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Definition

A spacetime is singular if it possesses at least one incomplete geodesic.
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Definition
A spacetime is singular if it possesses at least one incomplete geodesic.

Singularity theorem structure

1. Causality condition
There is a Cauchy hypersurface

2. The initial or boundary condition
There exists a trapped surface (null geodesics) or a spatial slice with
negative expansion (timelike goedesics)
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3. The energy condition

Penrose (Null geodesics)
Null Convergence Condition Null Energy Condition

R i >0 Tttt >0
Hawking (Timelike geodesics)
Timelike Convergence Condition Strong Energy Condition
R, U*U” >0 T (URUY —g* /(n—2)) >0

= Then the spacetime is geodesically incomplete.
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Focal point

A point on a geodesic is called a focal point if there is a
non-everywhere-zero Jacobi field (variation field) that vanishes on the
point.
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A geodesic that is continued past a focal point no longer locally
extremizes length.
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A point on a geodesic is called a focal point if there is a
non-everywhere-zero Jacobi field (variation field) that vanishes on the
point.

A geodesic that is continued past a focal point no longer locally
extremizes length.
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The formation of focal points
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The formation of focal points

T dzL[’YS]
thl= [ Fwd avi= S
0 ST ls=0
tangent vector DV DV Extrinsic curvature
T N, i P
/[\/]:/ Ruvas U* VY VOUP — —— B | dt — K, VFVY| 0
0 pvaf N , dt dt 1% ~(0)

variation vector

Whether 7 is, or is not, a local maximum of the length functional, among
amounts to the absence, or presence, of a focal point.
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The formation of focal points

dt dt

iy dzL[’YS]
thl= [ Fwd avi= S
0 s s=0
tangent vector DV DV Extrinsic curvature
T =~ H P
v =/ Ruvap U VY VOUP — —— =2 | dt — K, VIV )
0

variation vector

Whether 7 is, or is not, a local maximum of the length functional, among
amounts to the absence, or presence, of a focal point.

Focal point test
I[V] > 0 for some V#* —> 3 focal point in (0, 7]
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The formation of focal points

With V# = fv* where f smooth function that obeys f(0) =1, f(7) =0

/0 ((n=1)f2 = PR, U“UY) dt < ~Kly0),
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The formation of focal points

With V¥ = fv* where f smooth function that obeys 7(0) =1, f(7) =0

/0 ((n=1)f2 = PR, U“UY) dt < ~Kly0),

Hawking's singularity theorem

m Energy condition: R, U*U” >0

m Initial condition: For f(t) =1 —t/7, K|,q) <0 and
7 2 (n—1)/|K|(0)

m Causality condition: The existence of a compact Cauchy surface
which implies that there are no focal points

= The spacetime is future timelike geodesically incomplete
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The formation of focal points

With V¥ = fv* where f smooth function that obeys 7(0) =1, f(7) =0

/0 ((n=1)f2 = PR, U“UY) dt < ~Kly0),

Hawking's singularity theorem

m Energy condition: R, U*U” >0

m Initial condition: For f(t) =1 —t/7, K|,q) <0 and
7 2 (n—1)/|K|(0)

m Causality condition: The existence of a compact Cauchy surface
which implies that there are no focal points

= The spacetime is future timelike geodesically incomplete

All pointwise energy conditions are violated by quantum fields )
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Singularity theorems with weakened energy conditions

m Energy condition
/ F(£)2Ryu URU” |y dt > — Q|| F™ 12 — Qul| 1%,
0

and R, U*U” > 0 for [0, 7o].

19
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Singularity theorems with weakened energy conditions

m Energy condition
/ F(£)2 Ry UP U |y dt > —Qul| F™ 2 = Qo £]2,
0
and R, U*U” > 0 for [0, 7o].
m Initial contraction

—Kl'y(O) > Igf./l[ga] + |r}fJ2[f]

only for [0, 7]

T 2 l'p‘ v 2 (m)\2
Jilp] = (1= )R UPU” + Qop” + Qm('™)* | dt
0

bf] = / ((n S 4 Qf? + Q,,,(f<m>)2) dt.

