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Introduction

The study of conformal field theory (CFT) in two space-time
dimensions has found applications to different areas of physics and
mathematics such as string theory, critical phenomena, infinite
dimensional Lie algebras, number theory, finite simple groups,
3-manifold invariants, the theory of subfactors and noncommutative
geometry.

Vertex operator algebras (VOAs) and conformal nets on S1 give two
different mathematically rigorous frameworks for chiral conformal
quantum field theories (chiral CFTs) .

From the mathematical point of view these two framework looks
quite different but they show their common physics root many
structural similarities.

In this talk I will report on some recent results and work in progress
on the general connection of these two axiomatizations of chiral
CFT.
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Chiral CFT

Two-dimensional CFT ≡ scaling invariant quantum field theories on
the two-dimensional Minkowski space-time admitting conformal
symmetry. Certain relevant fields (the chiral fields) depend only on
x − t (right-moving fields) or on x + t (left-moving fields).

Chiral CFT ≡ CFT generated by left-moving (or right-moving) fields
only. Chiral CFTs can be considered as QFTs on R and by conformal
symmetry on its compactification S1 = {z ∈ C : |z | = 1}. Hence we
can consider quantum fields on the unit circle Φ(z), z ∈ S1 and the
corresponding smeared field operators Φ(f ), f ∈ C∞(S1).

Let F be a two-dimensional CFT and let F+ and F− be the
subtheories generated by the left-moving and right-moving fields
respectively. Then, these chiral subtheories decouple and we have an
embedding F+ ⊗F− ⊂ F .

Typically the latter embedding is proper but one can try to
reconstruct the possible full 2D theories from the chiral subtheories.
In this sense the chiral CFTs can be considered as the building
blocks of two-dimensional CFT.
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Conformal nets on S1

Conformal nets are the chiral CFT version of algebraic quantum field
theory (AQFT).

In the conformal net approach to CFT the theory is formulated in
terms of von Neumann algebras namely algebras of bounded
operators on a Hilbert space containing the identity and closed
under taking adjoints and weak limits.

A (local) conformal net A on S1 = {z ∈ C : |z | = 1} an inclusion
preserving map I 7→ A(I ) from the set of (proper) intervals of S1

into the set of von Neumann algebras acting on a fixed Hilbert space
HA (the vacuum sector).

The map is assumed to satisfy certain natural (and physically
motivated) conditions: locality; conformal covariance; energy
bounded from below; existence of the vacuum Ω ∈ HA.

Conformal covariance is formulated through the existence of a
continuous projective unitary representation of Diff+(S1).

Locality means that [A(I1),A(I2)] = {0} whenever I1 ∩ I2 = ∅

4



Vertex operator algebras

In the vertex operator algebra approach to CFT the theory is
formulated in terms of fields i.e. operator valued formal distributions
(equivalently formal power series with operator coefficients) with
some additional requirements.

A vertex operator algebra (VOA) is a vector space V (the vacuum
sector) together with a linear map (the state-field correspondence)

a 7→ Y (a, z) =
∑
n∈Z

a(n)z
−n−1, a(n) ∈ End(V )

from V into the set of fields acting on V .

The map a 7→ Y (a, z) is assumed to satisfy certain natural (and
physically motivated) conditions: locality; conformal covariance;
energy bounded from below; vacuum.

Conformal covariance is formulated at the infinitesimal level through
the existence of a representation of the Virasoro algebra.

Locality means that, for any pair a, b ∈ V there is an integer N ≥ 0
such that (z − w)N [Y (a, z),Y (b,w)] = 0.
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The fields Y (a, z) are called vertex operators. The family of vertex
operators should be considered as the family of “all” quantum fields
of the theory in contrast with other approaches where one considers
only a suitable family of generators.

The notion of VOA is a special important case of the notion of
vertex algebra.

In order to make contact with the theory of conformal nets we need
a unitary structure on V ⇒ unitary VOAs. In this case the
uniqueness of the vacuum for conformal nets (irreducibility)
corresponds to the assumption that V is a simple VOA.

If a ∈ V is homogeneous of conformal weight d ∈ Z≥0, i.e. if
L0a = da, where L0 is the conformal energy operator, it is useful to
introduce the notation an := a(n+d−1) so that

Y (a, z) =
∑

n∈Z anz
−n−d . If a ∈ V is not homogeneous then it can

be written as a linear combination of homogenous vectors and an is
defined by linearity.

From now on V will be a simple unitary VOA.
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From VOAs to conformal nets

The general problem of constructing conformal nets from VOAs has
been recently considered by S. C., Y. Kawahigashi, R. Longo and M.
Weiner: arXiv:1503.01260 [math.OA] (to appear in Memoirs of the
AMS), [CKLW2015].

