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● Dirac (fermion) fields describe realistic matter contents in Physics:   
cosmology, condensed matter (e.g. graphene)...

● Infinite ambiguity in their quantum description:

➢  Choice of (Fock) representation of the CAR's.
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● Dirac (fermion) fields describe realistic matter contents in Physics:  
cosmology, condensed matter (e.g. graphene)...

● Infinite ambiguity in their quantum description:

➢  Choice of (Fock) representation of the CAR's.

● In symmetric backgrounds, one usually imposes invariance of the vacuum 
under the symmetries of the system.
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● Dirac (fermion) fields describe realistic matter contents in Physics:  
cosmology, condensed matter (e.g. graphene)...

● Infinite ambiguity in their quantum description:

➢  Choice of (Fock) representation of the CAR's.

● In non-stationary spacetimes, we require as well that the dynamical 
transformations are implemented unitarily (quantum coherence).

● Characterization of the field degrees of freedom that evolve unitarily: 
dynamical separation between spacetime and matter d.o.f.!

● Result: unique Fock representation of the CAR's (up to unitary equiv.).

Motivation



  

General setting & 
strategy



  

The Dirac field in curved spacetimes
● Dirac equation on a globally hyperbolic spacetime,

                       linear space of solutions.

● Global hyperbolicity                  set of data on a Cauchy surface.

● Natural inner product                   conserved under evolution.

● Analogous construction of 

S={ψ}

S≈

(ψ1 ,ψ2)S ,

S̄ .



  

Fermion Complex Structures
● Codify the ambiguity in the choice of Fock representation.

● Real linear map      defined on      and on        (equiv. on set of data)    

● Defines a splitting into its        eigenspaces

            Particle annihilation                       Antiparticle creation

J S S̄ ,

J2
=− I , (J ψ1 , J ψ2)S=(ψ1 , ψ2)S

±i

S
J
±
=

1
2
(S∓iJS) , S̄J

±
=SJ

∓

SJ
+ SJ

−



  

Fermion Complex Structures
● Codify the ambiguity in the choice of Fock representation.

● Real linear map      defined on      and on        (equiv. on set of data)

● Completion of               1-p Hilbert space

                                                                            Antisym. Fock sp.    

● Completion of               1-ap Hilbert space

S S̄ ,

J2
=− I , (J ψ1 , J ψ2)S=(ψ1 , ψ2)S

SJ
+

SJ
−



J



  

Strategy
● Characterize those complex structures     that commute with the 

symmetry transformations of the system under study.

● Consider families of annihilation and creation-like variables defined 
through linear combinations of the field that can be time-dependent.

● The elements of such families are related by transformations that 
include the dynamics of the field, but do not trivialize it.

● Determine those families that admit a unitarily implementable 
dynamics and prove that all of them are, in turn, unitarily equivalent.

   

J



  

Invariant Complex Structures



  

● Flat homogeneous and isotropic cosmology, scale factor                     
compact spatial sections (isomorphic to three-tori).

● Minimally coupled Dirac field, described by

                                                              Grassmann variables

                 

                                                                                                         

Cosmological model

φA , χ̄ A' A=1,2 ; A'=1 ' ,2 ' ,

exp [α (η)] ,



  

● Flat homogeneous and isotropic cosmology, scale factor                     
compact spatial sections (isomorphic to three-tori).

● Minimally coupled Dirac field.

● After a partial gauge-fixing (time-gauge):

                 

                                                                                                         

                                                

                                                          Dirac operator eigenvalues              
                                                 (asymptotically, indep. of spin structure)

Cosmological model
exp [α (η)] ,

ωk=O(|k⃗|)
wk⃗ A
(+ )

wk⃗ A
(− )

+ω
k

−ωk

φ A (x)=e−3α(η)/2 ∑
k⃗∈ℤ3

[mk⃗ (η)wk⃗ A
(+ )
( x⃗ )+ r̄ k⃗(η)wk⃗ A

(−)
( x⃗)]

χ̄ A'( x)= e−3α (η)/2∑
k⃗∈ℤ3

[ s̄k⃗ (η)w̄k⃗ A '
( +)
( x⃗)+t k⃗(η)w̄k⃗ A '

(−)
( x⃗)]



  

● Isometries of the three-torus: composition of translations                              
On the bi-spinors, direct sum of irreps. of 

● We also consider the symmetry under the spin rotations generated by the 
helicity of the field, which is a conserved quantity.

