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Bañados,Teitelboim, Zanelli black hole

It is a general, stationary, axisymmetric (2 + 1) dimensional solution of
the vacuum Einstein field equations with a negative cosmological
constant Λ = −1/`2.

ds2 = −N(r)2dt2 +N(r)−2dr2 + r2
(
dφ+Nφ(r)dt

)2
N(r)2 = −M +

r2

`2
+
J2

4r2
Nφ(r) = − J

2r2
R = − 6

`2
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Bañados,Teitelboim, Zanelli black hole

ds2 = −N(r)2dt2 +N(r)−2dr2 + r2
(
dφ+Nφ(r)dt

)2
◦ As a manifold it is diffeomorphic to R× I × S1, I ⊂ R open interval

◦ For M > 0, |J | ≤M`
it has an outer and inner
horizon r = r+, r−

r2
± =

`2

2

(
M ±

√
M2 − J2

`2

)

◦ Two Killing vectors: ∂t and ∂φ

r = r+

r
=

∞

r = r− r
=

0

r = r+

r
=

∞

r = 0

1
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Bañados,Teitelboim, Zanelli black hole

ds2 = −N(r)2dt2 +N(r)−2dr2 + r2
(
dφ+Nφ(r)dt

)2

◦ r = r+ is a Killing horizon for the Killing vector

χ
.
= ∂t −Nφ(r+)∂φ = ∂t + ΩH∂φ

◦ ΩH is the angular velocity of the horizon

◦ The Killing vector χ
. timelike in the exterior region (r+,∞)
. direction to foliate the spacetime in spacelike hypersurfaces
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BTZ from AdS

ds2 = −N(r)2dt2 +N(r)−2dr2 + r2
(
dφ+Nφ(r)dt

)2
N(r)2 = −M +

r2

`2
+
J2

4r2
Nφ(r) = − J

2r2

◦ For M = −1, J = 0, one recovers the anti-de Sitter spacetime

ds2 = −[1 + (r/`)2]dt2 + [1 + (r/`)2]−1dr2 + r2dφ2 .

◦ BTZ can be obtained by an identification of boundaries of AdS3,
hence locally it is a region of constant curvature

◦ The BTZ black hole is locally isometric to AdS3
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Scalar field

◦ Real massive scalar field PΦ = (�g −m2 − ξR)Φ = 0

◦ Dimensionless parameter µ2 .
= m2`2 + ξR`2

◦ m and ξ st the Breitenlohner-Freedman bound holds: µ2 > −1

! non globally hyperbolic spacetime
(inital data + Boundary conditions)

◦ Using coordinates (t, r, φ)

◦ ∂t and ∂φ are Killing fields of the metric
◦ Fourier expansion of Φ

Φ(t, r, φ) =
1

2π

∑
k∈Z

∫
dω e−iωt+ikφ Ψωk(r)
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Scalar field radial equation

Change of radial variable

We focus on the exterior region r+ < r <∞. Boundary conditions will
apply. We change variable as z =

r2−r2+
r2−r2−

z

r

10−∞

∞r+r−

The radial mode of the field obeys[
z(1− z)∂2

z + (1− z)∂z +
(
`2(ωr+−kr−)2

4(r2+−r2−)2z
− `2(ωr−−kr+)2

4(r2+−r2−)2
− µ2

4(1−z)

)]
Ψωk(z) = 0
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Hypergeometric equation

With the ansatz Ψωκ(z) = zα(1− z)βFωκ(z)

α = −i`(ω − ΩHκ)r+

2(r2
+ − r2

−)
, β =

1

2

(
1 +

√
1 + µ2

)
we obtain an hypergeometric equation

z(1− z)∂2
zFωk + [c− (a+ b+ 1)z]∂zFωk − abFωk = 0

with 

a =
1

2

(
1 +

√
1 + µ2 + i`

ω − k
r+ − r−

)
b =

1

2

(
1 +

√
1 + µ2 + i`

ω + k

r+ + r−

)
c = 1− i`(ω − ΩHκ)r+

r2
+ − r2

−
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Hypergeometric equation - comment 1

