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A basic challenge with gauge theory

The usual kinematics of a gauge theory is:

fields are connections ∇ for a G-bundle P → X

these should be identified if related by a gauge transformation

Issue: The quotient space is usually ugly.

One solution: Work with the stack, which we denote Conn/Gauge.

(Won’t define today, but I promise you’ll see them all over the place if
you learn the definition.)

“The stack of Yang-Mills fields on Lorentzian manifolds” by
Benini-Schenkel-Schreiber might be well-suited to this audience.

Owen Gwilliam Algebras of observables: a gauge theory example



A basic challenge with gauge theory

The dynamics depends upon an action functional

S : Conn/Gauge→ R.

We want to study its critical locus: {∇ such that dS|∇ = 0}.

This is a fiber product:

Crit(S) Conn/Gauge

Conn/Gauge T ∗Conn/Gauge

zero section

dS

Nowadays, some people suggest you take the derived fiber product,
which is a derived stack known as the derived critical locus dCrit(S).

Issue: Quite abstract, and there is no quantization prescription.
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Perturbative gauge theory

Let’s be practical and think about perturbation theory around
∇ ∈ Crit(dS). For simplicity, suppose the bundle P → X is trivial.

Let’s eyeball the computation of the tangent space.
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Perturbative gauge theory

For the kinematics, we should have the linearization of the gauge action:

−1 0

T∇Gauge T∇Conn
d(act)∇

Cokernel is obvious linearization, and kernel is linearized stabilizer.
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Perturbative gauge theory

These are nice spaces:

−1 0

Lie(Gauge) T∇Conn

‖ ‖

Ω0(X)⊗ g Ω1(X)⊗ g

d(act)∇
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Perturbative gauge theory

The derived fiber product is given by the derived kernel of dS (mapping
cocone) along the tangent space at ∇:

LKer(dS∇) = Cocone(T∇Conn/Gauge T ∗∇Conn/Gauge)
dS∇
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Perturbative gauge theory

Hence the derived fiber product is:

−1 0 1 2

T∇Gauge T∇Conn T ∗∇Conn T ∗∇Gauge

‖ ‖ ‖ ‖

Ω0(X)⊗ g Ω1(X)⊗ g Ωd−1(X)⊗ g Ωd(X)⊗ g

d(act)∇ dS∇ d(act)∗∇
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Perturbative gauge theory

These are precisely the fields you write in BV/BRST formalism!

−1 0 1 2

Ω0(X)⊗ g Ω1(X)⊗ g Ωd−1(X)⊗ g Ωd(X)⊗ g
d(act)∇ dS∇ d(act)∗∇

If you work through the whole procedure, you find that the classical
BV theory matches the derived deformation theory of dCrit(S).

Caveat: Not yet a theorem because a sufficient theory of
∞-dimensional derived differential geometry has not been developed (so
far as I know).
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Perturbative gauge theory

Upside: We do have a prescription for perturbative quantization.

It has been put on a rigorous footing recently, thanks to many people.
See the systematic treatment by Klaus & collaborators.

Immediately from the prescription, you obtain a differential graded
(=dg) algebra of observables on each region of spacetime. In this sense,
you obtain a rather minimal dg generalization of pAQFT.
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A dg version of pAQFT

Here’s the untechnical idea from my collaboration with Kasia:

A dg QFT model on a spacetime M is a functor

A : Caus(M)→ Alg∗(Ch(TVS))

so that each A(O) is a locally convex unital ∗-dg algebra satisfying
Einstein causality: spacelike-separated observables commute at the
level of cohomology.

That is, for O1,O2 ∈ Caus(M) that are spacelike to each other, the
commutator [A(O1),A(O2)] is exact in A(O′) for any O′ ∈ Caus(M)
that contains both O1 and O2.

We also phrase time-slice axiom as a cohomology-level statement. It’s
not obvious (to me at least) how to generalize all the usual conditions.
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Questions raised by gauge theory

Question: Is there anything interesting here?

