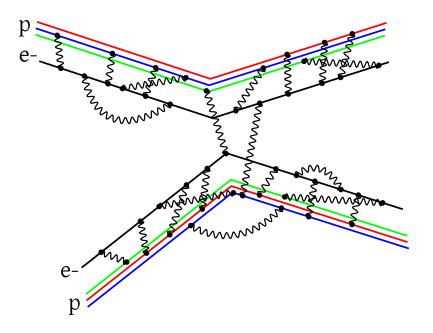
Scattering in QFT without Mass Gaps and Strengthened Reeh-Schlieder Condition (based on CMP **375**, 2017)

Maximilian Duell (joint work with Wojciech Dybalski)

Zentrum Mathematik Technische Universität München

LQP40, "Foundational and Constructive Aspects of QFT", Leipzig, June 23–24, 2017



Exercise 1 Quantum Mechanics:

(a) Find \mathcal{H} , Hamiltonian H_0 and Observables for free particles

(b) Born probability interpretation $|\Psi(x)|^2$

(c) Add interaction $H := H_0 + H_{int}$

2/18

Exercise 1 Quantum Mechanics:

(a) Find \mathscr{H} , Hamiltonian H_0 and Observables for free particles

(b) Born probability interpretation $|\Psi(x)|^2$

(c) Add interaction $H := H_0 + H_{int}$

Exercise 2 Constructive Quantum Field Theory

(a) Discover Free Quantum Fields $\phi_0(x)$, \mathcal{H}_0 , H_0

- (b) Interpretation of $(\phi_0, \mathscr{H}_0, H_0)$ in terms of free particles
- (c) ϕ_0 implements Einstein-Causality quantum mechanically

2/18

Exercise 1 Quantum Mechanics:

(a) Find \mathscr{H} , Hamiltonian H_0 and Observables for free particles

(b) Born probability interpretation $|\Psi(x)|^2$

(c) Add interaction $H := H_0 + H_{int}$

Exercise 2 Constructive Quantum Field Theory

(a) Discover Free Quantum Fields $\phi_0(x)$, \mathcal{H}_0 , H_0

(b) Interpretation of $(\phi_0, \mathscr{H}_0, H_0)$ in terms of free particles

(c) ϕ_0 implements Einstein-Causality quantum mechanically

From now on may assume for simplicity spacetime-dim. $1\!+\!1$

Exercise 1 Quantum Mechanics:

(a) Find \mathscr{H} , Hamiltonian H_0 and Observables for free particles

(b) Born probability interpretation $|\Psi(x)|^2$

(c) Add interaction $H := H_0 + H_{int}$

Exercise 2 Constructive Quantum Field Theory

(a) Discover Free Quantum Fields $\phi_0(x)$, \mathscr{H}_0 , H_0

(b) Interpretation of $(\phi_0, \mathscr{H}_0, H_0)$ in terms of free particles

(c) ϕ_0 implements Einstein-Causality quantum mechanically

From now on may assume for simplicity spacetime-dim. 1 + 1 (e) add Interaction $H_{int}^R = \int_{|x| < R} dx : \phi^4(x) :$, goal $R \to \infty$

Exercise 1 Quantum Mechanics:

(a) Find \mathscr{H} , Hamiltonian H_0 and Observables for free particles

(b) Born probability interpretation $|\Psi(x)|^2$

(c) Add interaction $H := H_0 + H_{int}$

Exercise 2 Constructive Quantum Field Theory

(a) Discover Free Quantum Fields $\phi_0(x)$, \mathcal{H}_0 , H_0 (b) Interpretation of $(\phi_0, \mathcal{H}_0, H_0)$ in terms of free particles

(c) ϕ_0 implements Einstein-Causality quantum mechanically

From now on may assume for simplicity spacetime-dim. 1 + 1 (e) add Interaction $H_{int}^R = \int_{|x| < R} dx : \phi^4(x) :$, goal $R \to \infty$ (f) $H^R = H_0 + H_{int}^R$ has ground state $\Omega^R \xrightarrow{R \to \infty} 0$.

Exercise 1 Quantum Mechanics:

(a) Find \mathscr{H} , Hamiltonian H_0 and Observables for free particles

(b) Born probability interpretation $|\Psi(x)|^2$

(c) Add interaction $H := H_0 + H_{int}$

Exercise 2 Constructive Quantum Field Theory

(a) Discover Free Quantum Fields $\phi_0(x)$, \mathcal{H}_0 , H_0 (b) Interpretation of $(\phi_0, \mathcal{H}_0, H_0)$ in terms of free particles (c) ϕ_0 implements Einstein-Causality guantum mechanically

From now on may assume for simplicity spacetime-dim. 1 + 1 (e) add Interaction $H_{int}^R = \int_{|x| < R} dx : \phi^4(x) :$, goal $R \to \infty$ (f) $H^R = H_0 + H_{int}^R$ has ground state $\Omega^R \xrightarrow{R \to \infty} 0$. (g) Still $\omega(A) := \lim_{R \to \infty} \langle \Omega^R, A\Omega^R \rangle$ defines a state, on the algebra of local observables.

Exercise 1 Quantum Mechanics:

(a) Find \mathscr{H} , Hamiltonian H_0 and Observables for free particles

(b) Born probability interpretation $|\Psi(x)|^2$

(c) Add interaction $H := H_0 + H_{int}$

Exercise 2 Constructive Quantum Field Theory

(a) Discover Free Quantum Fields $\phi_0(x)$, \mathscr{H}_0 , H_0

(b) Interpretation of $(\phi_0, \mathscr{H}_0, H_0)$ in terms of free particles

(c) ϕ_0 implements Einstein-Causality quantum mechanically

From now on may assume for simplicity spacetime-dim. 1 + 1 (e) add Interaction $H_{int}^R = \int_{|x| < R} dx : \phi^4(x) :$, goal $R \to \infty$ (f) $H^R = H_0 + H_{int}^R$ has ground state $\Omega^R \xrightarrow{R \to \infty} 0$.

(g) Still
$$\omega(A) := \lim_{R \to \infty} \langle \Omega^R, A \Omega^R \rangle$$
 defines a state,

on the algebra of local observables.

