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Dear Henning,

As my Professor, Advisor, Mentor, Colleague and Collaborator you
have been a very important influence during my career and I very
much regret that today, I cannot be in York giving a talk in the honor of
your 60th birthday and celebrating with you. I had tried everything to
be in York, but due to complicated immigration law, I could not leave
the country and therefore not participate in this event. I hereby send
you my best birthday wishes.

Alles gute zum 60. Geburtstag!

Marcel Bischoff



Construction of models of QFT

A major problem of QFT is the difficulty of constructing interesting
examples beyond formal perturbation theory.

free theories

P(φ)2 and φ4
3 models

conformal field theories in 2 dimensions

integrable theories in 2 dimensions



Integrable models

Bosons (no spin, with mass µ > 0) in 1+1 dimensional Minkowski
spacetime

Two-momentum and rapidity:

p = p(θ) = µ(cosh θ, sinh θ)

Two-particle scattering allows exchange of phase factor
two-particle scattering matrix S(θ1 − θ2).

multi-particle scattering matrix – product of two-particle scattering
matrices (“factorizing S matrix”).
The two-particle scattering function S is

a meromorphic function in the strip 0 < Im θ < π
with certain symmetry properties,
S = 1: free field; S = −1: Ising model, other examples:
sinh-Gordon model, Bullough-Dodd model.

Task: Given a function S, construct a corresponding quantum field
theory.



Direct attempt

Previous attempt ("form factor programme"): Construct the n-point
function of a local pointlike field A(x).

〈Ω,A(x)A(0)Ω〉 =
∞∑

n=0

1
n!

∫
dθ1 . . . dθn e−ix·

∑n
k=1 p(θk )|〈Ω|A(0)|θ1, . . . , θn〉in|2

Problem: Convergence of the series is extremly difficult to control.

Here: Try constructing field operators with weaker localization
properties first.



Direct attempt

Previous attempt ("form factor programme"): Construct the n-point
function of a local pointlike field A(x).

〈Ω,A(x)A(0)Ω〉 =
∞∑

n=0

1
n!

∫
dθ1 . . . dθn e−ix·

∑n
k=1 p(θk )|〈Ω|A(0)|θ1, . . . , θn〉in|2

Problem: Convergence of the series is extremly difficult to control.

Here: Try constructing field operators with weaker localization
properties first.



Deformed Hilbert space and deformed fields

The theory is constructed as a deformation of a free field:

Zamolodchikov-Faddeev algebra (elements z(θ), z†(θ)):

z(θ1)z(θ2) = S(θ1 − θ2) z(θ2)z(θ1) ,

z†(θ1)z†(θ2) = S(θ1 − θ2) z†(θ2)z†(θ1) ,

z(θ1)z†(θ2) = S(θ2 − θ1) z†(θ2)z(θ1) + δ(θ1 − θ2) · 1.

These act on an “S-symmetric” Fock space.

Representation of the Poincaré group, including the space-time
reflections J.

Define

φ(x) :=

∫
dθ
(

eip(θ)·xz†(θ) + e−ip(θ)·xz(θ)
)
.

This field is not local:

[φ(x), φ(y)] 6= 0 even if x spacelike separated from y .



Local observables

But, with φ′(x) := U(j)φ(−x)U(j):

[φ(x), φ′(y)] = 0 if x spacelike separated to the left of y .

This assumes that S is analytic in the “physical strip”
0 < Im ζ < π.
Interpretation: φ(x) is localized in the wedge region WL + x , and
φ′(y) is localized in the wedge region WR − y .
Further wedge-local observables by relative locality / associated
von Neumann algebras:

A(WL + x) = {exp iφ(f ) | supp f ⊂ WL + x}′′

Observables localized in bounded regions are obtained as
intersections of von Neumann algebras

A(O) := A(WL+x)∩A(WR−y) where O = WL+x∩WR−y

Result (Lechner 2006): Such observables exist for a large class
of S.



