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Abstract

Massive QED, in contrast with its massless counterpart, possesses two
conserved charges; one is a screened (vanishing) Maxwell charge which is
directly associated with the massive vector mesons through the identically
conserved Maxwell current, while the presence of a particle-antiparticle
counting charge depends on the matter . A somewhat peculiar situation
arises for couplings of Hermitian matter �elds to massive vector potentials;
in that case the only current is the screened Maxwell current and the
coupling disappears in the massless limit.

In case of sel�nteracting massive vector mesons the situation becomes
even more peculiar in that the usually renormalizability guaranteeing va-
lidity of the �rst order power-counting criterion breaks down in second
order and requires the compensatory presence of additional Hermitian
H-�elds.

Some aspect of these observation have already been noticed in the
BRST gauge theoretic formulation, but here we use a new setting based
on string-local vector mesons which is required by Hilbert space positiv-
ity ("o¤-shell unitarity"). This new formulation explains why spontaneous
symmetry breaking cannot occur in the presence of higher spin s � 1 �elds.
The coupling to H-�elds induces Mexican hat like sel�nteractions; they
are not imposed and bear no relation with spontaneous symmetry break-
ing; they are rather consequences of the foundational causal localization
properties realized in a Hilbert space setting. In case of sel�nteracting
massive vectormesons their presence is required in order to maintain the
�rst order power-counting restriction of renormalizability also in second
order. The presentation of the new Hilbert space setting for vector mesons
which replaces gauge theory and extends on-shell unitarity to its o¤-shell
counterpart is the main motivation for this work.
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The new Hilbert space setting also shows that the second order Lie-
algebra structure of sel�nteracting vector mesons is a consequence of the
principles of QFT and promises a deeper understanding of the origin of
con�nement.

1 Introduction

The theoretical interest in massive vector mesons can be traced back to Schwinger�s
conjecture [1] which states that "massive QED" leads to "charge screening". The
analogy to the quantum mechanical theory of superconductivity, where the long
range vector potentials of electromagnetism become short ranged, lends plausi-
bility to Schwinger�s quantum �eld theoretical conjecture. This idea was made
precise in a theorem by Swieca [2] [3] who showed that the Maxwell current of
a massive vector meson, independent of whether it interacts with complex or
Hermitian matter �elds (in the sequel referred to a H-matter), always leads to
a vanishing charge of the identically conserved Maxwell current.
The proof uses analytic properties of matrix elements (formfactors) of identi-

cally conserved currents associated with a �eld strength tensor of a massive vec-
tor meson. We will refer to this phenomenon as the "Schwinger-Swieca screen-
ing". The global particle-antiparticle number conservation remains una¤ected
by the vanishing of the Maxwell charge. In case of a coupling to H-matter (the
abelian Higgs model) there is only the screened Maxwell charge.
Massive QED does not require the presence ofH-particles and massive vector

mesons do not owe their mass to spontaneous symmetry breaking (SSB). As
will be shown in the present work, the mass of vector mesons bears no intrinsic
(physically meaningful) relation with a spontaneous symmetry breaking "Higgs
mechanism". As in the case of quantum mechanical superconductivity, where
long range vector potentials become short ranged without adding new degrees of
freedom, massive QED does not require the presence of additional H-matter.
The situation changes in the presence of selfcouplings between massive vec-

tor mesons as will be explained in the sequel. A necessary restriction on �rst
order couplings from the requirement of renormalizability is the power-counting
restriction for the short distance scale dimension of the �rst order interaction
density dintsd � 4: In all known renormalizable models, except those involving
sel�nteracting massive vector mesons, this bound secures the preservation of
renormalizability to all orders. This "golden rule" of renormalization theory is
satis�ed in �rst order sel�nteractions between massive vector mesons, but is lost
in second order; although there exists a unique �rst order gauge invariant den-
sity for massive sel�nteracting vectormesons with dintsd = 4; the implementation
of second order gauge invariance for the S-matrix induces terms which violate
the power-counting restriction.
It turns out that this second order violation can only be prevented by a

compensation in which an additional �eld couples to the vector mesons in com-
pliance with the �rst order power-counting restriction but a violation in second
order. This coupling must be such that the contributions from both second or-
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der terms cancel. The charge neutrality of vector mesons requires the new �elds
to be Hermitian; it turns out that the compensation can only be achieved with
scalar H-�elds. Such a cancellation is reminiscent of short distance improve-
ments from compensations between di¤erent spin components in supersymmet-
ric interactions, but it is well-known that they did not su¢ ce in order to remain
within the power-counting restriction.
However for the case at hand the compensation works; A� selfcouplings and

A-H coupling collaborate in such a way that renormalizability is preserved in
second order. This scenario was �rst elaborated in the setting of BRST gauge
theory by Scharf [6] and collaborators [7], for a more recent account see also
[8]. They start from the perturbative formal representation of the S-matrix1 in
terms of the adiabatic limit of time-ordered products of the �rst order interaction
density and impose BRST gauge invariance in the form sS = 0; where s denotes
the nilpotent BRST s-operation.
This turns out to be very restrictive; in case of only one H �elds all couplings

are determined. As expected, in the limit of zero mass vector mesons the H
decouples from the A� and becomes a free �eld, whereas the massless sel�nter-
acting vectormesons take the form of a (massless) Yang-Mills (YM) interaction.
Besides the BRST gauge formalism, needed for the de�nition of the gauge

invariant S-matrix, no other property has been used to derive this result. In
particular there is no reference to SSB which starts with the Mexican hat poten-
tial, whereas in the present setting it is induced from the imposition of second
order gauge invariance.
What is meant by "induction" is best explained in the simpler abelian Higgs

model. The starting point of any perturbation theory is a set of interaction-
de�ning free �elds and a �rst order coupling strength; in the present case these
are 3 parameters, namely the masses of the vector meson and the H; and the
�rst �rst order coupling strength in gA�A

�H: Among the terms, which the
imposition of gauge invariance (BRST s-invariance) on the S-matrix induces in
second order, one �nds the tri- and quadri-linear terms which can be written
in the form of a Mexican hat potential which only depends on g and ratios of
the two masses [6]. This kind of induction, which generates new interactions
without enlarging the number of coupling parameters, is a consequence of gauge
invariance of S:
The construction of the (abelian) Higgs model in terms of a SSB prescription

is very di¤erent. It starts with the Lagrangian of two-parametric scalar QED
and breaks gauge invariance in terms of a shift in �eld space. A subsequent
gauge transformation converts the resulting expression, apart from the unphys-
ical parametrization, into the same expression as that obtained by imposing
gauge invariance. An easy test, which shows that the shift prescription has no
relation to a physical SSB, is to pass to the limit of a vanishing shift parame-
ter. In a genuine SSB the model would return to its unbroken form which was
2-parametric scalar QED. This does not happen, the physically meaningless ap-

1The physical S-matrix is the adiabatic limit of the Bogoliubov genertaing operator S-
functional.
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plication of a gauge transformation after breaking of gauge invariance prevents
this return.
A more profound argument results from the observation that the Maxwell

current of the Higgs model, as any Maxwell current of a massive vectormeson,
leads to a screened charge Q = 0 whereas the conserved current of a genuine
SSB model implies Q = 1: A conserved current whose "would be" symmetry-
generating charge diverges is actually the de�nition of a SSB, whereas the shift
in �eld space is a device which prepares such a current.
It is well known that such situations can be generated from quartic in-

teractions between scalar particles which are invariant under the action of
compact groups. The shift in �eld space is a convenient tool to construct a
�rst order interaction whose renormalized perturbation theory preserves cur-
rent conservation but leads to the divergence of some of the charges. It does
not create masses but rather prepares the kind of special interaction between
massive and massless ("Goldstone bosons") free �elds which maintains current
conservation but causes the long distance divergence of some charges.
This construction is limited to interactions to interactions involving low spins

s < 1: The coupling of vectormesons to scalar �elds prevent the latter from
causing a SSB. The usual argument is that the scalar particles become gauge-
dependent and local gauge invariance is not really a physical symmetry which
can be broken. This argument involves formal steps with unclear physical con-
tent; gauge "symmetries" are not physical symmetries and it is not clear what
one is breaking.
A less formal more physical argument is to look directly at the gauge invari-

ant conserved current which the coupling to the vectormeson has transformed
into an identically conserved Maxwell current. The charge of Maxwell cur-
rents of massive vector mesons vanish as a consequence of the Schwinger-Swieca
charge screening; this is a gauge-invariant phenomenon (it involves only gauge
invariant observables). A screened charge Q = 0 is very di¤erent from a SSB
charge Q = 1; between the two is the nontrivial charge Q < 1 which is the
generator of a symmetry. As soon as higher spin �elds couple to scalar �elds,
the latter are prevented to undergo SSB; the scalar particles have to follow the
more restrictive nature of higher spin interactions places the vector mesons into
the driver�s seat. In this way those scalar �elds which couple to s = 1 �elds are
prevented from transforming into their SSB mode.
In the string-local �eld (SLF) Hilbert spaces setting, whose presentation is

the main purpose of the present paper, the interaction with string-local vector
mesons converts the scalar �elds into interacting string-local �elds. In this set-
ting there simply no gauge symmetry which could undergo spontaneous break-
ing; rather all point-local �elds which couple to string-local vector potentials
loose their point-local nature and become string-local. Such �elds are not lo-
cal observables. But in contrast to their gauge theoretic counterparts they are
physical since they act in a Hilbert space.
The Higgs mechanism leads to the correct coupling of H with massive vector

mesons but it fails to reveal the raison d�être of the H-�eld which has nothing to
do with symmetry breaking and mass generation. The vector mesons in massive
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QED does not need the presence of a mass-generating H; it is a renormalizable
theory by itself. As pointed out before, the situation changes radically in the
presence of sel�nteracting massive vector mesons. In that case the theoretical
reason for its existence is the second order preservation of renormalization. As
a result of the connection between renormalizability and causal localizability,
the H plays a fundamental role for the consistency of the W�; Z interactions in
the Standard Model.
The preservation of second order reormalizability with the help of an H-

