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Operator product expansion: Statement

The Operator Product Expansion (OPE) states that for any sufficiently
regular quantum state Ψ and any set of local fields OA, one should have, for
points xi that are space-like to each other,

Operator product expansion (formal)

⟨OA1(x1) · · · OAN
(xN )⟩Ψ ∼

∑
B

CB
A1...AN

(x1, . . . , xN )︸ ︷︷ ︸
OPE coefficients

⟨OB(xN )⟩Ψ

where ∼ means for example that the difference between both sides is of
order ∼ distD when dist → 0, where dist is the maximum
max(dist(xi, xj)) and D increases as more operators OB are included in
the sum.



Operator product expansion: History

▶ 1969 Wilson proposes Operator Product Expansion (OPE)
▶ 1970 Zimmermann shows OPE consistent with renormalized

perturbation theory [Brandeis lectures 1970]

▶ 1972 Wilson-Zimmermann: general arguments in favor of OPE
▶ In 1970s, various groups [Polyakov 1974, Mack 1977, Gatto et al. 1973, Schroer et al. 1974] realize

that the OPE simplifies in CFTs and associativity constraints can be
turned into “conformal bootstrap”.

▶ In 1980s, OPE used to study conformal field theories in d = 2 [Belavin et al.

1984,...].
▶ Borcherds and others propose to formalize their ideas in the framework

of Vertex Operator Algebras [Borcherds 1988] ⇒ Mathematics
▶ Recently numerical bootstrap: new approach to CFTs in d > 2 [Rychkov,

Simmons-Duffin, El-Showk, Paulos, Penedones, Rattazzi and others 2010s],...

▶ This talk: Variational principle and OPE, marginal flows.



Formulating QFT via operator product expansion

An axiomatic, intrinsically “generally covariant” formulation of QFT can be given
via algebraic methods, e.g. by formulating QFT via OPE [Hollands & Wald 2012, Hollands

2010]. A quantum field theory consists of:

▶ An abstract countable list of quantum fields {OA}, where A is an
abstract label (incl. tensor/spinor indices),

▶ A list of real non-negative numbers {∆A}, called the “dimensions”,
▶ A list of OPE coefficients CB

A1...AN
(x1, . . . , xN ) with a number of

properties.
▶ A permutation (anti-) symmetry property related to the

bosonic/fermionic nature of operators.
▶ A rule how the OPE coefficients change under a change in the coupling

parameter(s) (Hochschild cohomology [Hollands 2010], or “action principle”
[Holland & Hollands 2012], new)



Formulating QFT via operator product expansion

The most important properties are:

Properties of OPE

▶ The OPE coefficients satisfy a scaling law related to the dimensions
{∆A}

▶ The OPE coefficients should be generally covariant functionals of the
spacetime metric g within each sufficiently small neighborhood.

▶ The OPE should satisfy an associativity law.
▶ The singularities of the OPE coefficients are characterized by microlocal

spectrum condition.



Scaling behavior

If I fix p = xN as a reference point and mutually distinct non-zero vectors
ξi ∈ TpM , then:

(x1, . . . , xN ) = (Expp(ϵξ1), . . . ,Expp(ϵξN−1), p)

describes 1-parameter family of configurations coalescing as ϵ → 0. The
scaling property means that, for this configuration

CB
A1...AN

(x1, . . . , xN ) = o(ϵ−∆A1
...−∆AN

+∆B )

when ϵ → 0.

Rationality/nuclearity

If N∆ is the number of fields with dimension ∆, then
∑

∆N∆q
∆ should exist

for small 0 < q < 1.



Associativity

This condition states that if all points are spacelike, and if

ξ ≡ max1≤i≤M (dist(xi, xM ))

minM<j≤N (dist(xj , xM ))
< 1

then

Associativity law

CB
A1...AN

(x1, . . . , xN ) =
∑
C

CC
A1...AM

(x1, . . . , xM )CB
C...AM

(xM , . . . , xM )

in the sense of an absolutely convergent (!) sum.

x1 x2

x3

for ξ ≪ 1

x1 x2

x3

for ξ ≈ 1



Microlocal spectrum condition

This is a condition on the wave front set of each coefficient which
characterizes the nature of the singularities from the point of view of “local
momentum space”. It uses the concept of the “wave front set” of a
distribution and was proposed in a similar context by [Brunetti, Fredenhagen, Köhler 1999].

But the OPE also makes sense on Riemannian spaces, where the condition is
simply that CB

A1...AN
(x1, . . . , xN ) is smooth for xi ̸= xj .

Assumption from now on:

From now on, I will even assume to be in flat Euclidean space of dimension
d > 1, and I will assume that the OPE coefficients are invariant under
Euclidean group.



Action principle

In many examples, we have 1-parameter family of QFTs depending on
“coupling” g. Then OPE coefficients are functions of g. Even though our
definition of QFT is abstract, we can think of g typically as a coupling
parameter in the underlying classical action (if any).

