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Interacting Quantum Field Theory, Non-Perturbatively

Exercise 1 Quantum Mechanics:

(a) Find H , Hamiltonian H0 and Observables for free particles
(b) Born probability interpretation |Ψ(x)|2
(c) Add interaction H := H0 + Hint

Exercise 2 Constructive Quantum Field Theory

(a) Discover Free Quantum Fields φ0(x), H0, H0

(b) Interpretation of (φ0,H0,H0) in terms of free particles
(c) φ0 implements Einstein-Causality quantum mechanically

From now on may assume for simplicity spacetime-dim. 1 + 1
(e) add Interaction HR

int =
∫
|x |<R dx : φ4(x) :, goal R →∞

(f) HR = H0 + HR
int has ground state ΩR R→∞−−−−⇀ 0.

(g) Still ω(A) := limR→∞〈ΩR ,AΩR〉 defines a state,
on the algebra of local observables.

(h) ω defines new Hilbert space H on which interact. model lives
(change of rep.), and where H = lim

R→∞
HR is well-defined.
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The Particle Spectrum

p

ω

suppE (∆)

⊂ V̄+

Vacuum Ω∈H translation invariant,
Space-time translations αx unitarily
implemented

H 3 Ψ 7−→ U(t, x)Ψ

SNAG-Theorem→ strongly commut.
self-adjoint generators (H,P)

=̂ energy-momentum op.

Spectral Resolution of (H,P) by POVM E (∆) for Borel ∆ ⊂ R4.

Def. (Wigner particle) Single-particle states are eigenvectors
Ψ1 ∈H of the relativistic mass operator M2 = H2 − P2.
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What is known rigorously?

I Haag ’54, Lehmann-Symanzik-Zimmermann ’54
Postulated Asymptotic Condition:

“Interacting φ(xµ)
x0→±∞−−−−−⇀ φ±0 (xµ) free”

I Ruelle ’62, Hepp ’65 — proof, isolated mass shell

I Herbst ’71 — isolated vacuum,
“spectral condition” (SC),

i.e. need local operator A ∈ A(O) s.t. AΩ has
“nicely behaved” spectrum near mass shell

I Buchholz ’77 — no (SC) nor other conditions
needed for m = 0 in even-dimensional space-time

I Dybalski ’05 — (SC) + non-isolated vacuum

I Duch, Herdegen ’13 — (SC) weakened, m ≥ 0
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Remarks: Other Aspects of the Infrared Problem
Charges, Particles and Infraparticles in AQFT

Our present assumptions restrict us to neutral-particle states Ψ1.

(Electrical) Charges are expected to have

I non-sharp particle masses (“Infraparticle”)

I broken Lorentz symmetry
[Buchholz’86]

in states with well-defined space-like asymptotics of Fµν

I weaker localization properties: [Buchholz’82]
operators in space-like infinite “strings” ∼ Wilson-lines
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Remarks: Other Aspects of the Infrared Problem

Current Research and Tentative Approaches

I Scattering of Infraparticles? [Buchholz et al.’91–] [Herdegen’13]

I Space-like asymptotics of Fµν experimentally not accessible,
suitable Infravacuum-states conjectured to “stabilize” infraparticles

[Kraus, Polley, Reents’77] [Buchholz, Roberts’13]

→ Feasible to describe Compton-scattering [Alazzawi, Dybalski’15]

I Perturbation Theory with String-local Quantum Fields
[Schroer et al.’04–] [Mund, de Oliveira’16]

I Study infrared problem in more tractable non-relativistic models
[Fröhlich’73] [Chen, Fröhlich, Pizzo’07]. . . [Dybalski, Pizzo’12–]



7/18
Non-Locality of the Vacuum: Reeh-Schlieder Property

Local Observables A ∈ A(O) ⊂ B(H ) ∼ bounded functions of
Fields φ(x) smeared with test functions compactly supported in O.

Cyclicity of the vacuum Ω: AΩ = H for A :=
⋃
O A(O) (HK6[)

Reeh-Schlieder: A(O)Ω = H for any open O 6= ∅ (HK6)

Rem.: (HK6[) + “Additivity” A ⊂
(∨

x
A(O0 + x)

)′′
=⇒ (HK6)
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Algebraic Framework for Local Quantum Theory
Mathematical Objects

Haag-Kastler QFT (A, α,Ω,H ) in the vacuum sector.

Described by mathematical entities. . .