particle is vaguely reminiscent of the introduction of vector mesons to convert
the �rst order nonrenormalizable 4-Fermi interaction into a renormalizable cou-
pling, except that a second order compensation mechanism is much more sophis-
ticated. The Higgs mechanism leads to the correct A-H interaction including
the H sel�nteractions, but it fails to provide the correct relation with the prin-
ciples of QFT which bear no connection with any form of spontaneous mass
generation. The fundamental nature of the LHC discovery is in no way a¤ected
by this new role assigned to the H; but in particle theory it is important to
distinguish between prescriptions for construction of models and their intrinsic
properties.
It is an interesting question why this was not seen in the standard BRST

formulation in terms of Feynman rules. The answer is that in an o¤-shell gauge
formalism one usually presents the perturbative rules, but one does not focus
on the explicit construction of a gauge-invariant on-shell unitary S-matrix. In
[6] [7] the BRST formalism was especially adjusted to that problem by what the
authors called the "causal gauge invariance" (CGI) setting which is based on
the Epstein-Glaser operator formulation. This leads to a rather clear distinction
between quasiclassical pictures of symmetry breaking and gauge-induced H-
sel�nteractions.
This CGI setting permits a direct perturbative construction of a unitary

gauge invariant S-matrix for a gA �AH coupling of a massive vector meson with
a Hermitian �eld; in this way it highlights the second order induction mechanism
which leads to the Mexican hat H sel�nteraction. It bears no relation with
generating masses of vector mesons; whereas massive QED does not need the
presence of H �elds in order to generate the mass of the vector meson, their
presence is necessary in all interaction involving sel�nteracting massive vector
mesons and the CGI formulation reveals the correct reasons.
Interactions in QFT cannot generate masses in any material sense; masses

of interacting-de�ning elementary �elds (i.e. those in terms of which the �rst
order interaction is de�ned) must be put in, and higher order renormalization
theory preserves them. What one expects from the theory is that the mass of
possible bound states, which correspond to composites of the elementary �elds,
can be computed within the theory; but this does not seem to be possible within
a perturbative setting.
The main concern in the present work is to replace the "ghostly" gauge

theory by a new ghost-free Hilbert space formulation of interactions for s = 1
�elds.
Gauge theory is not a substitute of a Hilbert space formulation, but it is
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a rather successful placeholder. The awareness about its makeshift status was
much stronger in the past than it is now. There were several valiant attempts
to avoid the use of inde�nite metric by Mandelstam [9] and also DeWitt [10];
their failure also revealed that a description which is consistent with positivity
("o¤-shell unitarity") requires major new conceptual investments beyond what
was known at that time.
As a result of impressive observational successes of gauge theory in its ap-

plications to the Standard Model, this problem moved gradually into the back-
ground. Physicists of the older generation sometimes express their surprise that
the conceptual incomplete gauge theory works much better than expected; oc-
casionally they think of this success in terms of as a results of unmerited luck
(I thank Raymond Stora for sharing his views on this problem).
The new Hilbert space setting reveals what can be correctly described within

the perturbative gauge theory setting and what problems remain outside its
physical range. The vacuum sector, generated by the application of gauge in-
variant observables to the vacuum state, and the gauge invariant S-matrix in
the presence of a mass gap are within its physical range, whereas the construc-
tion of causally localized �elds and their asymptotically related particles states
remain outside.
This is a serious limitation in particular in zero mass limits when the con-

struction of the gauge invariant S-matrix fails and one has to take recourse
to calculational recipes without understanding their connection with the foun-
dational spacetime localization properties. Such problems related to the long-
distance behavior of �elds (infrared problems in momentum space) are outside
the range of gauge theory.
Local gauge symmetry is a well-de�ned concept in classical �eld theory, but

it clashes with the Hilbert space positivity of quantum theory. Instead of rep-
resenting a physical symmetry, it is a formal device for extracting a physical
subtheory. This is a consequence of the fact that locality in a Krein space, in
contrast to Einstein causality in Hilbert space, has only a formal but no phys-
ical motivation. Its become particularly annoying in the massless limit, when
scattering amplitudes su¤er from infrared divergencies and one is forced to de-
scribe collisions in terms of momentum space prescriptions instead of spacetime
localization properties of physical �elds. Such problems can only be solved in
a Hilbert space setting; the operators in QFT which corresponds to long range
(Coulomb) potentials in quantum mechanics are string-local �elds [27].
The new SLF theory should explain why sel�nteracting vector mesons lead

to a Lie algebra structure with only one coupling strength. In the BRST gauge
setting this arises as a consistency condition of the formalism [6]. This is not
surprising since the BRST formalism is the result of an adaptation of classical
gauge theory to the exigencies of QFT 2 . The physically more relevant question
is whether the Lie algebra structure can be derived solely from the causal lo-
calization principles of QFT in a Hilbert space setting without referring to the
classical mathematics of �bre bundles. In section 6 it will be shown that this is

2 I thank Raymond Stora for his critical remarks about such derivations.
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indeed the case.
A somewhat surprising result is that the use of covariant string-local poten-

tials permits a simple and amusing description of topological e¤ects which are
present in the zero mass limit as the breakdown of Haag duality and the closely
related Aharonov-Bohm e¤ect (section 3).
The interest in string-local �elds, as they are used in the present work,

started with the solution of an old problem which goes back to Wigner. In
his famous 1939 paper, which contains the classi�cation of all positive energy
representations of the Poincaré group, Wigner found besides the massive and
the zero mass �nite helicity representation a third massless representation class
which he referred to as "in�nite spin". Whereas there was no problem to asso-
ciate point-local covariant �elds with the �rst two classes, the problem of a �eld
theoretic description of the third class remained for a long time open. In [12] it
was shown that this class cannot be described in terms of point-local Wightman
�elds. Using methods of modular localization3 Brunetti, Guido and Longo [11]
showed that these representation permit causal localization in arbitrary narrow
space-like cone regions in Minkowski space (for historical remarks on modular
localization see [22] [21]).
This suggested that it should be possible to associate covariant �elds local-

ized on space-like semi-in�nite strings (the "core" of arbitrary narrow space-like
cones) with such a situation; such �elds were then explicitly constructed in [13].
In that work arguments were given which suggested that such models do not
admit composite point-local �elds; they were signi�cantly extended in [14]. An
elegant proof of their absence was recently given in [20].
In [13] also string-local �elds for the massive and zero mass �nite helicity

Wigner representations were constructed in the hope that they could be useful
in perturbation theory and may lead to a ghost-free Hilbert space formulation
of s = 1 interactions which replaces gauge theory. These ideas were further
pursued in [15] [16] [17] [21] [18] [19]. The present work is a continuation of
these ideas in the context of explicit second order calculations in the presence of
string-local massive vector potentials. The presentation of the general formalism
in the presence of string-crossings will be contained a forthcoming paper by Jens
Mund; further details about applications to interacting string-local �elds will
be addressed in joint work by Mund and the present author.
It had been known for a long time [5] [26] that within the setting of algebraic

QFT the �eld-particle relation in the presence of a mass gap can always be
described in terms of operators localized in arbitrary narrow space-like cones
(whose cores are semi-in�nite space-like strings). It is interesting to note that
the ideas which led to these results arose from a previous publication of the
authors in which they removed a remaining loophole in the proof of Swieca�s
screening theorem [25].
The approach presented in this paper may be seen as an adaptation of those

structural results to the requirements of renormalized perturbation theory in

3Modular localization is an intrinsic formulation of causal localization which does to rely
on the use of particular �eld "coordinatizations".
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terms of string-local �elds.
This work is organized as follows.
The next section presents conceptual aspects of the Hilbert space setting

and compares them with the formalism of operator gauge theory.
The third section contains a simple but somewhat surprising application of

free string-local �elds.
The problem of their role in interactions is taken up in section 4.
Section 5 presents second order perturbative results which includes in partic-

ular the interaction of massive vector mesons with Hermitian matter (the Higgs
model).
In section 6 it is shown that the Lie-algebra structure of sel�nteracting

vector-mesons is a consequence of causal localization in Hilbert space.
The concluding remarks present an outlook about what can be expected from

this new setting concerning unsolved problems of infrared divergencies such as
"infraparticles" in QED and con�nement in QCD.

2 Formal analogies and conceptual di¤erences
between CGI and SSB

For the convenience of the reader we start with a compilation of formulas as
they are used in the CGI formulation of BRST gauge theory for the construction
of the gauge invariant S-matrix [6].

sAK� = @�u
K ; s�K = uK ; sûK = �(@AK +m2�K) (1)

sB := i[Q;B]; Q =

Z
d3x(@�AK� +m

2�)
 !
@ 0u

Here the superscript K refers to the Krein space in which these operators are
realized, Q is the so-called ghost charge whose properties ensure the nilpotency
(s2 = 0) of the BRS s-operation. The AK� is a massive vector meson in the
Feynman gauge and � is a free scalar �eld of the same mass but with a two-point
function of opposite sign (a kind of negative metric Stückelberg �eld); these two
�elds carry the inde�nite metric which requires to replace the Hilbert space
by a Krein space (iteratively created by iterative application of the operators
to the vacuum). The "ghosts" u; û are free "scalar fermions" whose presence is
necessary in order to recover the vacuum sector of the local observables acting in
an Hilbert space and the unitary S-matrix in the form of s-invariant operators.
These rules in terms of free �elds su¢ ces for the construction of the gauge-

invariant S-matrix; the extension to (gauge-variant) interacting �elds follows
similar formal rules as those for interacting �elds with lower spin s < 1. The
Q-charge and the s participate in the perturbation theory of interacting �elds.
The BRST formalism is a pure perturbative tool; structural properties (TCP,

spin&statistics,..) as well as the physical causal locality properties of which
they are consequences require the Hilbert space positivity. The tools one needs
for nonperturbative constructions and the derivation of structural theorems
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(Schwartz inequality,..) are not available in a Krein space setting. Quantum
gauge theory is limited to the combinatorical manipulations of perturbation
theory.
It should not come as a surprise that the ghost formalism (the s-cohomology),

unlike the later SLF Hilbert space formulation (di¤erential forms on the d =
1+2 unit de Sitter space of space-like directions), has no relation with spacetime.
The BRST rules were not derived from localization principles of QFT but they
were found in the course of trying to recover unitarity of the S-matrix ("on-shell
unitarity") in a Krein space setting. In order to arrive at the BRST operational
formulation it needed several improvements of the original unitarity arguments
of �t Hooft-Veltman (Faddeev-Poppov, Slavnov) in order to reach the formally
elegant ghost formalism of Becchi-Rouet-Stora and Tyutin.
Although the use of these prescriptions turned out to be essential for the