(h) ω defines new Hilbert space \mathscr{H} on which interact. model lives (change of rep.), and where $H = \lim_{R \to \infty} H^R$ is well-defined.

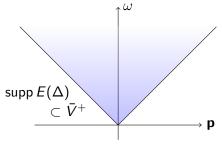
2/18

Vacuum $\Omega \in \mathscr{H}$ translation invariant, Space-time translations α_x unitarily implemented

$$\mathscr{H} \ni \Psi \longmapsto U(t, \mathbf{x}) \Psi$$

SNAG-Theorem \rightarrow strongly commut. self-adjoint generators (H, \mathbf{P}) \triangleq energy-momentum op.

Spectral Resolution of (H, \mathbf{P}) by POVM $E(\Delta)$ for Borel $\Delta \subset \mathbb{R}^4$.

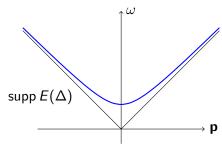


Vacuum $\Omega \in \mathcal{H}$ translation invariant, Space-time translations α_x unitarily implemented

$$\mathscr{H} \ni \Psi \longmapsto U(t, \mathbf{x}) \Psi$$

SNAG-Theorem \rightarrow strongly commut. self-adjoint generators (H, \mathbf{P}) $\hat{=}$ energy-momentum op.

Spectral Resolution of (H, \mathbf{P}) by POVM $E(\Delta)$ for Borel $\Delta \subset \mathbb{R}^4$.

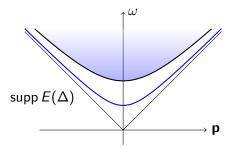


Vacuum $\Omega \in \mathscr{H}$ translation invariant, Space-time translations α_x unitarily implemented $\mathscr{H} \ni \Psi \longmapsto U(t, \mathbf{x})\Psi$

SNAG-Theorem \rightarrow strongly commut. \rightarrow **P** self-adjoint generators (*H*, *P*) \triangleq energy-momentum op.

Spectral Resolution of (H, \mathbf{P}) by POVM $E(\Delta)$ for Borel $\Delta \subset \mathbb{R}^4$.

Def. (Wigner particle) Single-particle states are eigenvectors $\Psi_1 \in \mathscr{H}$ of the relativistic mass operator $M^2 = H^2 - \mathbf{P}^2$.



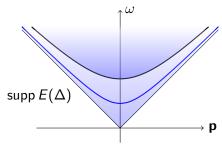
Vacuum $\Omega \in \mathcal{H}$ translation invariant, Space-time translations α_x unitarily implemented

$$\mathscr{H} \ni \Psi \longmapsto U(t, \mathbf{x}) \Psi$$

SNAG-Theorem \rightarrow strongly commut. \rightarrow **P** self-adjoint generators (H, P) $\hat{=}$ energy-momentum op.

Spectral Resolution of (H, \mathbf{P}) by POVM $E(\Delta)$ for Borel $\Delta \subset \mathbb{R}^4$.

Def. (Wigner particle) Single-particle states are eigenvectors $\Psi_1 \in \mathscr{H}$ of the relativistic mass operator $M^2 = H^2 - \mathbf{P}^2$.



Vacuum $\Omega \in \mathcal{H}$ translation invariant, Space-time translations α_x unitarily implemented

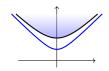
$$\mathscr{H} \ni \Psi \longmapsto U(t, \mathbf{x})\Psi$$

SNAG-Theorem \rightarrow strongly commut. \rightarrow **P** self-adjoint generators (H, P) $\hat{=}$ energy-momentum op.

Spectral Resolution of (H, \mathbf{P}) by POVM $E(\Delta)$ for Borel $\Delta \subset \mathbb{R}^4$.

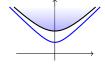
Def. (Wigner particle) Single-particle states are eigenvectors $\Psi_1 \in \mathscr{H}$ of the relativistic mass operator $M^2 = H^2 - \mathbf{P}^2$.

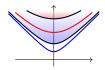
- ► Haag '54, Lehmann-Symanzik-Zimmermann '54 Postulated Asymptotic Condition: "Interacting φ(x^μ) x⁰→±∞ φ₀[±](x^μ) free"
- Ruelle '62, Hepp '65 proof, isolated mass shell



- Haag '54, Lehmann-Symanzik-Zimmermann '54 Postulated Asymptotic Condition:
 "Interacting φ(x^μ) x⁰→±∞, φ[±]₀(x^μ) free"
- ▶ Ruelle '62, Hepp '65 proof, isolated mass shell
- Herbst '71 isolated vacuum, "spectral condition" (SC),

i.e. need local operator $A \in \mathfrak{A}(\mathcal{O})$ s.t. $A\Omega$ has "nicely behaved" spectrum near mass shell

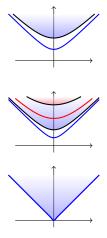




- Haag '54, Lehmann-Symanzik-Zimmermann '54 Postulated Asymptotic Condition:
 "Interacting φ(x^μ) x⁰→±∞ φ₀[±](x^μ) free"
- Ruelle '62, Hepp '65 proof, isolated mass shell
- Herbst '71 isolated vacuum, "spectral condition" (SC),

i.e. need local operator $A \in \mathfrak{A}(\mathcal{O})$ s.t. $A\Omega$ has "nicely behaved" spectrum near mass shell

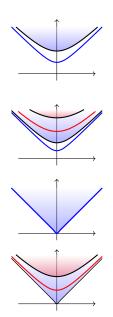
Buchholz '77 — no (SC) nor other conditions needed for m = 0 in even-dimensional space-time



- Haag '54, Lehmann-Symanzik-Zimmermann '54 Postulated Asymptotic Condition: "Interacting φ(x^μ) x⁰→±∞, φ[±]₀(x^μ) free"
- Ruelle '62, Hepp '65 proof, isolated mass shell
- Herbst '71 isolated vacuum, "spectral condition" (SC),

i.e. need local operator $A \in \mathfrak{A}(\mathcal{O})$ s.t. $A\Omega$ has "nicely behaved" spectrum near mass shell

- Buchholz '77 no (SC) nor other conditions needed for m = 0 in even-dimensional space-time
- Dybalski '05 (SC) + non-isolated vacuum
- ▶ Duch, Herdegen '13 (SC) weakened, $m \ge 0$



Remarks: Other Aspects of the Infrared Problem Charges, Particles and Infraparticles in AQFT

Our present assumptions restrict us to **neutral**-particle states Ψ_1 .