Bound states

Now suppose that S(θ) has poles in the physical strip 0 < Im θ < π.
Physically these poles correspond to “bound states”, that is the
“fusion” of two bosons.

Simplification: only one type of particle; two bosons of equal type
fuse to form another boson of the same type.

The momenta of the particles are related by
p(θ1) + p(θ2) = p(θb), where θ1, θ2 and θb are the (complex)
rapidities of the two fusing bosons and of the bound particle,
respectively.
The difference of the rapidities of the fusing bosons is the position
of the pole on the rapidity complex plane: θ1 − θ2 = iλ
(0 < λ < π).

If the particles have all equal masses, this is fulfilled if and only if
θ1 = θ + iπ

3 , θ2 = θ − iπ
3 and θb = θ (that is, λ = 2π

3 .)



Bound states

In Lechner’s work, the commutator [φ′(f ), φ(g)] is seen to be
zero by shifting an integral contour from R to R + iπ.

But due to the residue of S at the pole 2πi
3 , this is no longer true.

We need to modify φ to get a wedge-local expression.



Wedge-local model with bound states

The properties of the two-particle scattering function are

Unitarity: S(−θ) = S(θ) = S(θ)−1.

Crossing symmetry: S(iπ − θ) = S(θ).

Bootstrap equation: S(θ) = S(θ + iπ
3 )S(θ − iπ

3 ).

Example for such a function S: Bullough-Dodd model.

S(ζ,B) = f 2
3
(ζ)f B

3−
2
3
(ζ)f− B

3
(ζ),

where

fa(ζ) :=
tanh 1

2 (ζ + iπa)

tanh 1
2 (ζ − iπa)

, 0 < B < 1.



Wedge-local model with bound states

We introduce, on the S-symmetric Fock space, the “bound state
operator”.
On the single-particle Hilbert spaceH1:

Dom(χ1(f )) :=

{ξ ∈ H1 : ξ(θ) has an L2-bounded analytic continuation to θ− iπ
3
},

(χ1(f )ξ)(θ) :=
√

2π|R|f+
(
θ +

iπ
3

)
ξ

(
θ − iπ

3

)
,

where R := resζ= 2πi
3

S(ζ). Note: χ1(f ) realizes the idea that the state

of one elementary particle ξ is fused with f+ into the same species of
particle.
On the S-symmetric Fock space: (P projector onto this space)

χn(f ) := nPn(χ1(f )⊗ 111⊗ · · · ⊗ 111)Pn,

χ(f ) =
∞⊕

n=0

χn(f ).



Wedge-local model with bound states

Note: As a consequence of crossing symmetry, the two-particle
scattering function has another pole at θ′ = iπ− 2iπ

3 = iπ
3 with residue

R′ := resζ= iπ
3

S(ζ).

As a consequence of the properties of S, one finds that R′ = −R and
that R is purely imaginary.



Wedge-local model with bound states

We define a new field

φ̃(f ) = φ(f ) + χ(f ),

where
φ(f ) = z†(f+) + z(f−)

(f±(θ) =
∫

dθ e±ip(θ)·x f (x)).
We can introduce the reflected field as φ̃′(g) := Jφ̃(jg)J.



Weak wedge commutativity

Consider the following linear space of vectors:
Ψ ∈ Dom(φ̃(f )) ∩ Dom(φ̃′(g)) such that∏

j S
(
θ − θj + πi

3

)
Ψn(θ, θ1, · · · , θn−1) and∏

j S
(
θ − θj + 2πi

3

)
Ψn(θ, θ1, · · · , θn−1) have L2(Rn−1)-valued

bounded analytic continuations in θ to θ ± εi for some ε > 0.

Theorem
Let f and g be real test functions supported in WL and WR ,
respectively. Then, for each Φ,Ψ in the linear space above, it holds
that

〈φ̃(f )Φ, φ̃′(g)Ψ〉 = 〈φ̃′(g)Φ, φ̃(f )Ψ〉.