success of the Standard Model, their conceptual relation with the foundational
principles remained unclear. QFT is the realization of causal localization in a
Hilbert space; without positivity ("unitarity") there is no probability interpre-
tation and hence the relation with quantum theories foundational property is
lost in gauge theory; it can only be recovered in special (gauge-invariant) situ-
ations. It needs to be emphasized that classical gauge theory is not a¤ected by
these shortcomings since the foundational Hilbert space structure is character-
istic of quantum theory. Hence it is not surprising that the SLF Hilbert space
description is outside Lagrangian quantization (but not outside perturbation
theory).
As already mentioned in the introduction, massless s � 1 covariant ten-

sor potentials are necessarily string-local. Massive point-like potentials exist,
but as a result of their short distance dimension dssd(point) = s + 1 their in-
teractions are nonrenormalizable since interactions formed with them violate
the power-counting limit dintsd � 4: The fact that the smallest possible short
distance dimension of string-local �elds is dssd(string) = 1 suggests that there
may be renormalizable string-local interactions. But the power-counting limit
is not the only restriction, physics demands the existence of su¢ ciently many
local observables generated by point-local �elds and the preservation of string-
localization. Furthermore the S-matrix in models in with a mass gap should be
independent of the string directions e; although �elds may be string-local, the
particles which they interpolate remain those string-independent objects whose
wave-function spaces were classi�ed by Wigner. In the following we will show
how these requirements can be met for massive vector mesons.
We start from a massive vector potential (the Proca �eld) and de�ne its

associated string-local potential in terms of the Proca �eld strength

F��(x) = @�A
P
� (x)� @�AP� (x); A�(x; e) =

Z 1

0

F��(x+ �e)e
�d�; (2)

�(x; e) =

Z 1

0

AP� (x+ �e)e
�d�; e2 = �1

Whereas the short distance dimension of the Proca potential and its �eld strength
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is dPsd = 2, the string-local vector potential and its scalar "escort" � have dsd = 1:
We could of course change the "population density" of degrees of freedom on the
semi-in�nite line from p(�) � 1 (as above) to any other smooth function which
approaches 1 asymptotically without leaving the local equivalence (Borchers)
class; but if we want in addition to uphold the linear relation which follows
from (2),

A�(x; e) = AP� (x) + @��(x; e) (3)

we must use the same p(�): Formally this corresponds to the possibility of gauge
changes in (1); p(�) changes preserve relative localization and a fortiori do not
change the particle content in the presence of interactions.
In contrast to the "virtual" strings of anyons/plektons [23] which, similar

to cuts in complex function theory, may be displaced as long as crossings are
prevented, the strings of string-local �elds are "real". Needless to mention that
the string-local potentials are the only vector potentials which permit a m! 0
limit.
For the following it turns out to be convenient to express (2) as linear rela-

tions between v-intertwiners

AP� (x) =
1

(2�)3=2

Z
(eipx

X
s3=�1;0;1

v(p)�;s3a
�(p; s3) + h:c:) (4)

vA�;s3(p; e) = v�;s3(p) + ip�v
�
s3 ; v

�
s3(p) =

ivs3 � e
p � e+ i"

where the second line is the relation (3) rewritten as a linear relation between
the three intertwiners. Here v refers to the intertwiner between the 3-component
unitaryWigner representation and the covariant vector-components of the Proca
potential. Using the di¤erential form calculus on the d=1+2 de Sitter space of
space-like directions, we de�ne exact 1- and 2-forms

u = de� = @e��de
�; vus3 = i(

v�;s3
p � e �

v � e
(p � e)2 p�)de

� (5)

û = de(Aade
�) =

Z 1

0

d�F��(x+ �e)de
� ^ de�

vû = p�
v�;s3
p � e de

� ^ de�

They are �eld-valued di¤erential forms with dsd = 1 which in a certain sense
represent the Hilbert space counterpart of the cohomological BRST ghost for-
malism in Krein space. To maintain the simplicity of the covariant formalism,
the di¤erential forms on the unit d = 1+2 de Sitter space are viewed as restric-
tions of the 4-dimensional directional e-formalism. The notation u; û suggests
that they may play the role of the di¤erential form analogue of the ghost in the
BRST formalism.
These �eld-valued di¤erential forms are natural extensions of string-local

�elds; together with A�(x; e) and �(x; e) they are the only covariant string-local
members of the linear part of the local equivalence class of the free Proca �eld
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with dsd = 1. Their ghost counterparts play are important in the o¤-shell BRST
formalism, but (apart from the appearance of u(K)-terms in the Q� formalism)
their use is limited to the construction of the (CGI or SLF) S-matrix; they seem
to disappear in the formula for S.
The 2-point Wightman functions of string-local objects can be calculated

from their intertwiners or directly in terms of the line integral representation of
the string-local A;�: �elds. One obtains4

hA�(x; e)A�(x0; e0)i =
1

(2�)3

Z
e�i(x�x

0)pMA
��(p)

d3p

2p0
(6)

MA
��0(p; e; e

0) = �g��0 �
p�p�0(e � e0)

(p � e� i")(p � e0 + i") +
p�e�0

(p � e� i") +
p�e

0
�0

(p � e0 + i")

and similar expressions for M� and mixed vacuum expectations MA;�
� : The

occurrence of the latter (which vanish in the gauge setting) is the prize to
pay for maintaining o¤-shell positivity. Only point-like (generally composite)
local observables and the S-matrix are independent of e; but their perturbative
computation requires the use of string-local �elds. The p � e � i" terms in the
denominator are the momentum space expressions which correspond to the line
integrals in the creation respectively annihilation components.
The time-ordered propagators are formally obtained in terms of the substi-

tution
d3p

2p0
! 1

2�

1

p2 �m2 + i"
d4p (7)

together with the Epstein-Glaser minimal scaling rule which allows the appear-
ance of undetermined counter-terms in case the scale dimension of the propa-
gator is d � 4: For later use (section 3) we also note

@�
Z
e�i��p

p�p�
(p2 �m2 + i")(p � "+ i") = @v

Z 1

0

�(� + se)ds =: @v�e(�) (8)

Whereas in the SLF Hilbert space formalism the particle creation and an-
nihilation operators are directly associated to Wigner-particle states, the Krein
space substitute of the Proca potential

AP;K� := AK� � @��K ; sAP;K� = 0 (9)

yields only "emulates" such states inside matrix-elements of gauge-invariant
operators. For the S-matrix one has


qK1 ::q
K
m

��SK�� pK1 ; ::pKn � = hq1::qm jSj p1; ::pni (10)

where the Krein space vector meson states are obtained by successive application
of AP:K� to the vacuum state: The gauge formalism can generally not prevent

4More details will be contained in forthcoming work by Mund.
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"leakage" of physical states de�ned by s j i = 0 into unphysical regions of Krein
space.
Besides the local observables, the only known shared global operator is the

S-matrix. A considerable conceptual di¤erence is that in SLF in addition to the
perturbative de�nition of S; there also exists a nonperturbative derivation in
terms of large time asymptotic properties of interpolating �elds in Hilbert space
(on-shell unitarity from mass-shell restriction of positivity=o¤-shell unitarity).
In that case the e-independence of the S-matrix is a result of the extension
of scattering theory to space-like cone localized operators (strings as limits of
space-like cones) [26].
In both perturbative settings the perturbative calculations impose the re-

quirement of s or de invariance on the formal time-ordered expression of the
Bogoliubov formalism. In the SLF setting one expects that the perturbative
S-matrix formalism can be extended to string-local physical �elds whose per-
turbative correlation functions are independent of the e-directions of internal
propagators (the o¤-shell unitarity). Such a distinction between the string de-
pendence of interacting �elds, whose vacuum expectation values one wants to
calculate, and e0s which appear in internal propagators of their perturbative ex-
pansion, has no counterpart in gauge theory. Despite some formal analogies, the
conceptual di¤erences between the global BRST cohomology of the s and the
geometric d di¤erential form calculus acting on the spacetime string directions
remain formidable.

3 The breakdown of Haag duality and a new
look at the Aharonov-Bohm e¤ect

An example of an e¤ect which cannot be described in the Krein space setting
of point-like vector potentials, but is correctly accounted for in the string-local
Hilbert space formalism, is the breakdown of Haag duality and the closely related
Aharonov-Bohm e¤ect. It is instructive to illustrate this in some detail in terms
of Wilson loops.
For the following calculations it turns out to be convenient to work with

regularized electric and magnetic �eld strengths. Let B be a small ball centered
at the origin and �; � functions with supp� � B: Then we de�ne regularized
�eld strengths in terms of convolutions with �

~E�(~x) =

Z
~E(~x� ~x0)�(~x0)d3~x0; ~H�(~x) = ::: (11)

The corresponding regularized �uxes through a surface D are

E�(D) =

Z
D

~E�(~x)d ~D; H�(D) =

Z
D

~H�(~x)d ~D

Using the equal time commutation relation between the electric and magnetic
�eld strengths, one obtains for regularized electric and magnetic surface �uxes
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through D respectively D̂

4�i
h
E�(D);H�(D̂)

i
=

Z
~gD;�(~x) curl~gD̂;�(~x)d

3~x

~gD;�(~x) =

Z
~gD(~x� ~x0)�(~x0); ~gD(~f) =

Z
D

~fd ~D; ~gD̂;�(x) = ::

where the vector-valued functions ~gD;�(~x); ~gD̂;�(~x) are obtained by regularizing
the vector-valued surface distributions ~gD(~x) as de�ne in the second line. Since
the divergence of ~E�(~x) and ~H�(~x) vanishes, the corresponding �uxH�(D̂) depends
only on @D̂; hence it can be localized on any surface spanning @D̂:
Thinking in pure geometric terms, one would expect that the �uxes are lo-

calized on the tori T = @D + B; T̂ = @D̂+B; so that in case they interpenetrate
but do not touch the commutator vanishes. But an explicit calculation for such
a situation shows that this is not true.
Taking for D and D̂ the discs

D =
�
~x 2 R3; x3 = 0; x21 + x22 = 1

	
(12)