                                       helicity eigenspinors, with                                       
                               

Cosmological models: invariance

U (1)×U (1)×U(1) :

φ A (x)=e−3α(η)/2 ∑
k⃗∈ℤ3

[mk⃗ (η)wk⃗ A
(+ )
( x⃗ )+ r̄ k⃗(η)wk⃗ A

(−)
( x⃗)]

χ̄ A'( x)= e−3α (η)/2∑
k⃗∈ℤ3

[ s̄k⃗ (η)w̄k⃗ A '
( +)
( x⃗)+t k⃗(η)w̄k⃗ A '

(−)
( x⃗)]

wk⃗ A
(± )

Tαi
: xi xi+α i .

Cα⃗ e2π i k⃗α⃗ / l0 w
k⃗ A
(± ) Cα⃗ e−2 πi( k⃗+2 τ⃗ )α⃗ / l0 w̄

k⃗ A
(+ )w̄k⃗ A

(± )

wk⃗ A
(± ) ,w̄k⃗ A

(± ) ±1 ωk≠0.



  

● Isometries of the three-torus: direct sum of irreps. of

                                                                                                                                  
                         

● Spin (helicity) rotations:

                                           helicity eigenspinors, with                                           
                                   

● Families of invariant annihilation and creation-like:                           

                                                                       

Cosmological models: invariance

U (1)×U (1)×U(1) :

φ A (x)=e−3α(η)/2 ∑
k⃗∈ℤ3

[mk⃗ (η)wk⃗ A
(+ )
( x⃗ )+ r̄ k⃗(η)wk⃗ A

(−)
( x⃗)]

χ̄ A'( x)= e−3α (η)/2∑
k⃗∈ℤ3

[ s̄k⃗ (η)w̄k⃗ A '
( +)
( x⃗)+t k⃗(η)w̄k⃗ A '

(−)
( x⃗)]

ak⃗
(x , y)
(η)= f 1

k⃗
(η) x k⃗(η)+ f 2

k⃗
(η) ȳ

−k⃗−2 τ⃗ (η)

b̄ k⃗
(x , y)

(η)=g1
k⃗
(η) x k⃗(η)+ g2

k⃗
(η) ȳ

−k⃗−2 τ⃗ (η)

(x k⃗ , y k⃗)=(m k⃗ , s k⃗) ,(tk⃗ , r k⃗)

wk⃗ A
(± ) Cα⃗ e2π i k⃗α⃗ / l0 w

k⃗ A
(± ) Cα⃗ e−2 πi( k⃗+2 τ⃗ )α⃗ / l0 w̄

k⃗ A
(+ )w̄k⃗ A

(± )

wk⃗ A
(± ) ,w̄k⃗ A

(± )
±1 ωk≠0.

|f 1
k⃗
|
2
+| f 2

k⃗
|
2
=1, |g1

k⃗
|
2
+|g2

k⃗
|
2
=1,

f 1
k⃗ ḡ1

k⃗
+ f 2

k⃗ ḡ2
k⃗
=0.



  

Unitary dynamics



  

● First order Dirac equations in the considered cosmology:

● Same second order equation for all modes

                            

➢ Known asymptotic behavior of its two independent solutions.

● The (relevant) asymptotics of the evolution is known

Fermion dynamics

x k⃗ '=iωk x k⃗−imeα ȳ
−k⃗−2 τ⃗ , y k⃗ '=iωk y k⃗+ imeα x̄

−k⃗−2 τ⃗ , ' := d
dη

zk⃗ ' '=α ' zk⃗ '−(ωk
2
+m2 e2α

+iωkα ') zk⃗

{zk⃗}:={x k⃗ , y k⃗}

x k⃗ (η)=Ak (η ,η0) x k⃗(η0)+Bk(η ,η0) ȳ k⃗(η0) ,

ȳ k⃗(η)= Ā k(η ,η0) ȳk⃗ (η0)− B̄k (η ,η0) x k⃗(η0) .



