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Construction of models of QFT

A major problem of QFT is the difficulty of constructing interesting
examples beyond formal perturbation theory.

o free theories

@ P(¢)2 and ¢3 models

@ conformal field theories in 2 dimensions

@ integrable theories in 2 dimensions



Integrable models

@ Bosons (no spin, with mass i > 0) in 1+1 dimensional Minkowski
spacetime

@ Two-momentum and rapidity:
p = p(#) = p(cosh @, sinh 9)

@ Two-particle scattering allows exchange of phase factor
e two-particle scattering matrix S(61 — 05).
@ multi-particle scattering matrix — product of two-particle scattering
matrices (“factorizing S matrix”).
@ The two-particle scattering function S is

e a meromorphic function in the strip 0 < Imf < =

e with certain symmetry properties,

e S = 1:free field; S = —1: Ising model, other examples:
sinh-Gordon model, Bullough-Dodd model.

Task: Given a function S, construct a corresponding quantum field
theory.



Direct attempt

Previous attempt ("form factor programme"): Construct the n-point
function of a local pointlike field A(x).

(2, A(x)A(0)Q2) =

1 -
Zﬁ / db; ... d0, e~ k=1 PO (QA(0)]61, . . ., On)in|?
n=0

Problem: Convergence of the series is extremly difficult to control.
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Here: Try constructing field operators with weaker localization
properties first.



Deformed Hilbert space and deformed fields

The theory is constructed as a deformation of a free field:
@ Zamolodchikov-Faddeev algebra (elements z(6), z'(6)):

2(01)z(02) = S(61 — 02) 2(02)z(61) ,
Z1(61)2'(62) = S(61 — 62) 2'(62) 21 (61) ,
2(01)21(62) = S(02 — 601) 27(02)2(61) + 6(61 — 65) - 1
These act on an “S-symmetric” Fock space.

@ Representation of the Poincaré group, including the space-time
reflections J.

@ Define

6(x) = / a0 (#021(0) + & P 2(0)).
@ This field is not local:

[o(x), ¢(y)] # 0 even if x spacelike separated from y.



Local observables

@ But, with ¢'(x) := U(j)d(—x)U()):
[#(x), ¢’ (¥)] = 0if x spacelike separated to the left of y.
This assumes that S is analytic in the “physical strip”
0<Im( <.
@ Interpretation: ¢(x) is localized in the wedge region W, + x, and
¢'(y) is localized in the wedge region Wg — y.

@ Further wedge-local observables by relative locality / associated
von Neumann algebras:

A(WL + x) = {expi¢(f)| supp f C W, + x}"

@ Observables localized in bounded regions are obtained as
intersections of von Neumann algebras

A(O) = AW +x)NA(Wr—y) where O = W +xNWg—y

@ Result (Lechner 2006): Such observables exist for a large class
of S.



Bound states

Now suppose that S(6) has poles in the physical strip 0 < Im6 < 7.
@ Physically these poles correspond to “bound states”, that is the
“fusion” of two bosons.
e Simplification: only one type of particle; two bosons of equal type
fuse to form another boson of the same type.
@ The momenta of the particles are related by
p(01) + p(62) = p(p), where 64, 6, and 6, are the (complex)
rapidities of the two fusing bosons and of the bound particle,
respectively.
@ The difference of the rapidities of the fusing bosons is the position
of the pole on the rapidity complex plane: 6y — 0> = i\
0 < A< m).

o Ifthe particles have all equal masses, this is fulfilled if and only if
01 =0+ 7,0, =0— T and 0, =0 (thatis, \ = 2"



Bound states

@ In Lechner’s work, the commutator [¢'(f), ¢(g)] is seen to be

zero by shifting an integral contour from R to R + jr.
e But due to the residue of S at the pole % this is no longer true.
@ We need to modify ¢ to get a wedge-local expression.



Wedge-local model with bound states

The properties of the two-particle scattering function are
e Unitarity: S(—6) = S(0) = S(6)~".
@ Crossing symmetry: S(im — ) = S(0).
e Bootstrap equation: S(6) = S(6 + Z)S(6 — Z).
Example for such a function S: Bullough-Dodd model.
S(¢. B) = £2(Q)fs_2(Q)F_2 (),
where
__tanh }(¢ + ima)

=——2> 1 7T g<B<A.
tanh 1(¢ — ima)

fa(C)



Wedge-local model with bound states

We introduce, on the S-symmetric Fock space, the “bound state
operator”.
On the single-particle Hilbert space H1:

Dom(x+(f)) :=
i
{¢ € Hy : £(P) has an L[2-bounded analytic continuation to 6 — g},

(u(ne)0) = Vel (o475 )e(0- 7).