D̂ =
n
~x 2 R3; x1 = 0; (x2 � 1)2 + x23 = 1

o
whose associated interpenetrating tori T = @D+B; T̂ = @D̂+B do not intersect
for a su¢ ciently small B; one �nds

4�i
h
E�(D);H�(D̂)

i
=

Z
�(~x)d3x �

Z
�(~x)d3x (13)

This result for this straightforward but somewhat lengthy calculation has been
taken from old (unfortunately unpublished) manuscript by Leyland, Robert and
Testard [24]. It is what one expects from the picture of a magnetic �ux through
a torus which passes through the regularized electric surface. It is independent
of the electric and magnetic surfaces D and D̂ as long as one does not change
their boundaries.
The purpose of their calculation was to show the breakdown of Haag duality

for the system of localized operator algebras generated by a free �eld QED �eld
strength F��(x): The terminology will be explained in the sequel.
Causal localization properties of QFT are best described in the setting of

algebraic QFT in which models are de�ned in terms of their net of algebras of
causally localized observables. Denoting such a algebras localized in the compact
spacetime region O as A(O), the causality properties of QFT are expressed in
terms of two independent relations

A(O) = A(O00); A(O) � A(O0)0 (14)

Here the �rst equation is the causal completeness property (the causal comple-
tion O00 is the two times applied causal complement O ! O0) and the second
relation (in which the dash on the algebra denotes its commutant) is the alge-
braic formulation of Einstein causality.
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The causal completeness property is a physically indispensable part of causal-
ity, although it often does not receive the same attention as Einstein causality5 .
It corresponds to the classical causal hyperbolic propagation. The standard sit-
uation is that the two algebras in the de�nition of Einstein causality are equal;
this situation is referred to as "Haag duality" [26].
But there exist models in which both causality requirements are ful�lled

although Haag duality for algebras localized in multiply connected spacetime
regions is violated; the simplest such regions are tori. The above calculation
shows that this occurs for the operator algebras A generated by the free �eld
strength F��(x) of QED. The tori and the regularized surfaces were constructed
at a �xed time, but using the causal completeness property, the relation (13)
continues to hold for their causal completion T 00; T̂ 00 in spacetime when the
separation in space passes to space-like separation in spacetime.
The above observation about the existence of observables, which can be

localized on arbitrary (regularized) surfaces which share the same boundary
tori, can then be expressed as

~H(~�D̂;�) � A
0(T̂ 0) but not in A(T̂ ) (15)

The magnetic �ux commutes with all operators in A(O); with O a bounded con-
tractible spacetime region which does not intersect T̂ . One can always change
the surface while keeping its boundary in such a way that it is outside O, but
the previous calculation shows that this is not possible if O is a interpenetrating
torus.
An Aharonov-Bohm like situation arises if one replaces T̂ by a two-sided in-

�nitely extended tube (which can be viewed as a torus which closes at conformal
in�nity).
The use of string-local vector potentials in Hilbert space permits an elegant

explicit construction of such duality-violating operators. For this purpose one
starts from the relation (3). In the massive case the loop integral over the string-
local vector potential is equal to the that of its point-like counterpart. In the
zero mass limit the Proca potential and � do not exist; but since the di¤erences
�(x; e) � �(x; e0) remains infrared �nite6 , the di¤erence between two identical
Wilson loop but with di¤erent string directions vanishesI

A�(x; e)dx
� �

I
A�(x; e

0)dx� = 0

This leads to a kind of topological e-dependence; the loop integral still "remem-
bers" that there was a directional dependence, but "it forgets" the concrete
space-like direction into which the e pointed. This "topological memory" cor-
responds to the breakdown of Haag duality in QED.

5 Isomorphisms between localized algebras in di¤erent spacetime dimensions violate the
causal completeness properties on one side of the isomorphsim. This is the reason why the
Maldacena conjecture (the claim that the mathematical AdS-CFT isomorphism relates two
causally localizable QFTs) is incompatible with causality [30] [31] [21].

6 I am indebted to Jens Mund for calling attention to this di¤erence between the massive
case and its massless limit.
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One may picture this situation in terms of a semi-in�nite cylinder formed by
parallel space-like lines in the e direction which emanate from the points on the
Wilson loop and extend to in�nity. By �-regularization one can convert the circle
into a torus, in which case the wall of the cylinder has a �nite thickness and the
Wilson loop integral represents a well de�ned operator to be used in localization
arguments. The semi-in�nite cylinder is the covariant substitute of the surface
and the deformation of the latter corresponds to the Lorentz transformation
of the former. A magnetic loop which passes through the electric Wilson loop
has to penetrate the cylinder wall somewhere. As before, an in�nite extended
magnetic �ux corresponds to a loop which closes at in�nity.
This constructions of a regularized Wilson loop, using a massless string-local

vector potential in Hilbert space, leads to an elegant concrete realization of an
operator which is in A(T 0)0 but not in A(T ). Whereas the perturbation theory
of the gauge invariant S-matrix and the local observables are correctly described,
the gauge-invariant Wilson loop de�ned in terms of the point-like vector poten-
tial of gauge theory fails to account for the breakdown of Haag duality and the
closely related Aharonov-Bohm e¤ect (see below); the topological property is
lost in gauge theory. This was well-known to the authors of [24]. In the present
formalism the vector potentials "live" in the same Hilbert space as the �eld
strengths.
There exists another interesting scalar potential �(x; e; e0) �

R1
0
e0�A�(x+

�e; e0)d�0 which depends on two string directions and vanishes on the diaginal
e = e0; hence it is localized on the space-like wedge region spanned by the
two space-like half-lines R+e; R+e0: The important observation is that the zero
mass limit of suitable normalized exponential correlation functions of � remain
�nite for m ! 0: This is reminiscent of the two-dimensional situation which
on encounters with conserved currents. The curl of the related pseudo-current
~j� = "��j

� vanishes so that it permits a representation in terms of a derivative
of a scalar �eld ~j� = @��(x). Again its zero mass limit diverges and the
exponential functions create new sectors in the massless limit.
The analogy may be described as follows

�(x; e) =

Z 1

0

~j�(x+ �e)e
�d� � �(x; e; e0) =

Z 1

0

A�(x+ �e; e
0)e�d�

exp ig�(x; e) � exp ig�(x; e; e0) (16)

In both cases the zero mass limit of the exponentials generates new sectors of
the operator algebras generated by j� respectively A�(x; e): The exponentials of
� play an important role in creating "anyonic" sectors and "fermionization" in
d=1+1. The exponentials functions of � on the other hand are expected to be
important in a future theory of "infraparticles"7 . Another related shortcoming
of the gauge theory in Krein space had been noticed in [28] namely that it leads
to a vanishing Maxwell charge; something which one does not expect in the
Hilbert space setting. We hope to return to this interesting problem.

7The infrapaticle Dirac �eld is similar to the incoming free �eld, except that it has the
softerning of the electron mass shell already buildt in.
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Calculation in quantum mechanics are generally done in the Coulomb (or
radiation) gauge. It is interesting to note that this non-covariant and non-
local but rotation-invariant potential in Hilbert space results from the string-
local potential by averaging over string directions e in a space-like hypersurface.
It plays no role in covariant renormalization theory, but most calculations in
quantum mechanics (including those of the A-B e¤ect) use it. The string-local
vector potential is its local covariant counterpart.
The quantum string-local vector potential has a classical analogue. It can be

obtained in terms of the expectation value of the quantum string-local potential
in coherent states. In this way the above operator calculations pass to their
classical counterpart; as argued in the sequel this shows that the breakdown
of Haag duality for free �elds is basically a classical phenomenon in which the
localized subalgebras are replaced by modular localized subspaces of the (s =
1;m = 0) Wigner particle space [11].
In the classical setting the algebra A(T ) corresponds to T -localized mod-

ular subspace K(T ) of the Wigner space; the dash on the localization region
retains its geometric meaning, and the commutant of the algebra passes to the
symplectic complement of the subspace K(T ) (which is de�ned in terms of the
imaginary part of the inner product in Hilbert space [11]). The classical ana-
logue of the breakdown of Haag duality is a topological phenomenon in classical
�eld theory. In this setting the T of the Aharonov-Bohm e¤ect is described in
terms of a classical magnetic �ux through an in�nitely extended solenoid which
closes at conformal in�nity. The role of quantum mechanics in the A-B e¤ect
is the creation of the electric Wilson loop by splitting an electron beam. Note
that the topological semi-in�nite cylinder attached to the Wilson loop main-
tains a causal connection with the magnetic �ux whereas the point-local vector
potential has no .
The breakdown of the Haag duality and its classical analog disappears in case

of massive vector mesons. Whereas the infrared properties are characteristic for
interacting mass-less vector-potentials, the duality violation is a pure kinematic
e¤ect. Such topological duality violation occur for all massless s � 1 tensor
potentials.
The conformal invariance of the �eld strength raises the question whether

instead of space-like strings it would not be more appropriate to work with light-
like covariant string-local vector potentials; in this case the de Sitter di¤erential
geometry would be replaces by that of the boundary of the light-cone. Actually
this could also lead to conceptual and computational simpli�cations. Basic rela-
tions, as that between point-local potentials and their string-local counterparts
(the string-local potential and its scalar escort �) seem to be preserved. We
hope to return to this interesting problem in a future publication.
Finally it is worthwhile to mention that the use of string-local potentials

also removes that "quirky feeling" about a missing causal relation between the
Wilson loop formed and the magnetic �eld passing through it. This feeling
disappears once one realizes that it is caused by the use of point-like vector
potentials of gauge theory. This may be bad news for the popular literature,
but it is certainly helpful for demonstrating the power of Hilbert space positiv-
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ity (which, as shown before, even leaves its imprint in the form of topological
properties on the classical limit).