(Electrical) Charges are expected to have

non-sharp particle masses ("Infraparticle")

[Buchholz'86]

broken Lorentz symmetry

in states with well-defined space-like asymptotics of $F^{\mu
u}$

Remarks: Other Aspects of the Infrared Problem Charges, Particles and Infraparticles in AQFT

Our present assumptions restrict us to **neutral**-particle states Ψ_1 .

(Electrical) Charges are expected to have

non-sharp particle masses ("Infraparticle")

[Buchholz'86]

- broken Lorentz symmetry
 in states with well-defined space-like asymptotics of F^{µν}
- weaker localization properties: [Buchholz'82] operators in space-like infinite "strings" ~ Wilson-lines

Remarks: Other Aspects of the Infrared Problem

Current Research and Tentative Approaches

- Scattering of Infraparticles? [Buchholz et al.'91–] [Herdegen'13]
- Space-like asymptotics of F^{μν} experimentally not accessible, suitable Infravacuum-states conjectured to "stabilize" infraparticles [Kraus, Polley, Reents'77] [Buchholz, Roberts'13]
 - \rightarrow Feasible to describe Compton-scattering [Alazzawi, Dybalski'15]
- Perturbation Theory with String-local Quantum Fields [Schroer et al.'04–] [Mund, de Oliveira'16]
- Study infrared problem in more tractable non-relativistic models [Fröhlich'73] [Chen, Fröhlich, Pizzo'07]...[Dybalski, Pizzo'12–]

Local Observables $A \in \mathfrak{A}(\mathcal{O}) \subset B(\mathscr{H}) \sim$ bounded functions of Fields $\phi(x)$ smeared with test functions compactly supported in \mathcal{O} .

Local Observables $A \in \mathfrak{A}(\mathcal{O}) \subset B(\mathscr{H}) \sim$ bounded functions of Fields $\phi(x)$ smeared with test functions compactly supported in \mathcal{O} .

Cyclicity of the vacuum Ω : $\overline{\mathfrak{A}\Omega} = \mathscr{H}$ for $\mathfrak{A} := \bigcup_{\mathcal{O}} \mathfrak{A}(\mathcal{O})$ (HK6^b) **Reeh-Schlieder**: $\overline{\mathfrak{A}(\mathcal{O})\Omega} = \mathscr{H}$ for any open $\mathcal{O} \neq \emptyset$ (HK6)

Rem.:
$$(\mathsf{HK6}^{\flat}) + \text{``Additivity''} \ \mathfrak{A} \subset \left(\bigvee_{x} \mathfrak{A}(\mathcal{O}_{0} + x)\right)'' \Longrightarrow (\mathsf{HK6})$$

Local Observables $A \in \mathfrak{A}(\mathcal{O}) \subset B(\mathscr{H}) \sim$ bounded functions of Fields $\phi(x)$ smeared with test functions compactly supported in \mathcal{O} .

Cyclicity of the vacuum Ω : $\overline{\mathfrak{A}\Omega} = \mathscr{H}$ for $\mathfrak{A} := \bigcup_{\mathcal{O}} \mathfrak{A}(\mathcal{O})$ (HK6^b) **Reeh-Schlieder**: $\overline{\mathfrak{A}(\mathcal{O})\Omega} = \mathscr{H}$ for any open $\mathcal{O} \neq \emptyset$ (HK6)

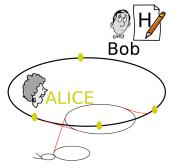
Rem.:
$$(\mathsf{HK6}^{\flat}) + \text{``Additivity''} \ \mathfrak{A} \subset \left(\bigvee_{x} \mathfrak{A}(\mathcal{O}_{0} + x)\right)'' \Longrightarrow (\mathsf{HK6})$$

7/18

Local Observables $A \in \mathfrak{A}(\mathcal{O}) \subset B(\mathscr{H}) \sim$ bounded functions of Fields $\phi(x)$ smeared with test functions compactly supported in \mathcal{O} .

Cyclicity of the vacuum Ω : $\overline{\mathfrak{A}\Omega} = \mathscr{H}$ for $\mathfrak{A} := \bigcup_{\mathcal{O}} \mathfrak{A}(\mathcal{O})$ (HK6^b) **Reeh-Schlieder**: $\overline{\mathfrak{A}(\mathcal{O})\Omega} = \mathscr{H}$ for any open $\mathcal{O} \neq \emptyset$ (HK6)

Rem.:
$$(\mathsf{HK6}^{\flat}) + \text{``Additivity''} \ \mathfrak{A} \subset \left(\bigvee_{x} \mathfrak{A}(\mathcal{O}_{0} + x)\right)'' \Longrightarrow (\mathsf{HK6})$$

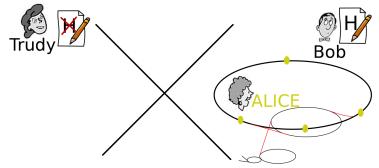


7/18

Local Observables $A \in \mathfrak{A}(\mathcal{O}) \subset B(\mathscr{H}) \sim$ bounded functions of Fields $\phi(x)$ smeared with test functions compactly supported in \mathcal{O} .