Note: It is the commutator of χ with its reflected operator χ′ that
cancels the contribution of the residues coming from the
commutator between φ and φ′, mentioned before.



Outlook

The fields φ̃(f ) and φ̃′(g) do not preserve their domains,
especially one cannot iterate them on the vacuum more than
once.

The Reeh-Schlieder property is difficult to verify since the domain
of the field is not invariant. If we assume the existence of nice
self-adjoint extensions, Reeh-Schlieder can be shown.

The field φ̃(f ) is a polarization-free generator, but non-temperate.

To show: φ̃(f ) and φ̃′(g) have self-adjoint extensions and they
strongly commute. (some progress by Y. Tanimoto)

Apply Haag-Ruelle scattering theory.

Construction of Haag-Kastler nets: prove the modular nuclearity
condition for the associated wedge-local nets and for separations
of wedges larger than a minimal distance.



Other models

Other interesting models with poles in the physical strip contain more
than one type of particle.

Z (N) model: has particles labelled 1, . . . ,N − 1, where N − j is
the anti-particle of j (̄j = N − j) with fusion rules
(jk) = j + k mod N.

Thirring model: has particles s, s̄ (“soliton”, “anti-soliton”) and a
finite number of bound states of s and s̄ called bk (“breathers”).

(s, s̄) = bk , (s, bk ) = s, (s̄, bk ) = s̄,

(bk , bl) = bk+l , (bk+l , bk ) = bl .



Other models

What changes in these models:

There is a larger single particle space, i.e., there are several
types of creators and annihilators: zα, z

†
α.

The two-particle scattering function is a matrix Sαβ
γδ (ζ).

Fusion angles can be more complicated θγαβ = θγ(αβ) + θγ(βα).

Wedge local fields and associated local nets in the case without
poles in the physical strip have been worked out by
Lechner-Schützenhofer and Alazzawi

φ(f ) = zα(Jf−α) + z†α(f+α).

In the case with poles in the physical strip, the proof of
wedge-locality requires a new form of the bootstrap equation:

Sµγ̂
γν (ζ)ηγαβ = ηγ̂

α̂β̂
Sµα̂
αk (ζ + iθγ(αβ))Sk β̂

βν(ζ − iθγ(βα)),

where the matrix η is related to the residue of S.



Other models

. . . and the Yang-Baxter equation:

Sαβ
β′α′(θ)Sα′γ

γ′α′′(θ + θ′)Sβ′γ′

γ′′β′′(θ
′) = Sβγ

γ′β′(θ
′)Sαγ′

γ′′α′(θ + θ′)Sα′β′

β′′α′′(θ).

together with a new χ, acting onH1 as

(χ1(f )ξ)γ(θ) :=
∑
αβ

ηγαβ f+α (θ + iθ(αβ))ξβ(θ − iθ(βα)).

What we have so far:
In the Z (N)-Ising model and in the Affine-Toda field theories
certain components of the fields φ̃(f ) and φ̃′(g) weakly commute
on a dense domain.
We can prove an analogous result in a “deformed” version of
sine-Gordon model with CDD factors, if we restrict ourselvies to
only two breathers.
We are currently investigating the Thirring model.



Summary and outlook

We have investigated integrable models where the two-particle
scattering function has poles in the physical strip.

We have modified Lechner’s definition of wedge-local field by
adding an extra term “χ”.

In some models, e.g. Bullough-Dodd, this again yields a
wedge-local quantity.

In other models, e.g. Z (N) and sine-Gordon, we have obtained
partial results.

Operator theoretic properties of φ̃ are a difficult issue and are
under investigation.

Questions concerning the construction of Haag-Kastler nets
(modular nuclearity condition) and the application of Haag-Ruelle
scattering theory for scalar S-matrices are work in progress.
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