and the non-Abelian current algebra
models of [Knizhnik and Zamolodchikov (1984)], but there is also a large tool box of methods to
construct new theories from given ones, including the coset construction [Goddard et al. (1986)],
the lattice construction [Buchholz et al. (1988), Dong and Xu (2006)], and “braided products” of
models [Bischoff et al. (2016)]. These models can be used to explore further general features of
CQFT.
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