Cyclicity of the vacuum Ω : $\overline{\mathfrak{A}\Omega} = \mathscr{H}$ for $\mathfrak{A} := \bigcup_{\mathcal{O}} \mathfrak{A}(\mathcal{O})$ (HK6^{\flat}) **Reeh-Schlieder**: $\overline{\mathfrak{A}(\mathcal{O})\Omega} = \mathscr{H}$ for any open $\mathcal{O} \neq \emptyset$ (HK6)

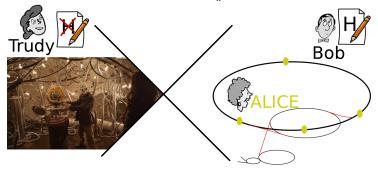
Rem.: $(\mathsf{HK6}^{\flat}) + \text{``Additivity''} \ \mathfrak{A} \subset \left(\bigvee_{x} \mathfrak{A}(\mathcal{O}_0 + x)\right)'' \Longrightarrow (\mathsf{HK6})$



Local Observables $A \in \mathfrak{A}(\mathcal{O}) \subset B(\mathscr{H}) \sim$ bounded functions of Fields $\phi(x)$ smeared with test functions compactly supported in \mathcal{O} .

 $\begin{array}{l} \textbf{Cyclicity} \text{ of the vacuum } \Omega \colon \overline{\mathfrak{A}\Omega} = \mathscr{H} \text{ for } \mathfrak{A} := \bigcup_{\mathcal{O}} \mathfrak{A}(\mathcal{O}) \quad (\mathsf{HK6}^{\flat}) \\ \textbf{Reeh-Schlieder} \colon \overline{\mathfrak{A}(\mathcal{O})\Omega} = \mathscr{H} \text{ for any open } \mathcal{O} \neq \emptyset \qquad (\mathsf{HK6}) \\ \end{array}$

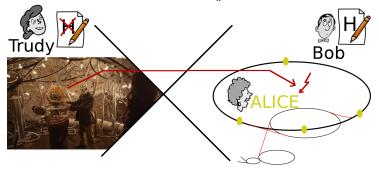
Rem.: $(\mathsf{HK6}^{\flat}) + \text{``Additivity''} \ \mathfrak{A} \subset \left(\bigvee_{x} \mathfrak{A}(\mathcal{O}_0 + x)\right)'' \Longrightarrow (\mathsf{HK6})$



Local Observables $A \in \mathfrak{A}(\mathcal{O}) \subset B(\mathscr{H}) \sim$ bounded functions of Fields $\phi(x)$ smeared with test functions compactly supported in \mathcal{O} .

Cyclicity of the vacuum Ω : $\overline{\mathfrak{A}\Omega} = \mathscr{H}$ for $\mathfrak{A} := \bigcup_{\mathcal{O}} \mathfrak{A}(\mathcal{O})$ (HK6^{\flat}) **Reeh-Schlieder**: $\overline{\mathfrak{A}(\mathcal{O})\Omega} = \mathscr{H}$ for any open $\mathcal{O} \neq \emptyset$ (HK6)

Rem.: $(\mathsf{HK6}^{\flat}) + \text{``Additivity''} \ \mathfrak{A} \subset \left(\bigvee_{x} \mathfrak{A}(\mathcal{O}_0 + x)\right)'' \Longrightarrow (\mathsf{HK6})$



Overview

Introduction

Preparation of Single-Particle States Haag-Ruelle Theorem without Spectral Conditions

Construction of Scattering States

Creation Operator Approximants Discretized Cook's method Non-equal time commutators

Discussion and Applications

Outlook

Algebraic Framework for Local Quantum Theory Mathematical Objects

Haag-Kastler QFT $(\mathfrak{A}, \alpha, \Omega, \mathscr{H})$ in the vacuum sector.

Described by mathematical entities...

- ▶ Hilbert space *ℋ* of pure states
- distinguished vacuum $\Omega \in \mathscr{H}$
- ▶ net of von Neumann algebras $\mathbb{R}^{3+1} \supset \mathcal{O} \mapsto \mathfrak{A}(\mathcal{O}) \subset \mathrm{B}(\mathscr{H})$
- ▶ space-time translations of states $(t, \mathbf{x}) \mapsto U(t, \mathbf{x}) = e^{\mathrm{i}tH \mathrm{i}\mathbf{x}\cdot \mathbf{P}}$
- ▶ translations of observables a_xA := A(x) := U(x) A U(x)*

Algebraic Framework for Local Quantum Theory The Haag-Kastler Axioms

... which are subject to

 $\begin{array}{ll} (\mathsf{HK1}) & \mathcal{O}_1 \subset \mathcal{O}_2 \Longrightarrow \mathfrak{A}(\mathcal{O}_1) \subset \mathfrak{A}(\mathcal{O}_2) & (\mathsf{Isotony}) \\ (\mathsf{HK2}) & \mathcal{O}_1 \subset \mathcal{O}_2' \Longrightarrow \mathfrak{A}(\mathcal{O}_1) \subset \mathfrak{A}(\mathcal{O}_2)' & (\mathsf{Locality}) \\ (\mathsf{HK3}) & \alpha_x \mathfrak{A}(\mathcal{O}) = \mathfrak{A}(\mathcal{O} + x), \ \forall x \in \mathbb{R}^4 & (\mathsf{Covariance}) \\ (\mathsf{HK4}) & E_{(H,P)}(\{0\}) \mathscr{H} = \mathbb{C}\Omega & (\mathsf{Uniqueness of } \Omega) \\ (\mathsf{HK5}) & \operatorname{supp} E_{(H,P)} \subset \bar{V}^+ & (\mathsf{Spectrum Condition}) \\ (\mathsf{HK6}) & \overline{\mathfrak{A}(\mathcal{O})\Omega} = \mathscr{H} & (\mathsf{Reeh-Schlieder Property}) \end{array}$

Preparing Single-Particle States

Single-particle states $\Psi_1, \Psi_2 \in \textit{E}_{\{\textit{M}=\textit{m}\}}\mathscr{H}$ are non-local objects:

$$\Psi_1 = E_m A \Omega = \chi(\frac{M^2 - m^2}{\epsilon}) A \Omega \sim A(\hat{\chi}_{\epsilon}) \Omega, \quad (\chi \in \mathscr{S}, \epsilon \searrow 0).$$

Preparing Single-Particle States

Single-particle states $\Psi_1, \Psi_2 \in \textit{E}_{\{\textit{M}=\textit{m}\}}\mathscr{H}$ are non-local objects:

$$\Psi_1 = E_m A \Omega = \chi(\frac{M^2 - m^2}{\epsilon}) A \Omega \sim A(\hat{\chi}_{\epsilon}) \Omega, \quad (\chi \in \mathscr{S}, \epsilon \searrow 0).$$

Instead now fix **one** bounded space-time region $\mathcal{O} \subset \mathbb{R}^4$. Reeh-Schlieder (HK6) $\Rightarrow \exists (A_{k\beta})_{\beta>0} \subset \mathfrak{A}(\mathcal{O}): ||A_{k\beta}\Omega - \Psi_k|| = \beta$.