4 Perturbation theory in terms of string-local
vector potentials

More important for particle physics is the improvement of renormalizability
through the use of the string-local formalism. The simplest illustration of this
idea is provided by for massive QED. One rewrites the point-local nonrenormal-
izable interaction density into its string-local counterpart as follows

LP = AP� j
� = (A� � @��)j� = L� @�(j��) = L� @�V� (17)Z

LP =

Z
L ! LP

AE' L; adiabatic equiv: (18)

Here we have used the conservation of the free current (all �elds are non-
interacting) and the notation L for the string-local interaction density. The
power-counting violating point-like interactions has been written in terms of a
L with dintsd � 1 and a dsd = 5 derivative @V term which, at least in models
with a mass-gap, can be disposed of in the adiabatic limit of the �rst order
S-matrix (second line). The nontrivial step of generalizing this idea to higher
order time-ordered products will be undertaken in the next section.
Not all models are that simple. An interaction of a massive vector meson

with a Hermitian �eld LP = AP � APH leads to a L; V pair L � @�V� = LP

(omitting the shared coupling strength g)

L = m

�
A � (AH + �

 !
@ H)� m2

H

2
�2H

�
; V� = m

�
A��H +

1

2
�2
 !
@ �H

�
Q� = deV� = mu(A�H + �

 !
@ �H) (19)

In this case the string-local interaction density (and not only the the V� as in
massive QED) depends on �: There are other terms within the power-counting
restriction which we could have added namely cH3 + dH4 with initially inde-
pendent coupling strengths c; d. But it turns that the second and third order
e-independence of the S-matrix induces these couplings anyhow, as well as addi-
tional H-� couplings. The basic di¤erence of this kind of induction as compared
to the standard counterterm formalism is that it does not increase the number
of parameters. In fact the �rst and second order induced H-selfcouplings and
H-� couplings taken together will turn out to have the form of a Mexican hat
potential. Its appearance has nothing to do with SSB; it is fully explained in
terms of the e-independence of the S-matrix (next section) .
Here the terminology induced refers to contributions whose presence is re-

quired for the e-independence of scattering amplitudes. This is a consequence of
scattering theory in the presence of a mass gap; we refer again to a general theo-
rem in [5] [26] which states that the LSZ scattering theory permits an extension
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to string-local �elds and that the di¤erence between point- and string-localized
�elds disappears on the level of incoming/outgoing particle states. In the con-
text of the gauge theoretical formalism in Krein space there are no physically
localized �elds in Hilbert space to which this theorem can be applied; hence
the imposition of gauge invariance on the perturbative representation of the
scattering amplitude remains a perturbative prescription.
The Krein space of gauge theory does not contain multiparticle Wigner

states; the best one can do is to view the free �elds AP;K as the substitute
for the generating �elds AP of the Wigner particles in the sense of (10)8 . The
�eld-particle connection resulting from scattering theory and problems concern-
ing the relation of the elementary (model-de�ning) �elds with the (generally
composite) local observables and their associated bound states remain outside
its physical range.
A useful reformulation for the construction of e-independent �rst order in-

teraction densities in terms of a given number of string-local �elds is to look
directly for L; V� or L;Q� pairs with

de(L� @�V�) = 0 or deL� @�Q� = 0; dLsd � 4 (20)

instead of starting from an LP : The L of such a pair is then determined up to
exact forms deC and the V� up to a divergence-free current. The de�nition of
point-like interaction densities in terms of such pairs is particularly useful for
the generalization to higher order time-ordered point-local interaction densities.
Whereas for theories with a mass gap the construction of a L; V� pair and

the extension to e-independent time-ordered higher order densities has a clear
motivation, this is lost in the massless limit when � and V� and the S-matrix
cease to exist (become infrared divergent). This, as well as the appearance of
unexpected new phenomena, as those presented in the previous section, leaves
only one way to construct massless s = 1 interacting �elds. It consists in taking
the m ! 0 limit of the correlation functions of the associated massive theory
and construct the massless operator theory in Hilbert space from its correlation
functions.
In this way one avoids the intermediate use of infrared divergent operators

as V�; Q� and one also bypasses a confrontation with the (futile) problem of
describing the zero mass Hilbert space in terms of limits of Wigner-Fock spaces.
Wightman�s reconstruction theorem insures that a Hilbert space and quantum
�elds can be constructed from (positivity-obeying) correlation functions [33].
To implement these ideas one must �rst extend the present formalism so that in
addition to the S-matrix it also includes the construction of interacting �elds.
The use of string-local charge-carrying matter �elds is supported by rigorous

results in QED [27]. Whereas in the presence of a mass gap point-local matter
�elds may still exist as singular �elds with unbounded short distance dimen-
sions (and therefore outside the setting of localizable Wightman �elds), these
nonperturbative results excludes such possibilities in the massless limit.

8The speculative remarks in [32] on the gauge theoretic substitutes of Wigner particles
acquire a concrete meaning in the present setting.
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The BRST gauge formalism uses charge-carrying unphysical point-like �elds.
This limits its physical range to the construction of the perturbative S-matrix9 .
Its perturbative construction has been presented in [6]. It can be formulated in
a setting which parallels the of L;Q pairs

sLK � @�QK� = 0 (21)

S =

Z
LK(x)d4x; sS = 0 (22)

where K refers to Krein space. Integration over Minkowski spacetime removes
the Q contribution in the adiabatic limit so that the S-matrix only depends on
LK . The formal expressions in the case of coupling to a Hermitian matter �eldH
parallel those of (19) with the �elds replaced by their Krein space counterparts.
The BRST formalism, apart from the vacuum sector generated by gauge

invariant observables, implements only on-shell unitarity. Gauge theory can
describe scattering, but it does not permit to extend on-shell unitarity to o¤-shell
positivity; properties abstracted from gauge-dependent �elds have no physical
content. In most applications of QFT to particle physics the S-matrix covers
all problems of interests. But in massless s = 1 theories as QED, for which
the S-matrix ceases to exist, one is forced to use momentum-space recipes for
the scattering of charge-carrying particles in terms of photon-inclusive cross
sections.
A full spacetime understanding of "infraparticles" in QED does not yet exist,

not to mention the much harder problem of con�nement of gluons and quarks
in QCD. Such problems are outside the range of gauge theory. They require
the understanding of large distance properties of �elds. For this one needs to
extend the unitarity of the S-matrix ("on-shell unitarity") to the Hilbert space
description ("o¤-shell unitarity") of �elds. This cannot be achieved within the
setting of point-local �elds since for interactions involving vector mesons such a
description is incompatible with the Hilbert space positivity.
As described before, the way out is to use the structural simplicity of a

Wigner-Fock Hilbert space description in the presence of a mass-gap and to de-
�ne the massless theory in terms of the m! 0 limit of the correlation functions.
In this way one maintains the positivity in the massless limit so that one can
study the long distance behavior in terms of physical string-local �elds.
A particularly interesting case arises if con�nement in QCD is realized in

terms of the vanishing of those correlation functions which contain besides point-
like composites and "string-bridged" q � �q pairs also string-local gluons and
quarks. In that case one obtains a QFT in which the basic �elds, used in the
de�nition of the perturbative �rst order interaction density, have disappeared
and only their point-local composites (gluonium, hadrons) remain. The only
way to describe such a situation within our present understanding of QFT is to
view it as a massless limit (see last section).

9 In the present paper this terminology refers to the physical on-shell scattering operator
and not to Bogoiubov�s generating o¤-shell S functional (from which the S-Matrix arises in
the adiabatic limit).
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An analogue of (3) for arbitrary spin exists for all s � 1; instead of string-
local scalar � one obtains a linear relation involving derivatives of string-local
escort �elds � of spin < s with short distance dimension dsd < s+ 1. It is not
clear whether this can be used to generalize the idea of obtaining short distance
improving L; @V pairs to higher spin. A particularly interesting case is s = 2:

5 Induced higher order contributions and the
Higgs model

The construction of a string-local renormalizable �rst order interaction density
in terms of a L; V� pair permits an extension to higher orders. The second order
relation (L0 stands for L(x0; e0))

(de + de0)(TLL
0 � @�TV�L0 � @0�TLV 0� + @�@0�TV�V 0�) = 0 (23)

would automatically follow from the �rst order relation (17) if it would not
be for the singularities coming from time-ordering of distributions10 . If this
renormalization condition can be implemented, the �rst order de�nition (20) of
the point-like interaction density permits a second order generalization

TLPLP 0 := (TLL0 � @�TV�L0 � @0�TLV 0� + @�@0�TV�V 0�) (24)

and one could hope to be able to generalize this idea to higher orders.
It is instructive to recall how the CGI gauge theoretic procedure [6] deals

with this problem. In that case one uses the weaker "Q-version"

sTLKLK0 � @�TQK� LK0 � @0�TLKQK0� = 0 (25)

Replacing the BRS s by d = de + de0 and omitting the superscript K; one
obtains the corresponding SLF relation. Although this Q-relation is weaker
than the V -relation, it su¢ ces to de�ne a second order gauge-invariant (sS = 0)
or string-independent (dS = 0) S-matrix since the derivative terms drop out in
the adiabatic limit.
Starting from time ordering T0 in which all derivatives of �elds are taken

outside, one can use the Epstein-Glaser minimal scaling restriction to de�ne a
renormalized parameter-dependent T -products. For a scalar free �eld of scale
dimension dsd = 1 the T -ordering is

hT0@�'(x)@0�'�(x0)i = @�@
0
� hT0'(x)'�(x0)i

hT@�'(x)@0�'�(x0)i = hT0@�'(x)@0�'�(x0)i+ cg���(x� x0) (26)

and the second line is the de�nition of a one-parametric T -ordering according
to the E-G minimal scaling rule. It turns out that this freedom can be used
to absorb certain "anomaly" contributions into a rede�nition of time-ordering.