  

● Fermion dynamics       time-dependent Bogoliubov transformation:

 

with                    given by (              ):

where                              and 

Dynamical transformations

ak⃗
(x , y)
(η)=α k⃗

f
(η ,η0)a k⃗

( x , y)
(η0)+β k⃗

f
(η ,η0) b̄k⃗

( x , y)
(η0)

b̄ k⃗
(x , y)

(η)=α k⃗
g
(η ,η0)b̄ k⃗

( x , y )
(η0)+β k⃗

g
(η ,η0)a k⃗

( x , y)
(η0)

|βk⃗
h
(η ,η0)| h= f , g

| [−h1
k⃗
(h2

k⃗,0
+Γ

k
h1

k⃗,0
)ei∫ Λk

1

+Γ̄
k
h2

k⃗ h2
k⃗ ,0 eΔα ei∫ Λ̄ k

2

] eiω kΔ η+

+[h2
k⃗
(h1

k⃗,0
−Γ̄k h2

k⃗,0
) e−i∫Λ̄ k

1

+Γkh1
k⃗h1

k⃗,0 eΔ α e−i∫Λ k
2

]e−iω kΔ η|

Γk=
m eα 0

2ωk+ iα '0

Δ η=η−η0

Δ α=α−α0

Λ k
l
(η)=O(ωk

−1
) , l=1,2.



  

● The Bogoliubov transformation is implementable as a unitary 
operator in the Fock space defined by the initial variables iff the 
sequences of the beta coefficients are square summable.

● We know the spectral asymptotics of the Dirac operator.

● We disregard as uninteresting any transformation that trivializes 
the dominant plane wave contribution to the Dirac solutions.

                                           

Conditions for unitary dynamics



  

● The Bogoliubov transformation is implementable as a unitary 
operator in the Fock space defined by the initial variables iff the 
sequences of the beta coefficients are square summable.

● We know the spectral asymptotics of the Dirac operator.

● We disregard as uninteresting any transformation that trivializes 
the dominant plane wave contribution to the Dirac solutions.

● This can always be made possible by tuning a specific functional 
dependence on those oscillations of the     and      functions that 
define the families of annihilation and creation-like variables.

Conditions for unitary dynamics

f g



  

                          

● This condition requires a specific behavior for                             
both in their dependence on        and on  

Unitary dynamics

ωk η :
f 1

k⃗ , f 2
k⃗ , g1

k⃗ , g2
k⃗

∑
k⃗
|β k⃗

f
(η ,η0)|

2
<∞ , ∑

k⃗
|β k⃗

g
(η ,η0)|

2
<∞ , ∀η.



  

                          

                            

● This condition requires a specific behavior for                             
both in their dependence on        and on  

                                                                             as a set,                     
                                                                 phase of

for all               with                         (up to a finite sublattice and up 
to two possible complementary infinite sublattices where        of 
order        or higher, must be square summable).

● Besides, if we call         the subdominant terms:

Unitary dynamics

f 1
k⃗ , f 2

k⃗ , g1
k⃗ , g2

k⃗

ωk η :

hl
k⃗
=(−1)l+1 meα

2ωk

eiH~l
k⃗

+o(ωk
−1
) , {l ,~l }:={1,2}

H~l
k⃗

k⃗∈ℤ l
3 , ℤ

3
=ℤ1

3
∪ℤ2

3

h~l
k⃗ , h= f , g .

∀η.

ϑh, l
k⃗ ∑

k⃗∈ℤl
3

|ϑh , l
k⃗
|
2
<∞

∑
k⃗
|β k⃗

f
(η ,η0)|

2
<∞ , ∑

k⃗
|β k⃗

g
(η ,η0)|

2
<∞ ,

hl
k⃗ ,

ωk
−1



  

Uniqueness



  

● Reference         Simplest choice of invariant complex structure that 
admits a unitary quantum dynamics

both for                 and for                 

Reference quantization

f 1
k⃗=

meα

2ωk

, f 2
k⃗
=√1−( f 1

k⃗
)

2 , g1
k⃗
= f 2

k⃗ , g2
k⃗
=−f 1

k⃗ ,

J R :

(mk⃗ , s k⃗) (t k⃗ , r k⃗) .



  

● Reference       

● Its relation with any other invariant      given by

where

                                                                                                                
                                                                     as a set.          

