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Introduction Weakened conditions A condition obeyed by quantum fields

Introduction

Definition

A spacetime is singular if it possesses at least one incomplete geodesic.

Singularity theorem structure

1. Causality condition
There is a Cauchy hypersurface

2. The initial or boundary condition
There exists a trapped surface (null geodesics) or a spatial slice with
negative expansion (timelike goedesics)
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Introduction

3. The energy condition

Penrose (Null geodesics)

Null Convergence Condition

Rµν`
µ`ν ≥ 0

Null Energy Condition

Tµν`
µ`µ ≥ 0

Hawking (Timelike geodesics)

Timelike Convergence Condition

RµνU
µUν ≥ 0

Strong Energy Condition

Tµν(UµUν − gµν/(n − 2)) ≥ 0

⇒ Then the spacetime is geodesically incomplete.
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The formation of focal points

Focal point

A point on a geodesic is called a focal point if there is a
non-everywhere-zero Jacobi field (variation field) that vanishes on the
point.
A geodesic that is continued past a focal point no longer locally
extremizes length.
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The formation of focal points

L[γ] =

∫ τ

0

|γ̇(t)| dt, I [V ] =
d2L[γs ]

ds2

∣∣∣∣
s=0

I [V ] =

∫ τ

0

Rµναβ

tangent vector︷︸︸︷
Uµ V ν︸︷︷︸
variation vector

V αUβ − DV µ

dt

DVµ
dt

 dt −
Extrinsic curvature︷︸︸︷

Kµν V
µV ν |γ(0)

Whether γ is, or is not, a local maximum of the length functional, among
amounts to the absence, or presence, of a focal point.

Focal point test

I [V ] ≥ 0 for some V µ =⇒ ∃ focal point in (0, τ ]
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Introduction Weakened conditions A condition obeyed by quantum fields

The formation of focal points

With V µ = fvµ where f smooth function that obeys f (0) = 1, f (τ) = 0∫ τ

0

(
(n − 1)ḟ 2 − f 2RµνU

µUν
)
dt ≤ −K |γ(0),

Hawking’s singularity theorem

Energy condition: RµνU
µUν ≥ 0

Initial condition: For f (t) = 1− t/τ , K |γ(0) < 0 and
τ ≥ (n − 1)/|K |γ(0)|

Causality condition: The existence of a compact Cauchy surface
which implies that there are no focal points

=⇒ The spacetime is future timelike geodesically incomplete

All pointwise energy conditions are violated by quantum fields
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Singularity theorems with weakened energy conditions

Energy condition∫ τ

0

f (t)2RµνU
µUν |γ(t) dt ≥ −Qm‖f (m)‖2 − Q0‖f ‖2,

and RµνU
µUν ≥ 0 for [0, τ0].

Initial contraction

−K |γ(0) > inf
ϕ
J1[ϕ] + inf

f
J2[f ]

J1[ϕ] =

∫ τ0

0

(1− ϕ2)

only for [0, τ0]
↓

RµνU
µUν + Q0ϕ

2 + Qm(ϕ(m))2

 dt

J2[f ] =

∫ τ

τ0

(
(n − 1)ḟ 2 + Q0f

2 + Qm(f (m))2
)
dt.

Causality condition: Existence of a compact Cauchy surface

=⇒ The spacetime is future timelike geodesically incomplete
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Initial contraction

If Q0τ
2
0 � 1 and Qm/τ

2(m−1)
0 � 1 we can show that for initial extrinsic

curvature obeying

−K |γ(0) >
√

4(n − 1)AmBmQ0

a focal point is formed within a timescale

τ ∼

√
(n − 1)Bm

AmQ0
.

m 1 2 3 4

Am 1/3 13/35 181/462 521/1287
Bm 1 6/5 10/7 700/429

Advantages

Allows us to estimate the timescale of formation of the focal point

Simpler generalization of the theorem for weakened energy
conditions
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Non-minimally coupled scalar field

Stress energy tensor for non-minimally coupled scalar fields

Tµν = (∇µφ)(∇νφ) +
1

2
gµν(µ2φ2− (∇φ)2) + ξ(gµν�g −∇µ∇ν−Gµν)φ2

The main observable of interest will be the effective energy density (EED)

ρU = TµνU
µUν − 1

n − 2
T .