7o
m Causality condition: Existence of a compact Cauchy surface

= The spacetime is future timelike geodesically.-incomplete
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Initial contraction

If Qg < 1 and Qm/Tg(mfl) < 1 we can show that for initial extrinsic

curvature obeying

—Kly0) > V/A(n — 1)AnBmQo

a focal point is formed within a timescale

[(n—1)Bn
T AmQO ’
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Initial contraction

If Qurg < 1and @/ 2(m=1) « 1 we can show that for initial extrinsic

curvature obeying

—Kly0) > V/A(n — 1)AnBmQo

a focal point is formed within a timescale

(n—1)Bm

’ AmQO
lm|[ 1] 2 [ 38 | 4 |
Am 1/3 13/35 181/462 521/1287
Bn| 1 | 6/5 | 10/7 | 700/429
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Initial contraction

If Qg < 1 and Qm/Tg(mfl) < 1 we can show that for initial extrinsic
curvature obeying

—Kly0) > V/4(n — 1)AnBm Qo

a focal point is formed within a timescale

[(n—1)Bn
T AmQO ’

(m[ 1] 2 [ 38 [ 4 |
m | 1/3 | 13/35 | 181/462 | 521/1287
10/7 | 700/429

W >
3
—
(=)}
~~
()]

Advantages

m Allows us to estimate the timescale of formation of the focal point

m Simpler generalization of the theorem for weakened energy
conditions
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Non-minimally coupled scalar field

Stress energy tensor for non-minimally coupled scalar fields

T = (Vub) (Vo) + 280 (26~ (VOP) + 6T ~ Vi Vs — G )7

The main observable of interest will be the effective energy density (EED)

1
pU—T UMUU—iT

As a quantum field, py may be defined by

- (v £5)0)

10/19
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Quantization

m Introduction of a unital *-algebra &/(M) on our manifold M

m Generated by the objects ®(f), f € 2(M) where Z(M) is the space
of complex-valued, compactly-supported, smooth functions on M

11/19



Weakened conditions
[1e}

Quantization

m Introduction of a unital *-algebra &/(M) on our manifold M

m Generated by the objects ®(f), f € 2(M) where Z(M) is the space
of complex-valued, compactly-supported, smooth functions on M

m We only consider Hadamard states on our algebra
W(x,y) = (®(x)®(y)), : Z(M) x (M) — C

m The smeared local Wick polynomials of the form
(: VOov©o: (£)),

are part of an extended algebra

m We need a prescription for finding algebra elements that qualify as
local and covariant Wick powers. This might be done in various
ways, expressing finite renormalisation freedoms. Hollands and Wald
(2014) set out a list of axioms that we follow.

11/19
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Quantum energy inequalities

Quantum energy inequalities (QEls) introduce a restriction on the
possible magnitude and duration of any negative energy densities or
fluxes within a quantum field theory.

12 /19
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possible magnitude and duration of any negative energy densities or
fluxes within a quantum field theory.

Absolute QEls
(p:(F))w = —(Q(F))w
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Quantum energy inequalities

Quantum energy inequalities (QEls) introduce a restriction on the
possible magnitude and duration of any negative energy densities or
fluxes within a quantum field theory.

Absolute QEls
o (F)w = —(Q(F))w
Difference QEls

unbounded operator

—
(:prwe(F))w = <P(f)>uT; - <p(f)>u%0 > —(Que(F))w -

state of interest
reference state
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Quantum strong energy inequality

Our aim is to establish QEI lower bounds on the averaged EED along
timelike geodesic v,

(o 0 1)u(F?) = / drF2(r) (7))

13/19
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000

Quantum strong energy inequality

Our aim is to establish QEI lower bounds on the averaged EED along
timelike geodesic v,

(o 0 1)u(F?) = / drF2(r) (7))

<PUw—[P1W]+[/JzW]+(§R£2£ )[W]

along ~y, where :W: = W — W, and the operators p; are given by

p| = ( )(vuewu) Zveawea
=1
= —26(1®, UFU"V,V,),
28
= R — R, U"U" .
R n—2 o UMU

13/19



/ drf(r)2 [(L ©s UFUY,V,)F] (+(7))

/ dr[(0® ) ((F @ £ A ()

+ / drf' (1) [F] (+(7))
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Point-splitting technique

/ drf(r)2 [(L ©s UFUY,V,)F] (+(7))

= - /dT[(3®3)((f® o Fl(7) +/d7—f’(7—)2 [F1(~(7))

/dT [(0 @ 0) ((f @ F)¢*(Q © Q):W:)] (7)

B /ooo 9202 (7 ((@ © QW) (o £) — (6°((Q© QWA)(Fa. )

™

The two terms in the integrand are non-negative and decay rapidly as
« — 400 for any Hadamard state w.

14 /19
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Point-splitting technique

~

P2

/ drf(r)2 [(L ©s UFUY,V,)F] (+(7))

= - /dT[(3®3)((f® o Fl(7) +/d7—f’(7—)2 [F1(~(7))

/dT [(0 @ 0) ((f @ F)¢*(Q © Q):W:)] (7)

* da . - N _
= [T (6 (@0 QW) ()~ (@ QWAE £)))
The two terms in the integrand are non-negative and decay rapidly as

« — 400 for any Hadamard state w.