Kasia and I recently examined free scalar theories this way and
recovered the standard answers, of course. The procedure is overkill
here.

The rest of the talk will try to convince you the answer can be “yes,”
by discussing the example of Chern-Simons theory.

Kasia and I hope to explore other examples, like Yang-Mills theories,
and welcome others’ help!
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Questions raised by gauge theory

Issue: A stack is not (usually) encoded by its algebra of functions.

The deformation theory of a point on a stack is algebraic, however, and
the BV/BRST formalism exploits this fact. In a sense, this is why this
naive dg generalization of pAQFT appears.

Question: Is there a generalization of this dg version of AQFT that
would apply to global stacks?

A useful constraint is that such a global quantum definition ought to
recover the perturbative prescription when you work around a fixed
solution.
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Questions raised by gauge theory

Question: How do triumphs of AQFT generalize in this naive dg
setting? For example, how does DHR theory change?

Speculation: The dependence on dimension changes. I suggest you
get an En-monoidal ∞-category for n-dimensional theories, where En
means the operad of little n-disks. For ordinary categories

E1 corresponds to monoidal,

E2 corresponds to braided monoidal,

E≥3 corresponds to symmetric monoidal,

but for higher categories the En are all different.
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Chern-Simons theory

X – oriented 3-dimensional smooth manifold

G – compact Lie group with nondegenerate pairing 〈−,−〉 on g (e.g.,
Killing form)

Chern-Simons action:

CS(d+A) =
1

2

∫
X
〈A ∧ dA〉+

1

3!

∫
X
〈A ∧ [A,A]〉

Equation of motion: FA = 0 (zero curvature or Maurer-Cartan
equation)

Note: No dependence on signature.
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Chern-Simons theory

Mathematical appeal: Classical CS theory studies G-local systems
on X, a topic beloved by topologists and representation theorists. Its
quantization has produced further intriguing mathematics.

Physical appeal: It is the TFT par excellence, and a great toy
example. Moreover, abelian CS plays a key role in the effective field
theory of the quantum Hall effect.
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Chern-Simons theory

The perturbative quantization was explored by many physicists (see,
e.g., Guadagnini-Martellini-Mintchev). Axelrod-Singer and Kontsevich
(unpublished) constructed mathematically its BV quantization in the
early 1990s.

Up to equivalence, every perturbative quantization is determined by an
~-dependent level λ ∈ ~H3

Lie(g)[[~]].
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Perturbative Chern-Simons theory

Everything is encoded in the dg Lie algebra Ω∗(X)⊗ g.

Lie bracket: [α⊗ x, β ⊗ y] = α ∧ β ⊗ [x, y]

differential: d(α⊗ x) = (dα)⊗ x

Every dg Lie algebra has an associated Maurer-Cartan equation, and
this one recovers usual EoM of Chern-Simons theory.
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Perturbative Chern-Simons theory

If you unpack the BV formalism in this case, the dg commutative
algebra of classical observables is

Obscl(X) = C∗Lie(Ω
∗(X)⊗ g).

De Rham cohomology is easy to compute, so we can quickly analyze
the classical observables.

The functoriality of the de Rham complex ensures we have a functor

Obscl : Mfldor3 → Ch

Note the similarity with covariance paradigm.
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Perturbative Chern-Simons theory

X = R3:

Ω∗(R3)⊗ g ' g by Poincaré lemma so

Obscl(R3) ' C∗Lie(g)

We just have functions on ghosts, as only “gauge symmetry” is relevant
very locally. (This is a shadow of the stack structure.)

This might seem weird and unphysical, but it’s a familiar feature of
cohomology, which is boring locally by design.