As a quantum field, ρU may be defined by

ρU(f ) = Tµν

((
UµUν − gµν

n − 2

)
f

)
,

10 / 19
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Quantization

Introduction of a unital *-algebra A (M) on our manifold M

Generated by the objects Φ(f ), f ∈ D(M) where D(M) is the space
of complex-valued, compactly-supported, smooth functions on M

We only consider Hadamard states on our algebra
W (x , y) = 〈Φ(x)Φ(y)〉ω : D(M)×D(M)→ C

The smeared local Wick polynomials of the form

〈 : ∇(r)Φ∇(s)Φ: (f )〉ω

are part of an extended algebra

We need a prescription for finding algebra elements that qualify as
local and covariant Wick powers. This might be done in various
ways, expressing finite renormalisation freedoms. Hollands and Wald
(2014) set out a list of axioms that we follow.
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Quantum energy inequalities

Quantum energy inequalities (QEIs) introduce a restriction on the
possible magnitude and duration of any negative energy densities or
fluxes within a quantum field theory.

Absolute QEIs
〈:ρ:(f )〉ω ≥ −〈Q(f )〉ω

Difference QEIs

〈:ρ:ω0 (f )〉ω = 〈ρ(f )〉ω
↑

state of interest

− 〈ρ(f )〉ω0
↑

reference state

≥ −〈
unbounded operator︷ ︸︸ ︷

Qω0 (f )〉ω .
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Quantum strong energy inequality

Our aim is to establish QEI lower bounds on the averaged EED along
timelike geodesic γ,

〈:ρU : ◦ γ〉ω(f 2) =

∫
dτ f 2(τ)〈:ρU :〉ω(γ(τ)) ,

〈:ρU :〉ω = [[ρ̂1:W :]] + [[ρ̂2:W :]] +

(
ξRξ −

1− 2ξ

n − 2
µ2

)
[[:W :]]

along γ, where :W : = W −W0 and the operators ρ̂i are given by

ρ̂1 =

(
1− 2ξ

n − 1

n − 2

)
(∇U ⊗∇U) +

2ξ

n − 2

n−1∑
a=1

(∇ea ⊗∇ea) ,

ρ̂2 = −2ξ(1⊗s U
µUν∇µ∇ν) ,

Rξ =
2ξ

n − 2
R − RµνU

µUν .
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Introduction Weakened conditions A condition obeyed by quantum fields

Point-splitting technique

ρ̂2 ∫
dτ f (τ)2 [[(1⊗s U

µUν∇µ∇ν)F ]] (γ(τ))

= −
∫

dτ [[(∂ ⊗ ∂) ((f ⊗ f )φ∗F )]] (τ) +

∫
dτ f ′(τ)2 [[F ]] (γ(τ))

ρ̂1 ∫
dτ
[[

(∂k ⊗ ∂k) ((f ⊗ f )φ∗(Q ⊗ Q):W :)
]]

(τ)

=

∫ ∞
0

dα

π
α2k

(
(φ∗((Q ⊗ Q)W )) (f̄α, fα)−

(
φ∗((Q ⊗ Q)W0)(f̄α, fα)

))
The two terms in the integrand are non-negative and decay rapidly as
α→ +∞ for any Hadamard state ω.
⇒ The state dependent part can be discarded
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Theorem

For non-minimally coupled scalar field with coupling constant ξ ∈ [0, ξc ], γ a
timelike geodesic, for all Hadamard states ω, the normal-ordered effective
energy density obeys the QSEI∫

dτ f 2(τ)〈:ρU :〉ω(γ(τ)) ≥ −
[
QA(f )1 + 〈:Φ2: ◦ γ〉ω(QB(f ) + QC (f ))

]
,

where

QA(f ) =

∫ ∞
0

dα

π

(
φ∗(ρ̂1 W0)(f̄α, fα) + 2ξα2φ∗W0(f̄α, fα)

)
,

QB [f ](τ) =
1− 2ξ

n − 2
µ2f 2(τ) + 2ξ(f ′(τ))2 ,

and

QC [f ](τ) = f 2(τ)ξ

(
RµνUµUν − 2ξ

n − 2
R

)
(τ) .