10A systematic presentation of the di¤erential form calculus will be contained in forthcoming
work by Mund.
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The strategy is to use the freedom in the de�nition of T in such a way that (25)
is ful�lled.
One de�nes an anomaly as a measure of violation of (23) or (25) if one uses

T0 instead of the still unknown T:

AV : = (de + de0)(T0LL
0 � @�T0V�L0 � @0�T0LV 0� + @�@0�T0V�V 0�) (27)

AQ : = (de + de0)T0LL
0 � @�TQ�L0 � @0�TLQ0� = 0 (28)

For the calculation of two-particle scattering we only need the 1-particle con-
traction component (the "tree" approximation).
The simplest nontrivial illustration is provided by massive scalar QED11 . In

that case the presence of a derivative in the current (17) leads to delta function
contributions from the divergence of the two-point function of the charged �eld
'

@� hT0@�'(x)(@0�)'�(x0)i = (@�)�(x� x0) + reg: (29)

where the regular part come from the use of the free �eld equation inside the
T0: This together with de(@��A) = 1

2de(A�A); which results from the application
of de to (3), yields [18]

AQ = deT0LL
0�deNsym + @�N�

sym; Nsym = N +N 0; N�
sym = N� +N�0(30)

N = �(x� x0)'�'A �A0; N� = �(x� x0)'�'�A0� (31)

The N 0 and N 0
� are obtained by symmetrization x; e ! x0; e0: Using the free-

dom (26), the N and N� can be absorbed into a rede�nition of of time-ordering

TLL0 = T0LL
0 +Nsym; TQ�L

0 + TLQ0� = T0Q�L
0 + T0LQ

0
� +N�;sym(32)

S(2) = �g
2

2

Z Z
TLL0d4xd4x0 (33)

In this way the SLF counterpart dS = 0 of 25 has been established. The
derivation of the second order point-like density (24) is more involved but it
does not change TLL0:
The result is hardly surprising since the presence of a quadratic term in

the vector potential from Nsym to the second order is well known from gauge
theory. But there is a subtle point of fundament signi�cance which should be
mentioned. In general it is not possible to set e = e0 The reason is that string-
local �elds 	(x; e) �uctuate in both x and e and hence products of �elds with
the same e do not make sense. Fortunately Wick-ordered products do not only
permit the x to coincide, but they also allow e0s to coalesce: Such e0s will be
called "mute". But the expansion of time-orderd products into Wick-products
also involves time-ordered contractions for which the e-�uctuations prevent e0s
from coinciding.

11The renormalization theory of massive spinor QED has no anomalies.
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Consider the propagator of a string-local vector meson.

1

p2 �m2
(�g�� +

p�p�
(p � e� i")(p � e0 + i") + :::) (34)

As a result of the di¤erent i"-prescriptions, the distributional boundary values
are ill-de�ned for e = e0. This is a problem which cannot be solved by renor-
malization theory. It explains why the axial gauge (which treats the e as a rigid
gauge parameter) had to fail.
In the present context the e0s are �uctuation spacetime variables of a string-

local covariant �eld. The implementation of the independence of the S-matrix
of the string directions dS = 0 based on the di¤erential calculus of the 1 +
2 dimensional de Sitter space guaranties that this problem disappears after
adding su¢ ciently many on-shell contributions. The simplest illustration is that
of second order scattering of charged particles. In that case the dangerous con-
tribution comes from the vector meson propagator (34). But the contribution
containing both e0s disappears after the use of the on-shell current conserva-
tion12 and the remaining e-dependence is then canceled by the contribution
from Nsym:
It is not necessary to go into the details of these cancellations since the

relation dS = 0; which follows in the adiabatic limit from (32), guaranties e-
independence. But as individual perturbative contributions to gauge-invariant
scattering amplitudes in gauge theories are generally not gauge invariant, it is
hardly surprising that individual contributions in the SLF setting still depend
on e: What is however somewhat unexpected is that such contributions may
diverge for coalescent e0s. The di¤erential calculus in the 1 + 2 dimensional de
Sitter space of string directions only guaranties that the sum of perturbative
contributions in a particular order converges. A formal o¤-shell continuation
by hand would destroy this result; only the extension of perturbation theory
to �elds can preserve the independence from e-�uctuations resulting from inner
propagators.
This observation contains an important message. The positivity of Hilbert

space, which required the use of string-local �elds in order to preserve renormal-
izability, can be implemented in such a way that the scattering matrix remains
string-independent. But in contrast to gauge theory individual contributions to
S may depend on the e0s in such a way that equating di¤erent e0s causes in�nite
�uctuations.
On the basis of these observations one anticipates that an extension of this

formalism to interacting string-local �elds will lead to perturbative contributions
which depend on the individual string-directions of inner propagators after all
p-integration have been carried out. But one expects that in suitable sums
over contributions the dependence on the inner e0s disappears so that only the
possible string dependence of the interacting �elds remains. This is very di¤erent
from gauge theory; the BRST s is a global operation which cannot distinguish
between internal and external propagators

12The argument parallels that of second order gauge-invariance in gauge theories.
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The Hilbert space setting, which requires the use of the di¤erential calculus
in the directional de Sitter space, is certainly more elaborate than the gauge
formalism, but unlike the latter it is not limited to the construction of local
observables and the S-matrix but it promises the construction of all �elds.
After this interlude of conceptual di¤erence of the SLF setting with operator

gauge theories presented in the contest of second order scalar massive QED, we
now turn to the problem of the second order calculation of the A-H coupling
(19). Up to H self-interactions the L; V pair is uniquely determined by �rst
order power-counting dintsd � 4 and the requirement de(L� @V ) = 0:
Our aim is to highlight di¤erences between the gauge theoretic second order

calculations as it was presented in [6] [7] and the SLF setting. In that work the
calculation of the second order gauge invariant for the Higgs model S-matrix
starts with a �rst order LK ; QK� pair which is identical to (19), except that
L; A�; � and Q� now have the superscript K and instead of the geometric
di¤erential calculus one now has the abstract s-operation. The renormalizable
cH3+dH4 terms which were already mentioned after (19) turn out to be neces-
sary in order to keep the third order tree contributions free of anomalies; beyond
the third order there are no tree anomalies.
The result is [6]

T0L
KLK0 + i�(x� x0)(AK �AKH2 +AK �AK�2)� i�(x� x0)RK (35)

RK = �m
2
H

4m2
(�K;2 +H2)2; V K = g2

m2
H

8m2
(H2 + �K;2 +

2m

g
�K)2 � m2

H

2
H2

where V K is the contribution to the second order S-matrix which results from
combining the second order RK with the �rst order H-sel�nteractions. The
appearance of a 1=g term shows that this way of writing is somewhat arti�cial,
but it permits to relate the physical parameters m;mH ; g to those which result
from applying a shift in �eld space (the abelian SSB Higgs-mechanism) to the
gauge dependent scalar �eld of QED.
All interactions which involve point-like vector mesons require the setting

of gauge theory, including those in which the vector meson interacts with Her-
mitian �elds. The result (35) shows that there is no place for SSB. Whereas
this is possible for sel�nteracting scalar �elds, it is ruled out when scalar �elds
also couple to vector mesons. In that case the vector mesons require the im-
plementation of the rules of gauge theory, which leaves no room for SSB. The
coupling to string-local vector potentials in the SLF Hilbert space formulation
converts the point-local scalar �elds into interacting string-local �elds whereas
SSB is limited to point-local scalar �elds.
This is con�rmed by the second order ghost-free SLF Hilbert space setting

which only uses the causal localization principles of QFT. Instead the abstract
cohomological BRST formalism it is based on the geometric di¤erential form
calculus in the de Sitter space applied to string-local �elds with �uctuating
space-like directions. The calculation of a e-independent S-matrix follows similar
steps; the details will be presented elsewhere.
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There is however one di¤erence between the gauge theoretic calculation and
its SLF analogue which is worthwhile mentioning. In addition to the induced
potential R there is a second order term of the form

�(x� x0)AP�A�0u(�0 � �) + (e ! e0) (36)

Since the short distance dimension of the point-local Proca �eld is dPsd = 2; this
contribution has dsd = 5 and hence violates the power counting bound. But
since it vanishes for e = e0 it causes no problem for the e-independent S-matrix.
The Schwinger-Swieca screening e¤ect which asserts that any interaction

which involves massive vectormesons (independent of whether it couples to
charged or Hermitian matter) leads to a vanishing Maxwell charge, is a rig-
orous argument against any form of SSB. It generalizes the screening of the
Maxwell current of a free massive �eld strength

j� := @�F�� = m2AP� ; QMax =

Z
AP0 (x)d

3x = 0 (37)

which can easily be checked by looking at the form of the two-point function of
the free Proca �eld. Higher order contributions to F�� require an extension of
the S-matrix formalism to interacting �elds, but thanks to the Schwinger-Swieca
theorem, this is not needed if one only wants to exclude a SSB mechanism.
If the Higgs model would be the result from a SSB, the charge would diverge

Q =1 instead of vanishing. This is part of the de�nition of SSB. A symmetry
is called "spontaneously broken" if the Noether theorem cannot be inverted i.e.
when a conserved current @�j� = 0 leads to a a divergent charge (the generator
of a symmetry), formally Q =

R
j0(x)d

3x =1:
A SSB model is closely related to a symmetric theory, in fact both are unitar-

ily inequivalent representations ("di¤erent vacua") of the same local observables
algebras [4] . The shift in �eld space is a quasiclassic trick which prepares the
�rst order interaction of a SSB theory starting from a symmetric interaction.
Only �eld shifts which lead to large-distance diverging charges implement SSB.
If the charge is screened, as in the Higgs model, the �eld shift manipulation has
no relation to the intrinsic properties of the model and if the resulting model
turns out to be consistent one is required to look for a di¤erent explanation of
its physical properties.
The most interesting situation is that of massive sel�nteracting vector-mesons.