3
where R := res,_zx S((). Note: x1(f) realizes the idea that the state
3

of one elementary particle £ is fused with f* into the same species of
particle.
On the S-symmetric Fock space: (P projector onto this space)

Xn(f) :== nPa(x1(f) @1 ® - ®1)Pp,

X() = D xa(f).



Wedge-local model with bound states

Note: As a consequence of crossing symmetry, the two-particle
scattering function has another pole at ' = im — 2’7” = %r with residue

/. .
R = res;_ix S(¢).

As a consequence of the properties of S, one finds that R = —R and
that R is purely imaginary.



Wedge-local model with bound states

We define a new field

o(f) = (1) + x(f),
where
o(f) = 21(f) + 2(f-)

(12 (0) = [ db =PO*1(x). ) )
We can introduce the reflected field as ¢/(g) := Jo(jg)J.



Weak wedge commutativity

Consider the following linear space of vectors:

W € Dom(¢(f)) N Dom(¢'(g)) such that

HjS(H 0; + g’)\U (0,04, ,0p_1) and

[1,5(0— 6+ 2) Wy(0,6s,--- ,6n_1) have L2(R""")-valued
bounded analytic continuations in 8 to 6 + ¢/ for some € > 0.

Let f and g be real test functions supported in W, and W,
respectively. Then, for each ®, WV in the linear space above, it holds
that

(6(1®,d'(g)V) = (J'(g)®, S(NV).

@ Note: It is the commutator of y with its reflected operator ' that
cancels the contribution of the residues coming from the
commutator between ¢ and ¢’, mentioned before.



Outlook

e The fields ¢(f) and ¢/(g) do not preserve their domains,
especially one cannot iterate them on the vacuum more than
once.

@ The Reeh-Schlieder property is difficult to verify since the domain
of the field is not invariant. If we assume the existence of nice
self-adjoint extensions, Reeh-Schlieder can be shown.

@ The field qz(f) is a polarization-free generator, but non-temperate.

@ To show: ¢(f) and ¢'(g) have self-adjoint extensions and they
strongly commute. (some progress by Y. Tanimoto)

@ Apply Haag-Ruelle scattering theory.

@ Construction of Haag-Kastler nets: prove the modular nuclearity

condition for the associated wedge-local nets and for separations
of wedges larger than a minimal distance.



Other models

Other interesting models with poles in the physical strip contain more
than one type of particle.

@ Z(N) model: has particles labelled 1,..., N — 1, where N — j is
the anti-particle of j (j = N — j) with fusion rules
(jk) = j+ kmod N.

@ Thirring model: has particles s, s (“soliton”, “anti-soliton”) and a
finite number of bound states of s and s called by (“breathers”).

(s,8) = by, (s, bx) = s, (8,b) =,
(bk, br) = bys,  (bkts; bk) = by



Other models

What changes in these models:
@ There is a larger single particle space, i.e., there are several
types of creators and annihilators: z,, zfy.
@ The two-particle scattering function is a matrix s‘“ﬁ(g)
@ Fusion angles can be more complicated 0, ; = 0,

(@) T 0ga)
@ Wedge local fields and associated local nets in the case without

poles in the physical strip have been worked out by
Lechner-Schitzenhofer and Alazzawi

o(f) = zo(Ji—a) + Z::ru(f-I-a)-

@ In the case with poles in the physical strip, the proof of
wedge-locality requires a new form of the bootstrap equation:

SE(Cn = 15 Sh (C+ i07,)) S5 = 18]5,),

where the matrix 7 is related to the residue of S.



Other models

..and the Yang-Baxter equation:

S51as (0)82,(0 +0")SD,7,(8) = 877, (6/) 827, (6 + 6) S5, ()

together with a new , acting on 7 as

(x1(H)€)~(0) Z Nagta (0 + i0(a))€8(0 — i0(0))-

@ What we have so far:

e Inthe Z(N)-Ising model and in the Affine-Toda field theories
certain components of the fields ¢(f) and ¢'(g) weakly commute
on a dense domain.

@ We can prove an analogous result in a “deformed” version of
sine-Gordon model with CDD factors, if we restrict ourselvies to
only two breathers.

e We are currently investigating the Thirring model.



Summary and outlook

@ We have investigated integrable models where the two-particle
scattering function has poles in the physical strip.

@ We have modified Lechner’s definition of wedge-local field by
adding an extra term “x”.

@ In some models, e.g. Bullough-Dodd, this again yields a
wedge-local quantity.

@ In other models, e.g. Z(N) and sine-Gordon, we have obtained
partial results.

@ Operator theoretic properties of q3 are a difficult issue and are
under investigation.

@ Questions concerning the construction of Haag-Kastler nets
(modular nuclearity condition) and the application of Haag-Ruelle
scattering theory for scalar S-matrices are work in progress.
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