Preparing Single-Particle States

Single-particle states $\Psi_1, \Psi_2 \in \textit{E}_{\{\textit{M}=\textit{m}\}}\mathscr{H}$ are non-local objects:

$$\Psi_1 = E_m A \Omega = \chi(\frac{M^2 - m^2}{\epsilon}) A \Omega \sim A(\hat{\chi}_{\epsilon}) \Omega, \quad (\chi \in \mathscr{S}, \epsilon \searrow 0).$$

Instead now fix **one** bounded space-time region $\mathcal{O} \subset \mathbb{R}^4$. Reeh-Schlieder (HK6) $\Rightarrow \exists (A_{k\beta})_{\beta>0} \subset \mathfrak{A}(\mathcal{O}): ||A_{k\beta}\Omega - \Psi_k|| = \beta$.

Def.: We call a family of local operators $(A_{k\beta})_{\beta>0} \subset \mathfrak{A}(\mathcal{O})$ s.t.

$$\|A_{k\beta}\Omega - \Psi_k\| \leq \beta$$
 and $\|A_{k\beta}\| \leq \beta^{-\gamma}$

a Reeh-Schlieder family for Ψ_k of degree $\gamma > 0$.

Assumption: **Strengthened Reeh-Schlieder Property** (HK6[‡])

Reeh-Schlieder families of finite degree generate a total subset of the single-particle space $\mathscr{H}_1 \subset \mathscr{H}$.

Strengthened Reeh-Schlieder yields Scattering States

Strengthened Reeh-Schlieder Property $(\gamma > 0)$ $(A_{k\beta})_{\beta>0} \subset \mathfrak{A}(\mathcal{O})$, s.t. $||A_{k\beta}\Omega - \Psi_k|| \leq \beta$ and $||A_{k\beta}|| \leq \beta^{-\gamma}$

Theorem (MD'15) Let Ψ_k be single-particle states admitting Reeh-Schlieder families $A_{k\beta}$ of finite degree. Then for any regular positive-energy Klein-Gordon sol. f_k with disjoint velocity supports

$$\Psi_{\tau} := \mathcal{B}_{1\tau} \dots \mathcal{B}_{n\tau} \Omega \stackrel{\tau \to \pm \infty}{\longrightarrow} \Psi^{\pm}.$$

The scalar products of any two such Ψ^+ , Ψ'^+ can be computed using the Fock prescription (similarly for incoming states).

Strengthened Reeh-Schlieder yields Scattering States

Strengthened Reeh-Schlieder Property $(\gamma > 0)$ $(A_{k\beta})_{\beta>0} \subset \mathfrak{A}(\mathcal{O})$, s.t. $||A_{k\beta}\Omega - \Psi_k|| \leq \beta$ and $||A_{k\beta}|| \leq \beta^{-\gamma}$

Theorem (MD'15) Let Ψ_k be single-particle states admitting Reeh-Schlieder families $A_{k\beta}$ of finite degree. Then for any regular positive-energy Klein-Gordon sol. f_k with disjoint velocity supports

$$\Psi_{\tau} := \mathcal{B}_{1\tau} \dots \mathcal{B}_{n\tau} \Omega \stackrel{\tau \to \pm \infty}{\longrightarrow} \Psi^{\pm}.$$

The scalar products of any two such Ψ^+ , Ψ'^+ can be computed using the Fock prescription (similarly for incoming states).

Previous results (Herbst '71, Dybalski '05, Herdegen '13) require spectral condition of Herbst-type, e.g. for some $\epsilon > 0$,

$$\Psi_k = E_{\{M=m\}}A_k\Omega, \quad A_k \in \mathfrak{A}(\mathcal{O}), \quad \left\|E_{\{0 < |M-m| < \delta\}}A_k\Omega\right\| \le \delta^{\epsilon}.$$

Construction of Scattering States

Reeh-Schlieder and Haag-Ruelle Creation Operators

Reference Dynamics: Klein-Gordon solutions f_k with disjointly and compactly supported wave packets $\tilde{f}_k \in \mathscr{C}^{\infty}_c(\mathbb{R}^3)$ ("regular")

Creation-Operator Approximants: with $\hat{\chi} \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{4} \setminus \overline{V}^{-})$, set $B_{k\beta} := A_{k\beta}(\chi) := \int d^{4}x \ \chi(x) \ A_{k\beta}(x),$

$$\mathcal{B}_{k au} := \int \mathrm{d}^3\!x \; f_k(au, \mathbf{x}) \; B_{keta}(au, \mathbf{x}), \quad (au \in \mathbb{R}).$$

Reeh-Schlieder and Haag-Ruelle Creation Operators

Reference Dynamics: Klein-Gordon solutions f_k with disjointly and compactly supported wave packets $\tilde{f}_k \in \mathscr{C}^{\infty}_c(\mathbb{R}^3)$ ("regular")

Creation-Operator Approximants: with $\hat{\chi} \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{4} \setminus \bar{V}^{-})$, set $B_{k\beta} := A_{k\beta}(\chi) := \int d^{4}x \ \chi(x) \ A_{k\beta}(x),$

$${\mathcal B}_{k au}:=\int {\mathrm d}^3\!x\; f_k(au,{f x})\; {\mathcal B}_{keta}(au,{f x}), \quad (au\in{\mathbb R}).$$

Haag-Ruelle/LSZ: $\mathcal{B}_{k\tau}\Omega \rightarrow \Psi'_k(f_k) := \tilde{f}_k(\mathbf{P})\Psi'_k \in \mathscr{H}_1$ for fixed small enough β .