I Hilbert space H of pure states

I distinguished vacuum Ω ∈H

I net of von Neumann algebras R3+1 ⊃ O 7→ A(O) ⊂ B(H )

I space-time translations of states (t, x) 7→ U(t, x) = e itH−ix·P

I translations of observables αxA := A(x) := U(x)AU(x)∗
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Algebraic Framework for Local Quantum Theory
The Haag-Kastler Axioms

. . . which are subject to

(HK1) O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2) (Isotony)

(HK2) O1 ⊂ O′2 =⇒ A(O1) ⊂ A(O2)′ (Locality)

(HK3) αxA(O) = A(O + x), ∀x ∈ R4 (Covariance)

(HK4) E(H,P)({0})H = CΩ (Uniqueness of Ω)

(HK5) suppE(H,P) ⊂ V̄+ (Spectrum Condition)

(HK6) A(O)Ω = H (Reeh-Schlieder Property)
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Preparing Single-Particle States

Single-particle states Ψ1,Ψ2 ∈ E{M=m}H are non-local objects:

Ψ1 = EmAΩ = χ(M
2−m2

ε )AΩ ∼ A(χ̂ε)Ω, (χ ∈ S , ε↘ 0).

Instead now fix one bounded space-time region O ⊂ R4.

Reeh-Schlieder (HK6) ⇒ ∃(Akβ)β>0 ⊂ A(O): ‖AkβΩ−Ψk‖ = β.

Def.: We call a family of local operators (Akβ)β>0 ⊂ A(O) s.t.

‖AkβΩ−Ψk‖ ≤ β and ‖Akβ‖ ≤ β−γ

a Reeh-Schlieder family for Ψk of degree γ > 0.

Assumption: Strengthened Reeh-Schlieder Property (HK6])

Reeh-Schlieder families of finite degree generate
a total subset of the single-particle space H1 ⊂H .
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Strengthened Reeh-Schlieder yields Scattering States

Strengthened Reeh-Schlieder Property (γ > 0)
(Akβ)β>0 ⊂ A(O), s.t. ‖AkβΩ−Ψk‖ ≤ β and ‖Akβ‖ ≤ β−γ

Theorem (MD’15) Let Ψk be single-particle states admitting
Reeh-Schlieder families Akβ of finite degree. Then for any regular
positive-energy Klein-Gordon sol. fk with disjoint velocity supports

Ψτ := B1τ . . .BnτΩ
τ→±∞−→ Ψ±.

The scalar products of any two such Ψ+, Ψ′+ can be computed
using the Fock prescription (similarly for incoming states).

Previous results (Herbst ’71, Dybalski ’05, Herdegen ’13)
require spectral condition of Herbst-type, e.g. for some ε > 0,

Ψk = E{M=m}AkΩ, Ak ∈ A(O),
∥∥E{0<|M−m|<δ}AkΩ

∥∥ ≤ δε.
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Construction of
Scattering States
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Reeh-Schlieder and Haag-Ruelle Creation Operators

Reference Dynamics: Klein-Gordon solutions fk with disjointly
and compactly supported wave packets f̃k ∈ C∞c (R3) (“regular”)

Creation-Operator Approximants: with χ̂ ∈ C∞c (R4 \ V̄−), set

Bkβ := Akβ(χ) :=

∫
d4x χ(x) Akβ(x),

Bkτ :=

∫
d3x fk(τ, x) Bkβ(τ, x), (τ ∈ R).

Haag-Ruelle/LSZ: BkτΩ ⇀ Ψ′k(fk) := f̃k(P)Ψ′k ∈H1 for fixed
small enough β.

Reeh-Schlieder: β = β(τ) := |τ |−µ, µ > 0 then BkτΩ→ Ψk(fk).

Candidate Scattering States: Limits τ→±∞ of Ψτ := B1τB2τΩ.
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Mathematical Tools (1) — Discretized Cook’s method

‖Ψτ2 −Ψτ1‖ =

∥∥∥∥∫ τ2

τ1

dτ ∂τΨτ

∥∥∥∥ ≤ ∫ τ2

τ1

dτ ‖∂τΨτ‖
!
<∞ (τ2 → ±∞)

‖ΨτN −Ψτ1‖ ≤
∑
k

∥∥B1τk+1
B2τk+1

Ω− B1τkB2τk Ω
∥∥ !
<∞ (τN → ±∞)

‖Ψτ2 −Ψτ1‖ ≤ ‖B1τ2(B2τ2 − B2τ1)Ω‖+ ‖(B1τ2 − B1τ1)B2τ1Ω‖
≤ ‖B1τ2(B2τ2 − B2τ1)Ω‖+ ‖B2τ1(B1τ2 − B1τ1)Ω‖ (?)