A �rst order LK ; QK� pair within the power-counting limit is easily found, but it
is not possible to maintain this renormalizability restriction in the calculation of
the second order gauge-invariant S-matrix. As already mentioned in the intro-
duction, one can only compensate the "bad" terms by introducing a �rst order
coupling with scalar H-�elds which in second order produces a compensating
bad terms. The calculations have been carried out in the CGI setting of gauge
theory in [6] [7]; these authors also showed that in case of just one H the model
contains no additional parameters besides one coupling strength and the masses
of H and the vectormesons. In [8] this situation was reviewed and compared
with the actual situation of the Standard Model.
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This result is con�rmed in the SLF Hilbert space setting. The details re-
quire more extensive calculations and will be presented in a joint paper with
Jens Mund. There is one di¤erence with the CGI calculation which is worth
mentioning. The calculation of the second order S-matrix from the �rst order
A-H coupling

LH =
X
a;b

da;b(A
P
�;aA

�
bH +A�a�b@�H �

1

2
m2
H�a�b) (38)

parallels that of the abelian coupling, but instead of the term (36) which has
short distance dimension dsd = 5 instead of 4 (but fortunately vanishes on the
e-diagonal e0 = e) one now �nds

�(x� x0)
X

a;b;a0b0

da;bda;0b0uaA
�
b0(A

P
�;b�

0
a0 �AP�;a0�b) + (e ! e0) (39)

which does not vanish on the e-diagonal. Hence the second order contribution
to the e-independent S-matrix contains a power-counting-violating term which
can only be compensated by a similar term from the second order sel�nteraction
between the massive vector mesons. The full calculation in the new Hilbert space
setting will be contained in forthcoming work.
As long as one considers the shift recipe as a formal trick, no harm is being

done. The problem only starts if one attributes a physical interpretation with
this recipe. In this case one misses a new physical mechanism namely the loss
of second order renormalizability of sel�nteracting massive vector mesons which
can only be saved by extending the �rst order interaction by an additional
coupling with a H-�eld which produces second order compensating terms.
Such a compensatory mechanism between �elds with di¤erent spin which

preserves renormalizability was hoped for to occur in models with supersym-
metrc couplings. Whereas such a requirements played no role in the de�nition
of supersymmetry, it is the raison d�être for the H-particle. Formal manipu-
lations of Lagrangians contain generally no physical information; the physical
content of a model in QFT is always related to intrinsic properties of the model
independent of the way in which it was constructed.
Terminologies as "fattening" or "being eaten" should have served as a warn-

ing that one is entering metaphoric swampland and reminded particle theorists
that understanding of properties of QFT means connecting them with the foun-
dational causal localization of QFT. We leave it to the historians to explain why,
despite the correct terminology "Schwinger-Higgs screening" in some publica-
tions at the time of the Higgs paper the related ideas where lost in the maelstrom
of time.
One of the reasons which contributed to its popularity may be related to

the fact that the Higgs mechanism was discovered in at least three independent
papers with identical metaphors about the Goldstone boson "being eaten by
the massless vector meson". The problem here is not that important discoveries
have been made by metaphoric ideas; this happened many times in the history

25



of physics. What is however a bit embarrassing is that even 40 years later these
reasonings appear in important documents.
For the sustentation of the impressive experimental e¤ort, which after decades

of search �nally led to the discovery of H at LHC, the narrative about particles,
which in addition of generating masses of vector mesons also create their own
mass, may have been a blessing; it would have been much harder to convince
experimentalists that the fate of the Standard Model depends on the need to
�nd an additional particle in order to uphold second order renormalization. The
fundamental aspect of such an observation is more concealed since it is related
to the not yet su¢ cient understood connection between renormalizability with
the causal localization principle in a Hilbert space setting.

6 Spacetime oigin of the Lie structure of sel�n-
teracting vector mesons

One of the unsolved problems of s = 1 interaction is the understanding of the
conceptual origin of the quantum Lie structure in models of sel�nteracting vector
mesons. The answer cannot be given by referring to gauge theory. In classical
gauge theory the Lie algebra structure is part of the �bre bundle formalism
whereas the only principle of QFT is causal localizability. The BRST gauge
setting is a compromise between the ideas underlying classical gauge invariance
and the quantum requirements. A derivation of the quantum Lie structure
within the BRST gauge setting, as can be found in [6], is hardly surprising.
It should rather be understood as a consequence of the foundational causal
localization properties for sel�nteracting s = 1 �elds.
Quantum gauge-symmetry cannot be realized in a Hilbert space; the preser-

vation of the classical gauge structure requires the use of an inde�nite metric
Krein space and hence gauge-theoretic derivation of the Lie algebraic structure
in a BRST gauge setting involves the use of a circular argument.
The understanding of the physical concepts behind local gauge symmetry

turned out to be one of the hardest problems of local quantum physics. The
origin of global gauge symmetries (inner symmetries) had already been well
understood during the 70s in terms of the DHR and the more general later DR
superselection theory [26]. These constructions show that observable algebras,
which typically arise as invariant subalgebras of �eld algebras under the action
of a global symmetry group, contain su¢ cient information for reconstructing
the symmetry group and the �eld algebra on which it acts.
This construction is somewhat astonishing since at �rst glance the causal

localization properties of local observables seem to have no connection with
group representation theory; the net of localized observable algebras is covariant
under the Poincaré group (including the TCP operation) but it is no relation
to gauge symmetry, be it global or local. Yet the classi�cation of unitarily
inequivalent local representations of the spacetime-indexed set of local algebras
(the local superselection sectors of the observable algebra) leads indeed to a
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�eld algebra and a compact groups acting on it. The construction uses only
the spacetime causal localization properties; the group theory is hidden in the
composition structure ("fusion rules") of the localization-preserving inequivalent
representations (endomorphisms) of the observable algebra [26]. In this way the
origin of global gauge symmetries (inner symmetries) is fully accounted for.
These methods work in the presence of a mass gap but fail for interacting

theories involving massless vector potentials. Local gauge symmetry tries to im-
itate global gauge symmetry at the prize of loosing the Hilbert space. There have
been attempts to classify representation sectors of the algebra of local observ-
ables of QED [29]. They require the introduction of new concepts and their
results are presently incomplete and far from being useful for the understanding
of the problems of interacting massless vector mesons.
An understanding of the Lie group structure of sel�nteractiong vector mesons

would be a useful step in this direction. Selfcouplings between s < 1 �elds are
not subject to such restrictions. Forming renormalizable trilinear and quadrilin-
ear couplings between a �nite set of low spin �elds allows a very large number of
independent coupling parameters. For any symmetric low spin s < 1 model with
one coupling parameter there exists a large number of less symmetric models
with many independent couplings between the same free �elds. So why is this
not possible for s = 1 ?: The answer is that for s � 1 the Hilbert space positivity
together with renormalizability is more restrictive.
Instead of an interaction density L one has to �nd an e-dependent L; V� pair

which satis�es a di¤erential relation in e. The local counterterms of the induc-
tive Epstein-Glaser formalism, which for s < 1 interactions between point-local
�elds are only subject to the the appearance of point-like counterterms at co-
alescent x restricted by the minimal scaling requirement, have now to ful�ll
additional di¤erential relations from string-crossings. These additional restric-
tions originate from maintaining causality in the presence of string-local �eld;
they are not imposed symmetries. This more restrictive setting accounts for the
appearance of Lie-algebraic structures in interactions involving s = 1:
The formalism of local gauge theory on the other hand results from trying

to emulate this new structure within a point-local setting. The prize is the loss
of the Hilbert positivity and the "gain" is the promotion of the Lie-algebra
structure of the coupling of �elds to a full "local gauge symmetry". In this way
the formalism is formally reunited with that for s < 1 interactions at the prize
of its smaller physical range. Important problems of QED and QCD, which
require the understanding of long-distance behavior of �elds, remain outside
the physical range of local gauge theory.
These new ideas are presently limited to perturbation theory. But they

suggest that the nonperturbative construction of appropriately de�ned string-
local �eld algebras, which are uniquely associated with the local observable
algebras of massless s = 1 interactions, may be a realistic goal of a project
as that in [29]. This requires to extend the point-local Wightman setting to
string-local �elds 	(x:e) which are tempered distributions in both x and e:
As in previous second order calculations one expects that the formal sim-

ilarity with the gauge formalism in [6] extends to the model of sel�nteracting
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vector mesons. The following calculations shows that this is indeed the case.
For simplicity we restrict our calculation to the massless �rst order interac-

tion. The starting point is the renormalizable L;Q� pair

L =
X

fabcF
a:��Ab�A

c
� ; f antisymmetric (40)

Q� = 2
X

fabcu
a
�F

b;��Ac�

As in all previous calculations operator products of free �elds are always Wick-
ordered. One expects that the Lie algebra restriction for the f -couplings results
from the imposition of second order e-independence.

Asym = A+ A((x; e) ! (x0; e0)); A = deT0LL
0 � @�T0Q�L0 = (41)

= 2
X

fabcu
bAc�ffdef���;��adA0d;�A0e;� + fdaf���F 0d;��A0f� + fdea���F 0d;��Ae0� g

Here the deltas are the singular parts (s.p.) which result from derivatives applied
to T0 propagators

���;�(�) = s:p:@�


ToF

b;��(x)Fd;��(x
0)
�
= �i(g��@0� � g��@0�)�(�))�bd (42)

���(�) = s:p:@�


T0F

b;��(x)Aa�(x
0)
�
= �ig���(�)� ie0�@0�

Z 1

0

ds�(� � se0)

The second line contains a contribution from string crossing; the s-integral
results from the Fourier transformation of the integrands (8)

1

p2 �m2

e0�p�
pe0 � i" (43)

in the hTFA0i propagators. In writing the �rst line we followed Scharf (page 113
in [6]) by using the freedom of a normalization term (according to the Epstein-
Glaser scaling rules) in the various 2-derivative contributions to the time-ordered
two-point functions in hTFF 0i e.g.

@�@�D(x� x0)! @�@�D(x� x0) + �g���(x� x0) (44)

At the end of the calculation the remaining anomaly must of course be inde-
pendent of �:
Symmetrizing in order to obtain Asym one notices that for e = e0 the string-

local delta contributions cancel and one arrives at

Asym = fabcuaAc;� [fbefAe;�@
�A�f + fdbfAd;�@

�A�f ]2�(x� x
0) (45)

+fabcfdeb[(�+ 1)(@
�uaAc;� + ua@

�Ac;�)A
�
dAe;� +

+(�� 1)uaAc;�(@�A�dAe;� +A�dAe;�]�(x� x0)

The cancellation of the anomalies leads to � = 1 and the term @�uaAc;�A
�
dAe;� has

the form
deN2; N2 =

1

4
fabcfdecAa;�A

�
dAb;�A

�
e�(x� x0) (46)
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the The validity of the Jacobi identity is then a consequence of the remaining
cancellation.
Another more systematic bookkeeping (following the logic of Asym in sec-

tion 3) would consist in converting derivatives of delta functions @��:::into
@�(�:::) � �@�(:::)

13 . But here we followed Scharf in order to emphasize the
formal proximity to the gauge formalism despite the conceptual di¤erences be-
tween CGI and SLF.
Actually this derivation of the Lie-algebra structure of the second order

interaction density involved a bit of cheating since the operators Q�; which was
used in intermediate steps, has no zero mass limit. Such perturbative infrared
divergencies are a warning against calculating directly in the massless theory,
instead of constructing it from the m! 0 limit of massive correlation functions.
The analogous calculations in the massive model avoids these problems.