Reeh-Schlieder:
$$\beta = \beta(\tau) := |\tau|^{-\mu}, \ \mu > 0$$
 then $\mathcal{B}_{k\tau}\Omega \to \Psi_k(f_k)$.

Candidate Scattering States: Limits $\tau \rightarrow \pm \infty$ of $\Psi_{\tau} := \mathcal{B}_{1\tau} \mathcal{B}_{2\tau} \Omega$.

Mathematical Tools (1) — Discretized Cook's method $^{\rm 13/18}$

$$\|\Psi_{\tau_2} - \Psi_{\tau_1}\| = \left\|\int_{\tau_1}^{\tau_2} \mathrm{d}\tau \, \partial_\tau \Psi_\tau\right\| \le \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \, \left\|\partial_\tau \Psi_\tau\right\| \stackrel{!}{<} \infty \quad (\tau_2 \to \pm \infty)$$

Mathematical Tools (1) — Discretized Cook's method $^{13/18}$

$$\frac{\|\Psi_{\tau_2} - \Psi_{\tau_1}\|}{\|\Psi_{\tau_2} - \Psi_{\tau_1}\|} \leq \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \, \|\partial_{\tau}\Psi_{\tau}\| \leq \infty \quad (\tau_2 \to \pm \infty)$$

$$\|\Psi_{\tau_{N}} - \Psi_{\tau_{1}}\| \leq \sum_{k} \left\|\mathcal{B}_{1\tau_{k+1}}\mathcal{B}_{2\tau_{k+1}}\Omega - \mathcal{B}_{1\tau_{k}}\mathcal{B}_{2\tau_{k}}\Omega\right\| \stackrel{!}{<} \infty \quad (\tau_{N} \to \pm \infty)$$

Mathematical Tools (1) — Discretized Cook's method $^{13/18}$

$$\|\Psi_{\tau_2} - \Psi_{\tau_1}\| = \left\|\int_{\tau_1}^{\tau_2} \mathrm{d}\tau \,\partial_\tau \Psi_\tau\right\| \le \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \,\left\|\partial_\tau \Psi_\tau\right\| \stackrel{!}{<} \infty \quad (\tau_2 \to \pm \infty)$$

$$\begin{split} \|\Psi_{\tau_{N}} - \Psi_{\tau_{1}}\| &\leq \sum_{k} \left\|\mathcal{B}_{1\tau_{k+1}}\mathcal{B}_{2\tau_{k+1}}\Omega - \mathcal{B}_{1\tau_{k}}\mathcal{B}_{2\tau_{k}}\Omega\right\| \stackrel{!}{<} \infty \quad (\tau_{N} \to \pm \infty) \\ \|\Psi_{\tau_{2}} - \Psi_{\tau_{1}}\| &\leq \|\mathcal{B}_{1\tau_{2}}(\mathcal{B}_{2\tau_{2}} - \mathcal{B}_{2\tau_{1}})\Omega\| + \|(\mathcal{B}_{1\tau_{2}} - \mathcal{B}_{1\tau_{1}})\mathcal{B}_{2\tau_{1}}\Omega\| \\ &\leq \|\mathcal{B}_{1\tau_{2}}(\mathcal{B}_{2\tau_{2}} - \mathcal{B}_{2\tau_{1}})\Omega\| + \|\mathcal{B}_{2\tau_{1}}(\mathcal{B}_{1\tau_{2}} - \mathcal{B}_{1\tau_{1}})\Omega\| \quad (\star) \\ &+ (\text{commutators}) \qquad (\star\star) \end{split}$$

Recall: $\mathcal{B}_{j\tau}\Omega \to \Psi_j \in \mathscr{H}_1$ (by construction)

Mathematical Tools (1) — Discretized Cook's method $^{13/18}$

$$\|\Psi_{\tau_2} - \Psi_{\tau_1}\| = \left\| \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \, \partial_\tau \Psi_\tau \right\| \le \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \, \left\| \partial_\tau \Psi_\tau \right\| \stackrel{!}{<} \infty \quad (\tau_2 \to \pm \infty)$$

$$\begin{split} \|\Psi_{\tau_{N}} - \Psi_{\tau_{1}}\| &\leq \sum_{k} \left\|\mathcal{B}_{1\tau_{k+1}}\mathcal{B}_{2\tau_{k+1}}\Omega - \mathcal{B}_{1\tau_{k}}\mathcal{B}_{2\tau_{k}}\Omega\right\| \stackrel{!}{<} \infty \quad (\tau_{N} \to \pm \infty) \\ \|\Psi_{\tau_{2}} - \Psi_{\tau_{1}}\| &\leq \|\mathcal{B}_{1\tau_{2}}(\mathcal{B}_{2\tau_{2}} - \mathcal{B}_{2\tau_{1}})\Omega\| + \|(\mathcal{B}_{1\tau_{2}} - \mathcal{B}_{1\tau_{1}})\mathcal{B}_{2\tau_{1}}\Omega\| \\ &\leq \|\mathcal{B}_{1\tau_{2}}(\mathcal{B}_{2\tau_{2}} - \mathcal{B}_{2\tau_{1}})\Omega\| + \|\mathcal{B}_{2\tau_{1}}(\mathcal{B}_{1\tau_{2}} - \mathcal{B}_{1\tau_{1}})\Omega\| \quad (\star) \\ &+ (\text{commutators}) \qquad (\star\star) \end{split}$$

Recall: $\mathcal{B}_{j\tau}\Omega \to \Psi_j \in \mathscr{H}_1$ (by construction)

For best possible summability as $N \to \infty$ we should

- choose $(\tau_k)_{k\in\mathbb{N}}$ as sparse as possible, $\tau_k := (1+\rho)^k \tau_0$, $\rho > 0$
- ▶ control equal- and non-equal-time commutators in (★★)
- control estimation of unbounded leftmost $\mathcal{B}_{j\tau_k}$ in (\star)