We assume that V is energy-bounded i.e. that for every a ∈ V there
exist positive integers s, j and a constant K > 0 such that

‖anb‖ ≤ K (|n|+ 1)s‖(L0 + 1V )jb‖ ∀n ∈ Z, ∀b ∈ V .

Let HV be the Hilbert space completion of V and let f ∈ C∞(S1)
with Fourier coefficients f̂n. For every a ∈ V we define the operator
Y 0(a, f ) on HV with domain V by

Y 0(a, f )b =
∑
n∈Z

an f̂nb for b ∈ V .

It is a closable operator and we denote its closure by Y (a, f )
(smeared vertex operator).
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If L0a = daa then we can use the formal notation

Y (a, f ) =

∮
S1

Y (a, z)f (z)zda
dz

2πiz
.

We define a map AV from the set of intervals of S1 into the the set
of von Neumann algebras on HV by

AV (I ) = von Neumann algebra generated by

{Y (a, f ) : a ∈ V , f ∈ C∞c (I )}.

Note that in the definition of AV all fields are considered, not only a
family of generators.

It is clear that the map I 7→ AV (I ) is inclusion preserving.

Definition [CKLW2015]: V is strongly local if AV satisfies locality.

Strong locality does not follow in a obvious way from VOA locality
because the von Neumann algebras generated by two unbounded
operators commuting on a common invariant core need not to
commute in general (Nelson’s examples).
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For a strongly local V we have the following results [CKLW2015]:

AV is a conformal net on S1.

Different unitary structures on V give rise to isomorphic (unitarily
equivalent) conformal nets.

The map V 7→ AV is “well behaved”. Natural constructions in the
VOA setting (subVOAs, tensor products) preserve strong locality.

Many examples of unitary VOAs are known to be strongly local:
unitary VOAs generated affine Lie algebras, the corresponding coset
and orbifold subalgebras; unitary Virasoro VOAs; unitary VOAs with
central charge c = 1; the moonshine VOA V \ whose automorphism
group is the monster group M, the even shorter moonshine VOA
VB\(0) whose automorphism group is the baby monster group B.
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Back to VOAs, two conjectures and representation theory

In 1996 K. Fredenhagen and M. Jörss proposed a construction of
certain fields staring form a conformal net A (FJ fields).

In our work we show that if V is strongly local then the FJ fields of
AV give back the vertex operators of V .

We also show that if A is conformal net whose FJ fields satisfy
appropriate energy bounds then there is a strongly local VOA V
such that A = AV .

Conjecture 1. [CKLW2015] Every simple unitary VOA is strongly
local.

Conjecture 2. [CKLW2015] For every conformal net A there is a
strongly local VOA V such that A = AV .

There is a encouraging ongoing work (S.C. and L. Tomassini) on
Conjecture 2. This work could also give many other examples of
strongly local VOAs such as unitary lattice VOAs, unitary VOAs with
c < 1, unitary framed VOAs ... and hence also some further
evidence on the validity of Conjecture 1.
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Conformal nets and VOAs have very interesting representation
theories (theory of superselection sectors).

These representation theories play a crucial role in the
reconstruction problem of full CFTs from chiral subtheories.

These representation theories are also very important for the
construction and classification of chiral CFTs. For this reason the
study of the above conjectures should also requires a direct
connection between the representation theories VOAs and those of
the corresponding of conformal nets.

Connecting the representation theories in a direct way is interesting
in itself and has many potential applications. Some recent progress
in this direction have been made by S.C, M. Weiner and F. Xu
[CWX≥2017] (in preparation).
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Representations of conformal nets

Let A be a conformal net on S1. A representation π of A is a family
{πI : I ⊂ S1 is an interval} , where each πI is a representation of
A(I ) on a fixed Hilbert space Hπ, which is compatible with the net
structure, i.e. πI2 �A(I1)= πI1 if I1 ⊂ I2.

In this talk any representation π will be locally normal i.e. such that
πI is normal for every interval I ⊂ S1. A representation π is
automatically locally normal if Hπ is separable.

The concepts of direct sums, subrepresentations, irreducibility ....
for representations of conformal nets can be defined in a natural way.
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Unitary VOA modules

Let V be a simple unitary VOA. A vertex algebra module for V is a
vector space M together with a linear map
a 7→ YM(a, z) =

∑
n∈Z a

M
(n)z
−n−1 which is compatible with the

vertex algebra structure of V i.e. it satisfies the so called Borcherds
identity and moreover, YM(Ω, z) = 1M , where Ω ∈ V is the vacuum
vector.