But as a consequence of the appearance of a compensatory renormalization-
preserving H-�eld it is more involved. The veri�cation of its Lie structure will
be left to a joint publication with Jens Mund.

7 Resumé and outlook

The SLF setting extends the Hilbert space description of point-local s < 1 in-
teraction to s � 1 string-local interactions in which only the local observables
remain point-local. Since it is a Hilbert space formalism, the powerful nonper-
turbative tools of functional analysis and operator algebras remain available.
Gauge theory keeps the simpler point-local formalism for s = 1 at the prize of
loosing o¤-shell unitarity. Since the functional and operator algebra tools are
not available in Krein space there is no nonperturbative control. The physi-
cal content is restricted to combinatorial perturbative constructions; conceptual
and mathematical aspects concerning the relation between particles and �elds
remain outside its range.
The string-local �elds 	(x; e) are Wightman �elds in both variables; they

have to be smeared with Schwartz testfunctions both in Minkowski spacetime
and in the de Sitter space of space-like directions e. The di¤erential geometry
and the associated di¤erential form calculus of d = 1 + 2 dimensional de Sitter
space is a spacetime analogue of the abstract BRST cohomology of gauge theory
de�ned in terms of the nilpotent s operation (the ghost formalism).
The continued validity of the appropriately adjusted LSZ or Haag-Ruelle

scattering theory [26] [5] in the presence of a mass gap permits to identify the
Hilbert space with a Wigner-Fock space in which scattering theory relates the
Wigner particles to the interacting �elds. For interactions involving massless
vector mesons this �eld-particle relation breaks down and the S-matrix is lost;
the �elds are no longer connected with Wigner particles. In the perturbative
SLF Hilbert space setting this manifests itself right from the beginning. A �rst
order interaction L cannot be de�ned since a scalar string-local � escort �eld,
and hence also V� and Q�; have no massless limit. In the following we will

13This was pointed out to me by Jens Mund.
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argue that this loss is actually an asset since it points into new directions for
solving problems which are outside the scope of gauge theory.
The loss of the interaction density and a unitary S-matrix in the massless

limit is not the result of a short-coming of the formalism, but it rather points
to a fundamental physical change. Of all unsolved problems of QFT, the ones
hidden behind the infrared divergencies caused by massless vector potentials
have remained the hardest. Though particle physicists have use recipes as e.g.
photon-inclusive cross sections in QED and string-bridged quark-antiquark pairs
in order to describe hadronic jets, there has been no spacetime understanding
of these phenomena.
The message o¤ered by the new SLF setting is that one should not address

problems of perturbative interacting zero mass vector mesons directly, but rather
treat them as limiting cases of their massive counterpart. The �rst step con-
sists in computing the correlations functions in the massive theory. The Hilbert
space positivity remains encoded in the Wightman positivity of the vacuum ex-
pectation values in the massless limit [33]. The massless operator theory and its
Hilbert space can be reconstructed from the massless limit of these expectation
values; in this way one avoids the futile attempt of trying to understand its
Hilbert space in terms of particle concepts of the massive theory.
Such problems are outside the conceptual range of the BRST gauge formal-

ism; the locality of �elds in Krein space is not that of the physical Einstein
causality even if it looks the same. In contrast to the Hilbert space setting
which, as emphasized before, signals the problems of zero mass limits already in
�rst order perturbation theory, gauge theory masks them. The BRST formalism
continues to work in the massless limit, but its physical range is limited to gauge
invariant local observables and prescriptions for photon-inclusive cross-sections
(whose gauge invariance is not obvious). The success of the gauge theoretical
description of the Standard Model is based on the perturbative construction of
the S-matrix for interactions massive vector mesons; a deeper understanding of
the physical content hidden behind infrared divergencies requires the string-local
setting; here the Hilbert space positivity (o¤-shell unitarity) is indispensable.
In the present work the calculations within the SLF Hilbert space setting

were limited to the on-shell S-matrix. The important task of extending the SLF
setting to the construction of interacting string-local �elds (o¤-shell unitarity)
will be addressed in future publications. The remainder of this concluding
section present an outlook about what one may expect from such an extension
for a better understanding of the infrared problems.
The present picture based on perturbative calculations in gauge theory is

that, although the perturbative scattering amplitudes are logarithmically infrared-
divergent, the photon-inclusive cross section remains �nite and gauge invariant
[35]. It is believed that the logarithmic on-shell divergencies for scattering of
charge-carrying particles result from a perturbative expansion of the "infra-
particle structure". The latter is based on the idea that the interaction with the
infrared photons "dissolves" the mass-shell of charged particles by converting
the mass-shell poles into a milder cut-like singularity with a coupling-dependent
power behavior. Such a "softened mass shell singularity" would be too weak
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to counteract the dissipation of wave packets in the large time limits in LSZ
scattering theory which then accounts for the vanishing of the scattering am-
plitude. The logarithmic divergencies of the perturbative scattering amplitude
result from the perturbative expansion of the softened mass shell.
In order to reconcile the vanishing scattering amplitudes with the photon-

inclusive cross section one again replaces the photons by massive vector mesons
of a small mass m. The number N(m) of contributing vector mesons below
a given invariant energy increases with m ! 0 but the inclusive cross section
remains nontrivial while the individual amplitudes approach zero [35]. In the
SLF setting all objects which enter this argument are physical.
The change of the mass-shell singularity in the infraparticle picture is sup-

ported by soluble two-dimensional models of which the simplest was already
constructed in the 60s [34]. The solution  (x) =  0(x) exp ig' of the two-
dimensional derivative coupling g� 
� @

�' provides an example in which the
mass shell of  0(x) changes into a g-dependent power singularity in the mass-
less limit of the scalar �eld '. The perturbative expansion of the exponential
function before taking the massless limit leads to the logarithmic infrared diver-
gencies. The simplicity of the model permits to study infrared behavior without
dynamical complications (see the remarks at the end of section 3).
The SLF Hilbert space setting is expected to lead to an understanding of

infrared phenomena in terms of large distance properties of string-local charge-
carrying �elds. For this one would have to extend the S-matrix formalism to
correlation functions of string-local �elds and de�ne the massless theory in terms
of the massless limit of corresponding massive correlation. The important role
of the di¤erential calculus on de Sitter space of space-like directions is to enable
the implementation of the independence on inner string directions. In case of
the S-matrix all e0s are inner, whereas in the extension to vacuum expectation
values one has to distinguish between the string directions of those �elds whose
correlation functions one wants to calculate and the inner e0s of the perturbative
internal propagators.
This is reminiscent of gauge invariance, except that the BRST s-operation

has no connection with spacetime is global without any spacetime connection
and cannot distinguish between "inner and outer" gauge invariance. Without
the local nature of the d calculus, in which the de di¤erentials acts on indi-
vidual �uctuating e directions, it would not be possible to di¤erentiate between
outer and inner directional �uctuations. Needless to add that string-localization
bears no relation to String Theory which, despite its name and inspite of many
attempts of its defenders to connect it to QCD strings, bears no relation to
localization in spacetime.
There is an important structural di¤erence between interacting strings in

the presence of mass gaps and massless strings. Whereas in the former case
the correlation functions of string-local �elds decrease exponentially for large
space-like separations (linked cluster property) [5] and the string-directions can
be freely changed by Lorentz transformation, the strings of charge-carrying par-
ticles in QED are "rigid". This leads to the spontaneously breaking of Lorentz
invariance in charged sectors [28]. Needless to add that the correct QFT ana-
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logue of long range interactions (Coulomb potentials) in quantum mechanics are
string-local charge-carrying �elds in the Hilbert space description of QED.
A more radical change is expected to occur in the massless limit of massive

sel�nteracting vector mesons. As explained before, the logarithmic divergent
perturbative scattering amplitudes of charge-carrying particles are viewed as
resulting from an illegitimate interchange of the limit m ! 0 with the pertur-
bative expansion in a situation in which the non-perturbative limit vanishes.
This suggests to view logarithmic divergencies in o¤-shell correlation functions
of QCD containing gluon and quark �elds as signaling con�nement. In this case
the only surviving vacuum expectation values would be those of point-local com-
posites (gluonium, hadrons) and string-bridged compact localized q � �q pairs.
A situation in which the basic �elds (in terms of which one de�nes interactions)
vanish cannot be directly described within the known formulation of QFT; one
needs to de�ne such interactions as massless limits.
This picture receives additional support by noticing a signi�cant structural

di¤erence between QED and QCD strings. String-local vector potentials in QED
are line integrals over observable �eld strengths and hence can be viewed as global
limits of local observables. But interacting string-local �elds in QCD cannot be
represented in this way; their localization is inherently non-compact and their
appearance in correlation functions would cause problems with causality. Con-
�nement, in the sense of vanishing of all vacuum expectation values containing
such inherent noncompact strings, avoids such causality problems.
It has been shown that perturbative QCD correlation functions in covariant

gauges remain �nite [36]. But the gauge which formally corresponds to the
string-local Hilbert space formulation is the non-covariant axial gauge. It was
abandoned a long time ago because it leads to uncontrollable (ultraviolet mixed
with infrared) divergencies.
But what seems to be a curse in gauge theory turns out to be a blessing in

the SLF Hilbert space setting. The latter turns the ill-de�ned noncovariant axial
gauge parameter in Krein space into �uctuating directions of covariant string-
local �elds which act in Hilbert space. In this way the global on-shell unitarity of
gauge theory is extended to local correlation functions of �elds. This extension
is of special importance in zero mass limits when the �eld-particle relation is
lost. The SLF Hilbert space setting permits to address structural changes in
massless limits which remain outside the reach of gauge theory, as they occur
in the infraparticle structure of QED and the expected QCD con�nement.
To achieve this one must extend the SLF of the present work to the pertur-

bative calculation of correlation functions for massive string-local �elds. Only
in this way one will be able to understand phenomena as con�nement in which
the fundamental �elds disappear in the massless limit and only their imprint on
their composites (e.g. hadrons, and gluonium) and the disintegration of string-
bridged q � �q pairs remains. Our present understanding of QFT permits no
description of �elds which, although not present in the formalism, yet assert
their presence in "what they leave behind". The only known way to deal with
such a situation is to view it as the massless limit of a massive model in a
(necessarily string-local) Hilbert space setting.
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