With the ansatz Ψωκ(z) = zα(1− z)βFωκ(z)

α = −i`(ω − ΩHκ)r+

2(r2
+ − r2

−)
, β =

1

2

(
1 +

√
1 + µ2

)
we obtain an hypergeometric equation

z(1− z)∂2
zFωk + [c− (a+ b+ 1)z]∂zFωk − abFωk = 0

with 

a =
1

2

(
1 +

√
1 + µ2 + i`

ω − k
r+ − r−

)
b =

1

2

(
1 +

√
1 + µ2 + i`

ω + k

r+ + r−

)
c = 1− i`(ω − ΩHκ)r+

r2
+ − r2

−
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Hypergeometric equation - comment 2

With the ansatz Ψωκ(z) = zα(1− z)βFωκ(z)

α = −i`(ω − ΩHκ)r+

2(r2
+ − r2

−)
, β =

1

2

(
1 +

√
1 + µ2

)
we obtain an hypergeometric equation

z(1− z)∂2
zFωk + [c− (a+ b+ 1)z]∂zFωk − abFωk = 0

with 

a =
1

2

(
1 +

√
1 + µ2 + i`

(ω − ΩHκ)− (1− ΩH)k

r+ − r−

)
b =

1

2

(
1 +

√
1 + µ2 + i`

(ω − ΩHκ) + (1 + ΩH)k

r+ + r−

)
c = 1− i`(ω − ΩHκ)r+

r2
+ − r2

−
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Hypergeometric equation - comment 2

With the ansatz Ψωκ(z) = zα(1− z)βFωκ(z)

α = −i`(ω − ΩHκ)r+

2(r2
+ − r2

−)
, β =

1

2

(
1 +

√
1 + µ2

)
◦ What is ω? L∂tΦ = −iωΦ Φ ∝ eiωteiκφΨωκ(z)

◦ ω̃ := ω − ΩHκ

◦ What is ω̃? LχΦ = −iω̃Φ

◦ χ = ∂t + ΩH∂φ is the Killing vector defining the event horizon
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Hypergeometric solutions

Solutions: Gaussian hypergeometric functions F (p, q, s; z)

0 1

◦ For µ2 > −1 and µ2 6= (n− 1)2 − 1, n = 1, 2, 3, . . .

Ψ1(z) = zα(1− z)βF (a, b, a+ b− c+ 1; 1− z)
Ψ2(z) = zα(1− z)1−βF (c− a, c− b, c− a− b+ 1; 1− z)

◦ For µ2 = (n− 1)2 − 1, n = 2, 3, . . .
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Hypergeometric solutions

Solutions in the general case µ2 > −1 and µ2 6= (n− 1)2 − 1

Ψ1(z) = zα(1− z)βF (a, b, a+ b− c+ 1; 1− z)
Ψ2(z) = zα(1− z)1−βF (c− a, c− b, c− a− b+ 1; 1− z)

Principal solution at z = 1: Ψ1

The unique solution st limz→1 Ψ1(z)/Ψ(z) = 0 for every other Ψ

For −1 6 µ2 < 0, both solutions are L2((z0, 1), dν)

◦ For µ2 > 0 only Ψ1 is L2((z0, 1), dν)

With dν =
√
|g| gttdrdφ over a spacelike hypersurface Σt of constant t

Francesco Bussola Massive scalar field on BTZ Göttingen, 3 Feb 2018 12 / 28



Boundary conditions

. Aim - Identify all the possible boundary conditions that can be
applied at the boundary z = 1, aka r =∞.