+ (commutators) (??)

Recall: BjτΩ→ Ψj ∈H1 (by construction)

For best possible summability as N →∞ we should

I choose (τk)k∈N as sparse as possible, τk := (1 + ρ)kτ0, ρ > 0

I control equal- and non-equal-time commutators in (??)

I control estimation of unbounded leftmost Bjτk in (?)
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Tools (2) — Non-Equal-Time Commutator Estimates

fk(t, x) =
∫
d3k eik·x−iωm(k)t f̃k(k), f̃k ∈ C∞c (Rs), ωm(k) :=

√
k2+m2

I velocity v(k) = k
ωm(k)

I velocity support

Γf := v(supp f̃ )

I propagation region

Υf := {(t, vt), v∈Γf , t∈R}
I creation operators

Akτ =
∫
d3x fk(τ, x)Akβ(τ, x),

OAkβ

A↑
1τ1 A↑

2τ2

1

(1+ρ)τ1

τ1

τ2

(1−ρ)τ1

Γ1 Γ2

x

t

Lemma: Let fk be regular s.t. Γ1 ∩ Γ2 = ∅ and Akβ have finite degree.

∃ ρ > 0 ∀ |τ1−τ2| ≤ ρ |τ1| : ‖[B1τ1 ,B2τ2 ]‖ ≤
CN

∥∥A1β(τ1)

∥∥∥∥A2β(τ2)

∥∥
1 + |τ1|N + |τ2|N
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Assembling the Mathematical Arsenal

The reason why Discrete Cook works may be summarized:

Lemma (local difference estimate) Let Akβ be RS families of finite
degree, and fk regular positive-energy Klein-Gordon solutions with
disjoint velocity supports. Then for sufficiently small scaling µ > 0,
∃ ρ > 0 ∀ |τ1 − τ2| ≤ ρ |τ1|,

‖Ψτ2 −Ψτ1‖
2 ≤ C1

n∑
k=1

‖Bkτ2Ω− Bkτ1Ω‖2 + C2 |τ1|−δ

Proof based on non-equal-time commutator estimates,
energy-bounds [Buchholz’90], and Clustering arguments from
[Dybalski’05], [Buchholz’77], and [Araki, Hepp, Ruelle’62].



Is it useful?
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Wave Operators and S-Matrix

Let F denote Fock space over finite RS-degree 1-particle vectors
and Fdisj ⊂ F the set of product states with disjoint Γk .

Def. (Møller op.) For Ψprod = Ψ1(f1)Ω⊗ . . .⊗Ψn(fn)Ω ∈ Fdisj,
Ψk = limβ→0 f̃k(P)AkβΩ define

W± :

{
Fdisj −→H ,

Ψprod 7−→ lim
τ→±∞

B1τ . . .BnτΩ.

The S-matrix is defined for Ψ,Φ ∈ Fdisj by

〈Ψ, SΦ〉 := 〈W+Ψ,W−Φ〉 .
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Plausibility of Strengthened Reeh-Schlieder?

I Rem. There are examples of QFT-models exhibiting A ∈ A(O)
which violate the Herbst spectral regularity condition.

I Proposition. In scalar free field theory, there exist
Reeh-Schlieder families Aβ of arbitrarily small degree γ > 0.

Proof. Taking Aβ := φ(f )e−β|φ(f )|N for compactly supported f
has degree γ = 1/N for any N ∈ 2N does the job.

I Conjecture: Ψ1 ∈H1 single-particle state with sufficiently
small Reeh-Schlieder degree γ < 1 =⇒ Ψ1 non-interacting.

I Proposition. Assume there is a regular local A ∈ A(O) with
Herbst-exponent ε>0. Then one can construct Aβ∈A(O+Bε)
s.t.

‖E (∆)(AβΩ−Ψ1)‖ < C∆β, ln ‖Aβ‖ < β−γ

for any compact ∆ ⊂ Rs+1, with suitable C∆, and γ ∼ 1/ε.



17/18
Plausibility of Strengthened Reeh-Schlieder?

I Rem. There are examples of QFT-models exhibiting A ∈ A(O)
which violate the Herbst spectral regularity condition.

I Proposition. In scalar free field theory, there exist
Reeh-Schlieder families Aβ of arbitrarily small degree γ > 0.

Proof. Taking Aβ := φ(f )e−β|φ(f )|N for compactly supported f
has degree γ = 1/N for any N ∈ 2N does the job.