(CJ Fewster, E-A K, 2018)
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Theorem

For non-minimally coupled scalar field with coupling constant ξ ∈ [0, ξc ], γ a
timelike geodesic, for all Hadamard states ω, the normal-ordered effective
energy density obeys the QSEI

〈:ρU :ω0 (f )〉ω(γ(τ)) ≥ −
[
QA(f , ω0) 1 + 〈:Φ2:ω0 ◦ γ〉ω ( QB(f ) + QC (f ) )

]
QA(f , ω0): Dependence on f and the reference state

QB(f ): Dependence on f

〈:Φ2:ω0 ◦ γ〉ω: Dependence on the state of interest and the reference state

QC (f ): Curvature terms dependent on f

(CJ Fewster, E-A K, 2018)
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Introduction Weakened conditions A condition obeyed by quantum fields

The semiclassical Einstein equation

The singularity theorems require a geometric assumption

In the case of classical fields we can use the Einstein equation

When we are treating quantum fields on a classical curved
background we can instead use the semiclassical Einstein equation.

〈:Tµν :〉ω = 8πGµν .

Problem

In order to use an QSEI and the SEE for general curved spacetimes we
need a QSEI, where the EED is renormalized by subtracting the
Hadamard parametrix.
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Introduction Weakened conditions A condition obeyed by quantum fields

The semiclassical Einstein equation

There is evidence that in situations where the curvature is bounded we
can find a uniform length which is small compared to local curvature
length scales and then the Hadamard parametrix approximates that of
flat spacetime.

For f supported only on this length scale τ0, ξ = 0, for even number of
dimensions n = 2m and if we restrict to a class of Hadamard states for
which the field’s magnitude is bounded∫

dτ f 2(τ)Rµν γ̇
µγ̇ν ≥ − 8πS2m−2

2m(2π)2m
||f (m)||2 − 8πµ2φ2

max

2m − 2
||f ||2 .
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Introduction Weakened conditions A condition obeyed by quantum fields

Partition of unity

To discuss averages over long timescales we will use a partition of unity.
We define bump functions φn, where φ is supported on (−τ0, τ0) we
obtain a sum of integrals, each of which can be bounded∫ ∞
−∞

Rµν γ̇
µγ̇ν f 2(τ)dτ ≥ −4πS2m−2

m(2π)2m

∞∑
n=0

∫ ∞
−∞

[(f φn)(m)]2dτ−8πµ2φ2
max

2(m − 1)
‖f ‖2 .
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m(2π)2m

∞∑
n=0

∫ ∞
−∞

[(f φn)(m)]2 dτ−8πµ2φ2
max

2(m − 1)
‖f ‖2 .

∫ ∞
−∞

Rµν γ̇
µγ̇ν f 2(τ)dτ ≥ −Qm||f (m)||2 − Q0||f ||2 .

The Qm and Q0 depend on φmax, the mass, the number of
dimensions and the maximum value of the bump function and its
derivatives.

It is exactly the form of the weakened energy condition for the
Hawking-type singularity theorem.
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Conclusions and future directions

Proved singularity theorems with weakened energy conditions using
an alternative method that gives us information about the timescale
of creation of the focal point

Derived a QSEI for the non-minimally coupled scalar field and
proved a singularity theorem with an energy condition derived by a
QEI obeyed by the minimally coupled quantum scalar field

Prove an absolute (Hadamard renormalised) QSEI for spacetimes
with curvature and verify that it satisfies the hypothesis of a
singularity theorem (work in progress)

Examine solutions of the semiclassical Einstein equation for
cosmological spacetimes (work in progress with D. Siemssen)

Penrose singularity theorem?

19 / 19
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