Action principle

There is a kind of “action principle” for OPE coefficients if we “deform”
class. action S by

S → S + g

∫
O ddx



Terminology

Renormalization “slang”:

▶ If ∆O < d, one speaks of “relevant” perturbation (e.g. mass term).
▶ If ∆O = d, one speaks of “marginal” perturbation.
▶ If deformed theory remains conformal for finite g one speaks of a

“strictly marginal” perturbation. Main part of this talk.



Action principle

To write down the action principle, use graphical notation. I draw an OPE
coefficient

CB
A1...An

(x1, . . . , xn)

as

1 2 n

I draw a concatenation of OPE coefficients

CB
A1C(x1, xn)C

C
A2...An

(x2, . . . , xn)

as

1 n2 3

Attention: None of these diagrams is a “Feynman graph”!



Action principle

I also write

∫
d4y

y,O 1 2 n

where
▶ O denotes the “deformation”
▶

∫
ddy = integral over {|y − xn| < L}.

▶ L = length scale that is part of the definition of the theory.



Action principle

There is a kind of “action principle” for OPE coefficients if we “deform
S → S + g

∫
O” [Holland & SH 2014]:

∂/∂g =

1 2 n

Figure: Functional equation, left side. The tree represents a coefficient
CB
A1...An

(x1, . . . , xn)

=
∫
d4y

y,O 1 2 n

−
∑n

i=1

∫
d4y

1 2 i ny,O

−
∫
d4y

y,O n1 2

Figure: Functional equation, right side. The composite trees represent
concatenations of coefficients, e.g. the rightmost tree means∑

C CC
A1...An

(x1, . . . , xn)CB
OC(y, xn)



Action principle

Theorem
In perturbation theory, d = 4, to any order in g [Holland & SH 2013, 2014]:

∂g CB
A1...AN

(x1, . . . , xN ) =

∫
|y−xN |<L

d4y

[
CB
OA1...AN

(y, x1, . . . , xN )

−
N∑
i=1

∑
∆C≤∆i

CC
OAi

(y, xi) CB

A1...Âi C...AN
(x1, . . . , xN )

−
∑

∆C<∆B

CC
A1...AN

(x1, . . . , xN ) CB
OC(y, xN )

]

when O is a marginal/relevant operator.

▶ Can compute OPE coefficients to any perturbation order by iteration.
▶ But equation should also hold non-perturbatively!
▶ L → L̂ equivalent to

OA → ÔA =
∑

ZB
A (g, τ) · OB (0.1)

and g → ĝ = ĝ(g, τ). ⇒ RG equations! (τ = logL/L̂ = RG “time”).



Examples

▶ In ϕ4 theory (d = 4), i.e. O = −ϕ4 (marginal pert.), one can compute
OPE coefficients order by order in g. Renormalization and associativity
“automatic” [Holland & SH 2014].

▶ For local gauge theories (e.g. YM-theory), there holds a similar action
principle, supplemented by an “evolution equation” for the
BRST-operator (as a function of g) [Fröb & Holland 2016]

▶ For relevant pert., antecedent in [Guida & Magnoli 1996]

▶ For exactly marginal pert. of conformal field theories, simplification of
equation to ODE for conformal data (this talk) [SH 2017, Behan 2017].



CFT basics

In the rest of the talk, I want to show how this works more concretely in
conformal QFTs (CFTs) in d > 1 dimensions.

CFT structure

▶ In a CFT, one can single out particular fields called “primaries” which
have a particularly simple “transformation law” under conformal
transformations. These primaries are called {Oi} from now. All other
fields are “descendants” and are simply derivatives of primary fields.

▶ For primaries, the vacuum N -point functions transform “covariantly”
under a conf. transf. γ ∈ SO(d+ 1, 1)

⟨O1(γx1) . . .ON (γxN )⟩ =
N∏

j=1

Ω(xj)
∆j

N⊗
j=1

Dj(R(xj))⟨O1(x1) . . .ON (xN )⟩,

where R(x, γ) ∈ SO(d) and the conformal factor Ω(x, γ) are defined
by ∂γ(x)/∂x = Ω(x)R(x) and Dj = finite dim. irrep.



CFT basics ctd

CFT structure

▶ ⇒ The 3-point function must have form

⟨Oi(x1)Oj(x2)Ok(x3)⟩ =|x12|−∆i−∆j+∆k |x23|−∆j−∆k+∆i |x13|−∆k−∆i+∆j

×
∑
α

λα
ijk tαijk(x1, x2, x2),

where tαijk(x1, x2, x3) runs through a basis of conformally covariant
tensor structures (see e.g. [Kravchuk et al. 2016, Osborne 1999, Weinberg 2010,...] for details).

▶ The higher N -point functions are also restricted.