Unitary equivalence

f 1
k⃗=

meα

2ωk

, f 2
k⃗
=√1−( f 1

k⃗
)

2 , g1
k⃗= f 2

k⃗ , g2
k⃗=−f 1

k⃗ ,

J R :

~J

λ k⃗
h
=

~h1
k⃗ h2

k⃗
−
~h2

k⃗h1
k⃗

h2
k⃗ k1

k⃗
−h1

k⃗ k2
k⃗

, {h , k}:={f , g}

~a k⃗
( x , y)

(η)=κ k⃗
f
(η)ak⃗

(x , y)
(η)+λ k⃗

f
(η) b̄ k⃗

(x , y )
(η)

~̄b k⃗
( x , y)

(η)=κ k⃗
g
(η) b̄k⃗

( x , y )
(η)+λ k⃗

g
(η)a k⃗

(x , y)
(η)



  

● Reference       

● The Bogoliubov transformation defined by the previous sequence 
of transformations is unitarily implementable in the Fock space if 
and only if

● Notice that 

Unitary equivalence
J R :

∑
k⃗
|λ k⃗

f
(η)|

2
<∞ , ∑

k⃗
|λ k⃗

g
(η)|

2
<∞ , ∀η.

|λ k⃗
h
|=|
~h1

k⃗h2
k⃗
−
~h2

k⃗ h1
k⃗
|

f 1
k⃗
=

meα

2ωk

, f 2
k⃗
=√1−( f 1

k⃗
)

2 , g1
k⃗
= f 2

k⃗ , g2
k⃗
=−f 1

k⃗ ,

|λ k⃗
f
|=|λ k⃗

g
|



  

● Reference       

● Take      to admit a unitarily implementable dynamics

                                                                                                                
 and        s.q.s. in the possible complementary sublattices.

Uniqueness
J R :

~J

~f l
k⃗
=(−1)l+1 meα

2ωk

ei~F~l
k⃗

+ϑ~f , l
k⃗ , k⃗∈ℤ l

3 , {l ,~l }={1,2} , ∑
k⃗∈ℤl

3

|ϑ~f , l
k⃗
|
2
<∞ ,

f 1
k⃗=

meα

2ωk

, f 2
k⃗
=√1−( f 1

k⃗
)

2 , g1
k⃗
= f 2

k⃗ , g2
k⃗
=−f 1

k⃗ ,

~f l
k⃗



  

● Reference       

● Take      to admit a unitarily implementable dynamics

                                                                                                                
 and        s.q.s. in the possible complementary sublattices.

● For     in the          sublattices, we respectively have:  

Uniqueness
J R :

~J

~f l
k⃗
=(−1)l+1 meα

2ωk

ei~F~l
k⃗

+ϑ~f , l
k⃗ , k⃗∈ℤ l

3 , {l ,~l }={1,2} , ∑
k⃗∈ℤl

3

|ϑ~f , l
k⃗
|
2
<∞ ,

f 1
k⃗=

meα

2ωk

, f 2
k⃗
=√1−( f 1

k⃗
)

2 , g1
k⃗
= f 2

k⃗ , g2
k⃗
=−f 1

k⃗ ,

~f l
k⃗

k⃗ l=1

|λ k⃗
f
|=|ϑ~f ,1

k⃗
|+O(ωn

−2
) , |λ k⃗

f
|=|
~f 1

k⃗
|+o(|~f 1

k⃗
|)



  

● Reference       

● Take      to admit a unitarily implementable dynamics

                                                                                                                
 and        s.q.s. in the possible complementary sublattices.

● For     in the          sublattices,                              not s.q.s! 

However... 

Uniqueness
J R :

~J

~f l
k⃗
=(−1)l+1 meα

2ωk

ei~F~l
k⃗

+ϑ~f , l
k⃗ , k⃗∈ℤ l

3 , {l ,~l }={1,2} , ∑
k⃗∈ℤl

3

|ϑ~f , l
k⃗
|
2
<∞ ,

f 1
k⃗=

meα

2ωk

, f 2
k⃗
=√1−( f 1

k⃗
)

2 , g1
k⃗
= f 2

k⃗ , g2
k⃗
=−f 1

k⃗ ,

~f l
k⃗

k⃗ l=2 |λ k⃗
f
|=O(1)



  

● Reference       

● Take      to admit a unitarily implementable dynamics

                                                                                                                
 and        s.q.s. in the possible complementary sublattices.