 $f_k(t, \mathbf{x}) = \int \mathrm{d}^3 k \, \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x} - \mathrm{i} \omega_m(\mathbf{k}) t} \, \tilde{f}_k(\mathbf{k}), \ \tilde{f}_k \in \mathscr{C}^\infty_c(\mathbb{R}^s), \ \omega_m(\mathbf{k}) := \sqrt{\mathbf{k}^2 + m^2}$

$$f_{k}(t, \mathbf{x}) = \int d^{3}k \, e^{i\mathbf{k}\cdot\mathbf{x}-i\omega_{m}(\mathbf{k})t} \tilde{f}_{k}(\mathbf{k}), \quad \tilde{f}_{k} \in \mathscr{C}_{c}^{\infty}(\mathbb{R}^{s}), \quad \omega_{m}(\mathbf{k}) := \sqrt{\mathbf{k}^{2}+m^{2}}$$

$$\bullet \text{ velocity } \mathbf{v}(\mathbf{k}) = \frac{\mathbf{k}}{\omega_{m}(\mathbf{k})}$$

$$\bullet \text{ velocity support}$$

$$\Gamma_{f} := \mathbf{v}(\text{supp } \tilde{f})$$

$$\Gamma_{1}^{\mid \mid \mid} \Gamma_{2}$$

$$\longrightarrow \mathbf{x}$$

$$f_{k}(t, \mathbf{x}) = \int d^{3}k \ e^{i\mathbf{k}\cdot\mathbf{x}-i\omega_{m}(\mathbf{k})t} \ \tilde{f}_{k}(\mathbf{k}), \quad \tilde{f}_{k} \in \mathscr{C}_{c}^{\infty}(\mathbb{R}^{s}), \quad \omega_{m}(\mathbf{k}) := \sqrt{\mathbf{k}^{2}+m^{2}}$$

$$\blacktriangleright \ \text{velocity } \mathbf{v}(\mathbf{k}) = \frac{\mathbf{k}}{\omega_{m}(\mathbf{k})}$$

$$\flat \ \text{velocity support}$$

$$\Gamma_{f} := \mathbf{v}(\text{supp } \tilde{f})$$

$$\flat \ \text{propagation region}$$

$$\Upsilon_{f} := \{(t, \mathbf{v}t), \ \mathbf{v} \in \Gamma_{f}, \ t \in \mathbb{R}\}$$

$$\Gamma_{1}$$

$$\begin{aligned} f_{k}(t,\mathbf{x}) &= \int \mathrm{d}^{3}k \, \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}-\mathrm{i}\omega_{m}(\mathbf{k})t} \, \tilde{f}_{k}(\mathbf{k}), \quad \tilde{f}_{k} \in \mathscr{C}_{c}^{\infty}(\mathbb{R}^{s}), \quad \omega_{m}(\mathbf{k}) := \sqrt{\mathbf{k}^{2}+m^{2}} \\ & \quad \text{velocity } \mathsf{velocity } \mathsf{support} \\ & \quad \mathsf{F}_{f} := \mathbf{v}(\mathsf{supp } \tilde{f}) \\ & \quad \mathsf{propagation } \mathsf{region} \\ & \quad \Upsilon_{f} := \{(t,\mathbf{v}t), \, \mathbf{v} \in \mathbf{\Gamma}_{f}, \, t \in \mathbb{R}\} \\ & \quad \mathsf{creation } \mathsf{operators} \\ & \quad \mathcal{A}_{k\tau} = \int \mathrm{d}^{3}x \, f_{k}(\tau,\mathbf{x}) \, A_{k\beta}(\tau,\mathbf{x}), \end{aligned}$$

$$f_{k}(t, \mathbf{x}) = \int d^{3}k \, e^{i\mathbf{k}\cdot\mathbf{x}-i\omega_{m}(\mathbf{k})t} \, \tilde{f}_{k}(\mathbf{k}), \quad \tilde{f}_{k} \in \mathscr{C}_{c}^{\infty}(\mathbb{R}^{s}), \quad \omega_{m}(\mathbf{k}) := \sqrt{\mathbf{k}^{2}+m^{2}}$$

$$\text{velocity } \mathbf{v}(\mathbf{k}) = \frac{\mathbf{k}}{\omega_{m}(\mathbf{k})}$$

$$\text{velocity support}$$

$$\Gamma_{f} := \mathbf{v}(\text{supp } \tilde{f})$$

$$\text{propagation region}$$

$$\Upsilon_{f} := \{(t, \mathbf{v}t), \, \mathbf{v} \in \Gamma_{f}, \, t \in \mathbb{R}\}$$

$$\text{creation operators}$$

$$\mathcal{A}_{k\tau} = \int d^{3}x \, f_{k}(\tau, \mathbf{x}) \, \mathcal{A}_{k\beta}(\tau, \mathbf{x}),$$

$$\mathcal{O}_{A_{k\beta}}$$

Lemma: Let f_k be regular s.t. $\Gamma_1 \cap \Gamma_2 = \emptyset$ and $A_{k\beta}$ have finite degree.

 $\exists \rho > 0 \ \forall \ |\tau_1 - \tau_2| \le \rho \, |\tau_1| : \quad \|[\mathcal{B}_{1\tau_1}, \mathcal{B}_{2\tau_2}]\| \le \frac{C_N \, \|\mathcal{A}_{1\beta(\tau_1)}\| \, \|\mathcal{A}_{2\beta(\tau_2)}\|}{1 + |\tau_1|^N + |\tau_2|^N}$

Assembling the Mathematical Arsenal

The reason why Discrete Cook works may be summarized:

Lemma (local difference estimate) Let $A_{k\beta}$ be RS families of finite degree, and f_k regular positive-energy Klein-Gordon solutions with disjoint velocity supports. Then for sufficiently small scaling $\mu > 0$, $\exists \rho > 0 \forall |\tau_1 - \tau_2| \le \rho |\tau_1|$,

$$\|\Psi_{\tau_{2}} - \Psi_{\tau_{1}}\|^{2} \leq C_{1} \sum_{k=1}^{n} \|\mathcal{B}_{k\tau_{2}}\Omega - \mathcal{B}_{k\tau_{1}}\Omega\|^{2} + C_{2} |\tau_{1}|^{-\delta}$$

Proof based on **non-equal-time** commutator estimates, **energy-bounds** [Buchholz'90], and **Clustering** arguments from [Dybalski'05], [Buchholz'77], and [Araki, Hepp, Ruelle'62]. Is it useful?