The OPE between two primary fields in CFT has a special form that is
entirely determined by certain data:

Oi(x1)Oj(x2) =
∑
k

λα
ijk|x12|−∆i−∆j+∆k Pα

ijk(x12, ∂2)Ok(x2)

where the Ps are (pseudo-) differential operators determined completely by
group theoretical considerations [Schroer & Swieca 1974],....

CFT=conformal data
In view of associativity, all OPE coefficients, hence the entire CFT is uniquely
determined by conformal data λijk and ∆k! [Gatto et al., Mack, Migdal, Polyakov, Belavin et al., ...

1970-80s, conformal bootstrap 2010s: Rychkov, Simons-Duffin, Rattazzi, Paulos, Penedones,...]

If we have a family of CFTs, the conformal data are functions of g, λijk(g)
and ∆k(g). We are interested in the dependence on g.



Action principle in CFT: flow equation

The action principle implies the following dynamical system for the conformal
data [SH 2017]

Main formula of this talk

d

dg
∆i =

∑
α

Dα
i λ

α
Oii

d

dg
λµ
jkl =

∑
mαβ

(
aT αβµ

jklm λα
Ojmλβ

klm + bT αβµ
jklm λα

jkmλβ
Olm + cT αβµ

jklm λα
Okmλβ

jlm

)
,

Here:
▶ The T ,Ds are numbers that are entirely determined by the

representation theory of SO(d+ 1, 1).
▶ The flow equation holds as long as spectrum of dimensions is

non-degenerate ∆i −∆j /∈ Z.



Action principle in CFT: d = 2

d = 2 is not really special in this approach, but technically simpler.

1. Identify R2 with C.
2. Conformal group SO(3, 1).

3. Tensor structure of operator → spin sO ∈ Z/2. Introduce:
h+ h̄ = ∆, h− h̄ = s.

4. Anharmonic ratios (any d > 1),

u =
|x12|2|x34|2

|x13|2|x24|2
, v =

|x14|2|x23|2

|x13|2|x24|2

Introduce: Dolan-Osborn variables u = z̄z, v = (1− z̄)(1− z)

5. Introduce: Fundamental domain F = C/S3 under group action
S3 = {z 7→ 1/z, z/(z − 1), (z − 1)/z}.



Action principle in CFT: d = 2

In d = 2, tensor structures of operators are unique, no need for index α
labelling tensor structures. Then

Main formula [SH 2017]

aTjklm =

∫
F
d2z

(z − 1)hkl−2

z1−hj−hm

(z̄ − 1)h̄kl−2

z̄1−h̄j−h̄m
×

2F1(hm + hj − 1, hm + hkl, 2hm; z) 2F1(h̄m + h̄j − 1, h̄m + h̄kl, 2h̄m; z̄)

Analogous formulas exist for bTjklm, cTjklm. In d = 1 formulas even simpler
and independently obtained by [Behan 2017]



Action principle in CFT: d = 2

Since tensor structures are trivial, dynamical system for the conformal data
simplifies to [SH 2017]

Dynamical system f. conformal data, d = 2

d

dg
∆i = 4πλOii

d

dg
λjkl =

∑
m

(
aTjklm λOjmλklm + bTjklm λjkmλOlm + cTjklm λOkmλjlm

)
,

Here:
▶ The T s are numbers defined before.
▶ The flow equation holds as long as spectrum of dimensions is

non-degenerate ∆i −∆j /∈ Z.



Action principle in CFT: general d > 1

▶ The case of general dimension d is qualitatively not different.
▶ However, in practice one needs (a) classification of conformally

covariant 3-point and 4-point tensor structures (possible see e.g. [Kravchuk

et al. 2016, Osborne 1999, Weinberg 2010,...]) (b) spinning “conformal blocks” (technically
difficult, see e.g. [Costa et al. 2011, Costa et al. 2016, Kravchuk 2017, Schomerus & Karateev 2017, ...].
Needed: Representation/invariant theory of SO(d+ 1, 1).

▶ Examples of marginal flows in d = 4: N = 2, 4 Super-YM theories.
Degeneracies in spectrum!

▶ Dynamical system gives in principle a way to construct these theories
non-perturbatively starting from the underlying free field theory
(g = 0)! (Newton iteration)



Conclusions & Outlook

Main points

1. QFT on curved manifolds is best formulated in terms of algebraic
relations + states

2. The OPE satisfies an action principle giving the dependence on
coupling(s) g (manifold of QFTs)

3. This action principle leads to a dynamical system for conformal data in
CFTs

4. This dynamical system can in principle be used to construct d = 4
N = 2, 4 Super-YM theories non-perturbatively at finite N if
degeneracy problem can be solved.
Perhaps large N /integrability techniques useful to lift degeneracy near
g = 0 [Beisert et al.] for N = 4-theory.