To get something interesting, we need X to have interesting topology.
But we already know that the important observables live on a circle:
the Wilson loops!
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Perturbative Chern-Simons theory

X = S1 × R2:

Ω∗(S1) ' C[ε] with |ε| = 1

Hence by Künneth and Poincaré, we see

Obscl(S1 × R2) ' C∗Lie(g[ε]) = C∗Lie(g, Ŝym(g∗))

Thus
H0Obscl = Ŝym(g∗)g

which are the infinitesimal class functions.

For example, the character of a finite-dimensional representation
ρ : g→ End(V ) lives here:

chρ(x) = trV (exp(ρ(x)))

On-shell it agrees with a classical Wilson loop, as it is the path-ordered
exponential evaluated on a flat connection.
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A taste of perturbative quantization of Chern-Simons theory

For simplicity, we restrict to abelian CS: g = C.

Consider a closed genus g surface Σg. The cohomology of the fields

H∗(Σg × R)[1] =
−1 0 1
C C2g C

has a symplectic structure via Poincaré duality. So H∗Obscl(Σg × R)
has a Poisson structure.

Note the subalgebra

Sym(H1(Σg)) ∼= C[α1, . . . , αg, β1, . . . , βg]

in degree 0, with {αi, βj} = δij and other brackets trivial.
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A taste of perturbative quantization of Chern-Simons theory

Claim: The standard BV quantization determines a deformation
quantization of H∗Obscl(Σg × R). In particular, the subalgebra
becomes the Weyl algebra.

Costello and I showed this in our book, in a broader analysis of abelian
Chern-Simons theory. You can also use the arguments that Kasia and I
develop in our scalar field analysis, i.e., a pAQFT approach. (These
constructions should have nice connections with work of
Benini–Schenkel–Szabo.)

Note: This algebra is not apparent locally (i.e., on R2 × R) but
emerges by the local-to-global nature of cohomology.
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A taste of perturbative quantization of Chern-Simons theory

The idea behind the claim is to use local constancy:

A⊗B Obs(Σ× (−t, t))⊗Obs(Σ× (−t, t))

A⊗ τT (B) Obs(Σ× (−t, t))⊗Obs(Σ× (T − t, T + t))

A · τT (B) Obs(Σ× (−t, T + t))

“A ? B” Obs(Σ× (−t, t))

id⊗τT

'

This product is only defined up to exact terms, so we get a strict
algebra only at the level of cohomology.
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Higher consequences

Using modern homotopical algebra, you can go quite a bit further.

You might have heard about the little n-disks operad En. If so, consider
how CS observables behave when you work with open disks inside R3.

Claim:

Obscl determines an algebra over the little 3-disks operad.

A BV quantization deforms this E3-algebra structure.

Question: Can one extract anything concrete from this?

Owen Gwilliam Algebras of observables: a gauge theory example



Higher consequences

Theorem: (Costello-Francis-G.)

There is a natural bijection between the following:

perturbative quantizations of Chern-Simons theory on R3, up to
equivalence, and

braided monoidal deformations of Repfin(Ug) over C[[~]], up to
braided monoidal equivalence.
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Higher consequences

Key idea 1: There is a filtered Koszul duality of dg algebras between
Ug and C∗Lie(g), and this determines an equivalence of symmetric
monoidal dg categories

Repdgfin(Ug) ' Perf(C∗Lie(g)).

Hence every braided monoidal deformation of Perf(C∗Lie(g)) determines
a braided monoidal deformation of Rep(Ug).

Such braided monoidal structures are, in essence, quantum groups.

Key idea 2: Lurie has shown that the left modules of an E3 algebra
form an E2-monoidal ∞-category. (This is the higher categorical
version of a braided monoidal structure.)
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Higher consequences

Finally, we saw that Obscl is equivalent to C∗Lie(g) as an E3-algebra.

Putting everything together, we see that every BV quantization
determines a braided monoidal deformation of representations of g.

To make the bijection concrete, we describe Wilson line defects inside
this BV/factorization algebra framework, and then show how
perturbative computations encode the R-matrix.

I hope analogs of these arguments can be realized in pAQFT.
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