I Conjecture: Ψ1 ∈H1 single-particle state with sufficiently
small Reeh-Schlieder degree γ < 1 =⇒ Ψ1 non-interacting.

I Proposition. Assume there is a regular local A ∈ A(O) with
Herbst-exponent ε>0. Then one can construct Aβ∈A(O+Bε)
s.t.

‖E (∆)(AβΩ−Ψ1)‖ < C∆β, ln ‖Aβ‖ < β−γ

for any compact ∆ ⊂ Rs+1, with suitable C∆, and γ ∼ 1/ε.



17/18
Plausibility of Strengthened Reeh-Schlieder?

I Rem. There are examples of QFT-models exhibiting A ∈ A(O)
which violate the Herbst spectral regularity condition.

I Proposition. In scalar free field theory, there exist
Reeh-Schlieder families Aβ of arbitrarily small degree γ > 0.

Proof. Taking Aβ := φ(f )e−β|φ(f )|N for compactly supported f
has degree γ = 1/N for any N ∈ 2N does the job.

I Conjecture: Ψ1 ∈H1 single-particle state with sufficiently
small Reeh-Schlieder degree γ < 1 =⇒ Ψ1 non-interacting.

I Proposition. Assume there is a regular local A ∈ A(O) with
Herbst-exponent ε>0. Then one can construct Aβ∈A(O+Bε)
s.t.

‖E (∆)(AβΩ−Ψ1)‖ < C∆β, ln ‖Aβ‖ < β−γ

for any compact ∆ ⊂ Rs+1, with suitable C∆, and γ ∼ 1/ε.



17/18
Plausibility of Strengthened Reeh-Schlieder?

I Rem. There are examples of QFT-models exhibiting A ∈ A(O)
which violate the Herbst spectral regularity condition.

I Proposition. In scalar free field theory, there exist
Reeh-Schlieder families Aβ of arbitrarily small degree γ > 0.

Proof. Taking Aβ := φ(f )e−β|φ(f )|N for compactly supported f
has degree γ = 1/N for any N ∈ 2N does the job.

I Conjecture: Ψ1 ∈H1 single-particle state with sufficiently
small Reeh-Schlieder degree γ < 1 =⇒ Ψ1 non-interacting.

I Proposition. Assume there is a regular local A ∈ A(O) with
Herbst-exponent ε>0. Then one can construct Aβ∈A(O+Bε)
s.t.

‖E (∆)(AβΩ−Ψ1)‖ < C∆β, ln ‖Aβ‖ < β−γ

for any compact ∆ ⊂ Rs+1, with suitable C∆, and γ ∼ 1/ε.



17/18
Plausibility of Strengthened Reeh-Schlieder?

I Rem. There are examples of QFT-models exhibiting A ∈ A(O)
which violate the Herbst spectral regularity condition.

I Proposition. In scalar free field theory, there exist
Reeh-Schlieder families Aβ of arbitrarily small degree γ > 0.

Proof. Taking Aβ := φ(f )e−β|φ(f )|N for compactly supported f
has degree γ = 1/N for any N ∈ 2N does the job.

I Conjecture: Ψ1 ∈H1 single-particle state with sufficiently
small Reeh-Schlieder degree γ < 1 =⇒ Ψ1 non-interacting.

I Proposition. Assume there is a regular local A ∈ A(O) with
Herbst-exponent ε>0. Then one can construct Aβ∈A(O+Bε)
s.t.

‖E (∆)(AβΩ−Ψ1)‖ < C∆β, ln ‖Aβ‖ < β−γ

for any compact ∆ ⊂ Rs+1, with suitable C∆, and γ ∼ 1/ε.



18/18
Summary and Outlook

I Strengthened Reeh-Schlieder useful for Scattering Theory
I Discretized Cook’s method improves Convergence,

but also needs stronger technical tools: In particular,
Non-Equal-Time Versions of

I Commutator Estimates
I Energy-Bounds
I Clustering Estimates

Open Questions and Next Steps
I Physical Properties W± and S-Matrix?
I Quantitative Results on Reeh-Schlieder?
I Construct Asymptotic Observables (Araki-Haag Detectors)
I Relaxation of Localization Assumption (Aβ) ⊂ A(O)

I O → OR(β) — e.g. with polynomially growing radii
I O →W — unbounded wedge regions W appear in context of

I Polarization-free Generators [Borchers et al’01]
I non-commutative flat space-times [Grosse, Lechner’07]

Thanks for your attention!
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