Wave Operators and S-Matrix

Let \mathscr{F} denote Fock space over finite RS-degree 1-particle vectors and $\mathscr{F}_{disj} \subset \mathscr{F}$ the set of product states with disjoint Γ_k .

Def. (Møller op.) For $\Psi_{\text{prod}} = \Psi_1(f_1)\Omega \otimes \ldots \otimes \Psi_n(f_n)\Omega \in \mathscr{F}_{\text{disj}}$, $\Psi_k = \lim_{\beta \to 0} \tilde{f}_k(\mathbf{P})A_{k\beta}\Omega$ define

$$W_{\pm}: \begin{cases} \mathscr{F}_{\mathsf{disj}} \longrightarrow \mathscr{H}, \\ \Psi_{\mathsf{prod}} \longmapsto \lim_{\tau \to \pm \infty} \mathcal{B}_{1\tau} \dots \mathcal{B}_{n\tau} \Omega. \end{cases}$$

The S-matrix is defined for $\Psi, \Phi \in \mathscr{F}_{\mathsf{disj}}$ by $\langle \Psi, S\Phi \rangle := \langle W_+ \Psi, W_- \Phi \rangle \,.$

▶ Rem. There are examples of QFT-models exhibiting A ∈ 𝔅(O) which violate the Herbst spectral regularity condition.

- ▶ Rem. There are examples of QFT-models exhibiting A ∈ 𝔅(O) which violate the Herbst spectral regularity condition.
- Proposition. In scalar free field theory, there exist Reeh-Schlieder families A_β of arbitrarily small degree γ > 0.

- ▶ Rem. There are examples of QFT-models exhibiting A ∈ 𝔅(O) which violate the Herbst spectral regularity condition.
- Proposition. In scalar free field theory, there exist Reeh-Schlieder families A_β of arbitrarily small degree γ > 0.
 Proof. Taking A_β := φ(f)e^{-β|φ(f)|^N} for compactly supported f has degree γ = 1/N for any N ∈ 2N does the job.

- ▶ Rem. There are examples of QFT-models exhibiting A ∈ 𝔅(O) which violate the Herbst spectral regularity condition.
- Proposition. In scalar free field theory, there exist Reeh-Schlieder families A_β of arbitrarily small degree γ > 0.
 Proof. Taking A_β := φ(f)e^{-β|φ(f)|^N} for compactly supported f has degree γ = 1/N for any N ∈ 2N does the job.
- Conjecture: Ψ₁ ∈ ℋ₁ single-particle state with sufficiently small Reeh-Schlieder degree γ < 1 ⇒ Ψ₁ non-interacting.

- ▶ Rem. There are examples of QFT-models exhibiting A ∈ 𝔅(O) which violate the Herbst spectral regularity condition.
- Proposition. In scalar free field theory, there exist Reeh-Schlieder families A_β of arbitrarily small degree γ > 0.
 Proof. Taking A_β := φ(f)e^{-β|φ(f)|^N} for compactly supported f has degree γ = 1/N for any N ∈ 2N does the job.
- Conjecture: Ψ₁ ∈ ℋ₁ single-particle state with sufficiently small Reeh-Schlieder degree γ < 1 ⇒ Ψ₁ non-interacting.
- Proposition. Assume there is a regular local A ∈ 𝔅(𝔅) with Herbst-exponent ε>0. Then one can construct A_β∈𝔅(𝔅+B_ε) s.t.

$$\|E(\Delta)(A_{\beta}\Omega - \Psi_1)\| < C_{\Delta}\beta, \quad \ln \|A_{\beta}\| < \beta^{-\gamma}$$

for any compact $\Delta \subset \mathbb{R}^{s+1}$, with suitable C_{Δ} , and $\gamma \sim 1/\epsilon$.

Summary and Outlook

- Strengthened Reeh-Schlieder useful for Scattering Theory
- Discretized Cook's method improves Convergence, but also needs stronger technical tools: In particular, Non-Equal-Time Versions of
 - Commutator Estimates
 - Energy-Bounds
 - Clustering Estimates

Summary and Outlook

- Strengthened Reeh-Schlieder useful for Scattering Theory
- Discretized Cook's method improves Convergence, but also needs stronger technical tools: In particular, Non-Equal-Time Versions of
 - Commutator Estimates
 - Energy-Bounds
 - Clustering Estimates

Open Questions and Next Steps

- Physical Properties W^{\pm} and S-Matrix?
- Quantitative Results on Reeh-Schlieder?
- Construct Asymptotic Observables (Araki-Haag Detectors)
- ▶ Relaxation of Localization Assumption $(A_\beta) \subset \mathfrak{A}(\mathcal{O})$
 - $\mathcal{O} \rightarrow \mathcal{O}_{R(\beta)}$ e.g. with polynomially growing radii
 - $\mathcal{O} \to \mathcal{W} \xrightarrow{\mathcal{O}}$ unbounded wedge regions \mathcal{W} appear in context of
 - Polarization-free Generators [Borchers et al'01]
 - non-commutative flat space-times [Grosse, Lechner'07]

Summary and Outlook

- Strengthened Reeh-Schlieder useful for Scattering Theory
- Discretized Cook's method improves Convergence, but also needs stronger technical tools: In particular, Non-Equal-Time Versions of
 - Commutator Estimates
 - Energy-Bounds
 - Clustering Estimates

Open Questions and Next Steps

- Physical Properties W^{\pm} and S-Matrix?
- Quantitative Results on Reeh-Schlieder?
- Construct Asymptotic Observables (Araki-Haag Detectors)
- ▶ Relaxation of Localization Assumption $(A_\beta) \subset \mathfrak{A}(\mathcal{O})$
 - $\mathcal{O} \to \mathcal{O}_{R(\beta)}$ e.g. with polynomially growing radii
 - $\mathcal{O} \to \mathcal{W} \xrightarrow{\mathcal{O}}$ unbounded wedge regions \mathcal{W} appear in context of
 - Polarization-free Generators [Borchers et al'01]
 - non-commutative flat space-times [Grosse, Lechner'07]

Thanks for your attention!