. Imposing the physical principle of zero energy flux at infinity is
equivalent to impose Robin boundary conditions to the scalar
field at infinity.
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Boundary conditions

Regular ODE at the boundary
• Construct a convenient basis of fundamental solution {ϕ1, ϕ2}

• Identify the principal solution at the boundary, let it be ϕ1

• Write a general solution in the form

Ψ(z) = N [cos(ζ)ϕ1(z) + sin(ζ)ϕ2(z)] ζ ∈ [0, π)

• The most general homogeneous boundary condition is then a
Robin boundary condition in the form

cos(ζ)Ψ(1) + sin(ζ)Ψ′(1) = 0
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Boundary conditions

Ψ(z) = N [cos(ζ)ϕ1(z) + sin(ζ)ϕ2(z)]

cos(ζ)Ψ(1) + sin(ζ)Ψ′(1) = 0

. The case which selects the principal solution ϕ1, namely ζ = 0,
corresponds to the Dirichlet boundary condition, Ψ(1) = 0

. The case ζ = π
2 corresponds to the Neumann boundary condition
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Boundary conditions

Singular ODE at the boundary
• Basis of fundamental solution {Ψ1,Ψ2}

• Identify the principal solution Ψ1

• DefineWz[u, v]
.
= u(z)v′(z)− v(z)u′(z)

• For a solution Ψωk, a Robin boundary condition at z = 1 is

lim
z→1
{cos(ζ)Wz[Ψωk,Ψ1](z) + sin(ζ)Wz[Ψωk,Ψ2](z)} = 0 , ζ ∈ [0, π)

• The solution is given by

Ψωk(z) = Nωk [cos(ζ)Ψ1(z) + sin(ζ)Ψ2(z)]
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Boundary conditions

Natural generalization of the standard Robin boundary conditon

Ψωk(z) = Nωk [cos(ζ)Ψ1(z) + sin(ζ)Ψ2(z)]

lim
z→1
{cos(ζ)Wz[Ψωk,Ψ1](z) + sin(ζ)Wz[Ψωk,Ψ2](z)} = 0

. ζ = 0 corresponds to the standard Dirichlet boundary conditions

! A Robin boundary condition at z = 1 leads to a well-posed
problem if Ψ1 and Ψ2 are L2 near z = 1 with dν =

√
|g| gttdrdφ
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A brief recap

Up to now everything is classical
. Scalar field on spacetime with symmetries
. Mode expansion
. Radial mode solutions

We aim to quantize the system

We want to build the Two Point Function

Possibly a Hadamard ground state

Green operators and CCR
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Two Point Function and causal propagator

Bidistribution Λ2 ∈ D′(M ×M) such that

(P ⊗ I)Λ2 = (I⊗ P )Λ2 = 0 (equations of motion)

We assume that Λ2 admits a mode expansion

Λ2(x, x′) = lim
ε→0+

1

2π

∞∫
0

dω̃
∑
k∈Z

e−i(ω̃(t−t′)−k(φ−φ′)−iε)Λ̂ω̃k(z, z
′),

The CCR impose that the antisymmetric part of Λ2 is proportional to
the causal propagator: iE(x, x′) = Λ2(x, x′)− Λ2(x′, x)

1

2π

∫ ∞
0

dω̃ ω̃ Λ̂ω̃k(z, z
′) =

δ(z − z′)
J(z)
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Quadratic operator pencil

No standard eigenvalue problem: How to reconstruct the delta?

(L+ ω̃A+ ω̃2W )Ψ = 0[
L 0
0 −W

]
Z = −ω̃

[
A W
W 0

]
Z , Z =

(
Ψ
ω̃Ψ

)

• •

[
•
•

] [
•
•

]
1

ω̃


L+ω̃A+ω̃2W

0

1
0

[
1 0

] L 0

0 −W

+ω̃
A W

W 0


[
0 0

0 −W−1

]

[
1 ω̃

]

1. Appendices of the present work
2. I. Khavkine https://arxiv.org/pdf/1711.00585.pdf
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Resolution of identity