If M is a vertex algebra module for V then M carries a
representation of the Virasoro algebra. In particular there is on M a
conformal energy operator LM0 and we denote by Mh the eigenspaces
Ker

(
LM0 − h1M

)
, h ∈ C.

A VOA module for V is a vertex algebra module M such that
M =

⊕
h∈C Mh, with Mh = {0} if the real part of h is sufficiently

negative and dim(Mh) <∞ for all h ∈ C.
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A unitary vertex algebra module for V is a vertex algebra module M
with scalar product (·|·)M which is compatible with the unitary
structure of V . In this case the representation of the Virasoro
algebra is unitary. If M is also a VOA module then we say that M is
a unitary VOA module for V . V itself is an irreducible unitary VOA
module called the adjoint module (the vacuum representation).
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Fom VOA modules to representations of conformal nets

Let V be a strongly local VOA and let M be a unitary VOA module for
V .

We assume that M is energy-bounded i.e. that for every a ∈ V there
exist positive integers sM , jM and a constant KM > 0 such that

‖aMn b‖ ≤ KM(|n|+ 1)sM‖(LM0 + 1M)jMb‖ ∀n ∈ Z, ∀b ∈ M.

Let HM be the Hilbert space completion of M and let f ∈ C∞(S1)
with Fourier coefficients f̂n. For every a ∈ V we define the operator
Y 0
M(a, f ) on HM with domain M by

Y 0
M(a, f )b =

∑
n∈Z

aMn f̂nb for b ∈ M.

It is a closable operator and we denote its closure by YM(a, f )
(smeared vertex operator in the representation).
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Let V be a strongly local VOA and let AV be the corresponding
conformal net. If π is a (locally normal) representation of V and
I ⊂ S1 is an interval then, the normal representation πI of the von
Neumann algebra AV (I ) on Hπ naturally extends to the unbounded
operators affiliated with AV (I ). In particular πI (Y (a, f )) is a well
defined closed operator on Hπ for all a ∈ V and all f ∈ C∞c (I ).

Definition [CWX≥2017]. Let M be a unitary energy-bounded VOA
module for V . We say that M is strongly integrable if there is a
representation πM of AV on HM such that πM

I (Y (a, f )) = YM(a, f )
for all intervals I ⊂ S1, all a ∈ V and all f ∈ C∞c (I ).

Let Repu(V ) be the category of unitary VOA modules for V . Then
the strongly integrable V -modules define a full subcategory
Repsi (V ) of Repu(V ) which is closed under subobjects and direct
sums. Moreover, let Rep(AV ) be the category of (locally normal)
representations of AV .
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We have the following results [CWX≥2017]

The map M 7→ πM gives rise to a functor F : Repsi (V )→ Rep(AV ).

Mα and Mβ are isomorphic iff πMα

and πMβ

are unitarily equivalent.

The adjoint module V is an irreducible strongly integrable module.

If W ⊂ V is a unitary subalgebra and M is a strongly integrable
V-module then every VOA W-submodule M̃ ⊂ M is strongly
integrable.

The map M̃ 7→ πM̃ gives rise to a one-to-one correspondence
between the V-submodules M̃ of M and the subrepresentations of
πM . In particular M is irreducible iff πM is irreducible.

Thanks the above results various examples of strongly integrable modules
are given in [CWX≥2017] e.g. those associated to type A affine VOAs.
Moreover we can use these results to find a solution to a long standing
problem in the representation theory of coset VOAs by using functional
analytic methods and in particular the Jones theory of subfactors.
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From representations of conformal nets to VOA modules

Let V be a strongly local VOA and AV be the corresponding
conformal net. If π is a representation of AV it is natural to ask if
there is a strongly integrable V -module M such that π = πM .

In a work in preparation with M. Weiner [CW≥2018] we use certain
local energy bounds to show that if V is a unitary affine VOA then
any irreducible representations of AV comes from a unitary
positive-energy representation of the affine Kac-Moody algebra
associated with V .

Very similar results have been obtained by different methods by Y.
Tanimoto [unpublished] and by A. Henriques [arXiv:1706.08471].

The affine Lie algebra representations gives rise to modules for V
and it is natural to expect that these modules are strongly integrable
and give back the representations of the net AV . This is part of an
ongoing work by S.C. and M. Weiner.

The idea of local energy bounds is potentially very general to treat
these problems and should have applications beyond affine VOAs,
e.g. for certain W-algebras.
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In any case there is still a lot of work to be done.

19



THANK YOU VERY MUCH!
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