= The state dependent part can be discarded

14 /19
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Theorem

For non-minimally coupled scalar field with coupling constant £ € [0,&], v a
timelike geodesic, for all Hadamard states w, the normal-ordered effective
energy density obeys the QSEI

[ ) ouar(r) 2 = [a(FL+ (9% 0 7)u(R6(F) +2c(7)] |

where
o da * (A r 2 % F
Da(F) = [ %2 (67 (5 W), ) + 260" Wo( )
Qlfl(r) = L2012 (r) + 267 (7)),
and

Qelfl(r) = () (R 00" = 2R ) (1),

(CJ Fewster, E-A K, 2018)

15/19
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For non-minimally coupled scalar field with coupling constant £ € [0,&c], v a
timelike geodesic, for all Hadamard states w, the normal-ordered effective
energy density obeys the QSEI

(puian (M) (1(7)) > — [ Qa(f,w0) | +| (9700 0 ) [ Qa(F) |+ 2c(F) \)}

m Du(f,wo): Dependence on f and the reference state

m Qg(f): Dependence on f

m (:®°:, 07).: Dependence on the state of interest and the reference state

m Qc(f): Curvature terms dependent on f

(CJ Fewster, E-A K, 2018)

15/19



A condition obeyed by quantum fields
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The semiclassical Einstein equation

m The singularity theorems require a geometric assumption
m In the case of classical fields we can use the Einstein equation

m When we are treating quantum fields on a classical curved
background we can instead use the semiclassical Einstein equation.

((Tuw)w = 871Gy, .
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A condition obeyed by quantum fields
®000

The semiclassical Einstein equation

m The singularity theorems require a geometric assumption
m In the case of classical fields we can use the Einstein equation

m When we are treating quantum fields on a classical curved
background we can instead use the semiclassical Einstein equation.

((Tuw)w = 871Gy, .

Problem

In order to use an QSEI and the SEE for general curved spacetimes we
need a QSEIl, where the EED is renormalized by subtracting the
Hadamard parametrix.

16/19
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The semiclassical Einstein equation

There is evidence that in situations where the curvature is bounded we
can find a uniform length which is small compared to local curvature
length scales and then the Hadamard parametrix approximates that of
flat spacetime.

17 /19



A condition obeyed by quantum fields
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The semiclassical Einstein equation

There is evidence that in situations where the curvature is bounded we
can find a uniform length which is small compared to local curvature
length scales and then the Hadamard parametrix approximates that of
flat spacetime.

For f supported only on this length scale 75, £ = 0, for even number of
dimensions n = 2m and if we restrict to a class of Hadamard states for
which the field's magnitude is bounded

C oy . 87T52m72 87TM2¢2
2 BAV > _ (m)y2 _ max 2
[ PR = ST A - S e

17 /19
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Partition of unity

To discuss averages over long timescales we will use a partition of unity.
We define bump functions ¢,, where ¢ is supported on (—79, 79) we
obtain a sum of integrals, each of which can be bounded

| Rusrivrdr = -2 22 / (o)™ Pdr— ST 0mae e

. m(2m)2m 2(m—-1)

18/19



A condition obeyed by quantum fields
ooeo

Partition of unity

To discuss averages over long timescales we will use a partition of unity.
We define bump functions ¢,, where ¢ is supported on (—19, 79) We
obtain a sum of integrals, each of which can be bounded

* sy AT S L \(m 8w 2(bmax
/ &MWFMd,W;jZ/ (Fn) ™ = 2RI

[ Ruirin)dr = - QullF™I - Golf.

m The @, and @ depend on Pnax, the mass, the number of
dimensions and the maximum value of the bump function and its
derivatives.

m It is exactly the form of the weakened energy condition for the
Hawking-type singularity theorem.
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Conclusions and future directions

m Proved singularity theorems with weakened energy conditions using
an alternative method that gives us information about the timescale
of creation of the focal point

m Derived a QSEI for the non-minimally coupled scalar field and
proved a singularity theorem with an energy condition derived by a
QEI obeyed by the minimally coupled quantum scalar field
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Conclusions and future directions

m Proved singularity theorems with weakened energy conditions using
an alternative method that gives us information about the timescale
of creation of the focal point

m Derived a QSEI for the non-minimally coupled scalar field and
proved a singularity theorem with an energy condition derived by a
QEI obeyed by the minimally coupled quantum scalar field

m Prove an absolute (Hadamard renormalised) QSEI for spacetimes
with curvature and verify that it satisfies the hypothesis of a
singularity theorem (work in progress)

m Examine solutions of the semiclassical Einstein equation for
cosmological spacetimes (work in progress with D. Siemssen)

m Penrose singularity theorem?

19/19
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