δ(z − z′) =

∮
γ∞

dω̃ ω̃ Gω̃(z, z′)J(z)

◦ Where
(L⊗ 1)Gω̃ = (1⊗ L)Gω̃ = δ(z − z′)

Gω̃(z, z′) = Cω̃[θ(z − z′)uω̃(z′)vω̃(z) + θ(z′ − z)uω̃(z)vω̃(z′)]

◦ We need uω̃(z) ∈ L2 near the horizon z = 0

◦ uω̃(z) ∝ zα = z
−i `ω̃r+

2(r2+−r
2
−)

◦ Branch choice uω̃(z) =

{
u+
ω̃ (z), Im ω̃ > 0
u−ω̃ (z), Im ω̃ < 0

◦ Arbitrariness in the definition of ω̃ = +
√
ω̃2 . . . or . . . ω̃ = −

√
ω̃2
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Resolution of identity

δ(z − z′) =

∮
dω̃ ω̃ Cω̃uω̃(z<)vω̃(z>)J(z)

ω̃ C-plane

uω̃(z) =

{
u+
ω̃ (z), Im ω̃ > 0
u−ω̃ (z), Im ω̃ < 0
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Resolution of identity

δ(z − z′) =

∮
dω̃ ω̃ Cω̃uω̃(z<)vω̃(z>)J(z) +

∑
Res

ω̃ C-plane

uω̃(z) =

{
u+
ω̃ (z), Im ω̃ > 0
u−ω̃ (z), Im ω̃ < 0

Francesco Bussola Massive scalar field on BTZ Göttingen, 3 Feb 2018 23 / 28



Ground state µ2 ∈ (−1, 0)

. Boundary condition at z = 1

. A different TPF for each Robin boundary condition

1) ζ ∈ [0, ζ∗), ζ∗ > π
2 : No additional poles, just the branch cut on the ω̃ real axis

Λζ2(x, x′) = lim
ε→0+

∑
k∈Z

eik(φ̃−φ̃
′)
∫ ∞
0

dω̃

(2π)2
e−iω̃(t̃−t̃′−iε)

(
AB −AB

)
C

|cos(ζ)B − sin(ζ)A|2
Ψζ(z)Ψζ(z′)

◦ ground state built only out of positive ω̃-frequencies
◦ using the results of Sahlmann - Verch (2000) it is Hadamard
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Bound states µ2 ∈ (−1, 0)

. Boundary condition at z = 1

. A different TPF for each Robin boundary condition

2) ζ ∈ [ζ∗, π), ζ∗ > π
2 : One additional pole

Λζ2(x, x′) = lim
ε→0+

∑
k∈Z

eik(φ̃−φ̃
′)
∫ ∞
0

dω̃

(2π)2
e−iω̃(t̃−t̃′−iε)

(
AB −AB

)
C

|cos(ζ)B − sin(ζ)A|2
Ψζ(z)Ψζ(z′)

+i
∑
k∈Z

eik(φ̃−φ̃
′)
(
e−iω̃ζ(t̃−t̃

′) + e−iω̃ζ(t̃−t̃
′)
)
<
[
CD(ω̃)Ψζ(z)Ψζ(z

′)
]∣∣
ω̃=ω̃ζ

◦ No ground state
◦ Hadamard?
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To summarize

◦ Scalar field on rotating BTZ

◦ Symmetries and mode decomposition

◦ Solutions for different mass values (with or without boundary
conditions)

◦ All possible Robin boundary conditions

◦ Construction of TPF in all mass ranges and for all boundary
conditions

◦ Two regimes of boundary conditions:
. Ground state and Hadamard
. Bound states
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Ongoing

Characterization of Hawking radiation for the scalar field in BTZ

◦ 3D generalization of the Moretti-Pinamonti’s approach

◦ local computation

◦ scaling limit towards the Killing horizon

◦ thermal nature of the quantum correlation functions
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