● For     in the          sublattices,                              not s.q.s! 

Can be understood as due to a reversal in the convention of 
particles and antiparticles for an infinite collection of modes.

Uniqueness
J R :

~J

~f l
k⃗
=(−1)l+1 meα

2ωk

ei~F~l
k⃗

+ϑ~f , l
k⃗ , k⃗∈ℤ l

3 , {l ,~l }={1,2} , ∑
k⃗∈ℤl

3

|ϑ~f , l
k⃗
|
2
<∞ ,

f 1
k⃗=

meα

2ωk

, f 2
k⃗
=√1−( f 1

k⃗
)

2 , g1
k⃗
= f 2

k⃗ , g2
k⃗
=−f 1

k⃗ ,

~f l
k⃗

k⃗ l=2 |λ k⃗
f
|=O(1)



  

● Reference        same as         for       in the          sublattices, but             

                                  i.e., particles     antiparticles,      in         . 

● Take      to admit a unitarily implementable dynamics

                                                                                                                     
 and        s.q.s. in the possible complementary sublattices.

● For     in the          sublattices, we respectively have 

● For     in the          sublattices, we now have

Uniqueness

f 1
k⃗
↔ g1

k⃗ ,

~J R J R k⃗

k⃗↔f 2
k⃗
↔ g2

k⃗ ,

~J

l=1

l=2

~f l
k⃗
=(−1)l+1 meα

2ωk

ei~F~l
k⃗

+ϑ~f , l
k⃗ , k⃗∈ℤ l

3 , {l ,~l }={1,2} , ∑
k⃗∈ℤl

3

|ϑ~f , l
k⃗
|
2
<∞ ,

~f l
k⃗

k⃗ l=1

|λ k⃗
f
|=|ϑ~f ,1

k⃗
|+O(ωn

−2
) , |λ k⃗

f
|=|
~f l

k⃗
|+o(|~f l

k⃗
|)

k⃗

k⃗ l=2
|λ k⃗

f
|=|ϑ~f ,2

k⃗
|+O(ωn

−2
) , |λ k⃗

f
|=|
~f 2

k⃗
|+o(|~f 2

k⃗
|)



  

● Reference        same as         for       in the          sublattices, but             

                                  i.e., particles     antiparticles,      in         . 

● Take      to admit a unitarily implementable dynamics

                                                                                                                     
 and        s.q.s. in the possible complementary sublattices.

● For     in the          sublattices, we respectively have 

● For     in the          sublattices, we now have                Unitary equiv.!

Uniqueness

f 1
k⃗
↔ g1

k⃗ ,

~J R J R k⃗

k⃗↔f 2
k⃗
↔ g2

k⃗ ,

~J

l=1

l=2

~f l
k⃗
=(−1)l+1 meα

2ωk

ei~F~l
k⃗

+ϑ~f , l
k⃗ , k⃗∈ℤ l

3 , {l ,~l }={1,2} , ∑
k⃗∈ℤl

3

|ϑ~f , l
k⃗
|
2
<∞ ,

~f l
k⃗

k⃗ l=1

|λ k⃗
f
|=|ϑ~f ,1

k⃗
|+O(ωn

−2
) , |λ k⃗

f
|=|
~f l

k⃗
|+o(|~f l

k⃗
|)

k⃗

k⃗ l=2
|λ k⃗

f
|=|ϑ~f ,2

k⃗
|+O(ωn

−2
) , |λ k⃗

f
|=|
~f 2

k⃗
|+o(|~f 2

k⃗
|)



  

● Combined criteria of invariance of the vacuum under symmetries of 
flat homogeneous and isotropic cosmologies + unitary implementation 
of the dynamics         unique Fock quantization of the Dirac field.

● Uniqueness attained given a convention of particles and antiparticles.

● The part of the dynamics that can be unitarily implementable is 
uniquely determined        extraction of explicitly time-dependent 
functions from the dominant parts of the field.

● Similar results and characterizations apply as well for the spherical 
case and for conformally ultrastatic spacetimes in         dimensions.

Conclusions

2+1
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