Gauge theories in curved spacetimes: (Anomalous) Ward identities and the underlying L_∞ algebra

Markus B. Fröb

Institut für Theoretische Physik, Universität Leipzig

26. October 2019

- 2 Gauge theories the BV-BRST approach
- 3 Anomalous Ward identities

Major precursors

- BRST for QED (Dütsch/Fredenhagen, Commun. Math. Phys. 203 (1999) 71, arXiv:hep-th/9807078)
- Master Ward Identity (Dütsch/Boas, Rev. Math. Phys. 14 (2002) 977, arXiv:hep-th/0111101)
- Yang-Mills in curved spacetime (Hollands, Rev. Math. Phys. 20 (2008) 1033, arXiv:0705.3340)
- Batalin–Vilkovisky formalism for closed gauge algebras (Fredenhagen/Rejzner, Commun. Math. Phys. 317 (2013) 697, arXiv:1110.5232)
- Also important: Retarded products (Dütsch/Fredenhagen, Rev. Math. Phys. 16 (2004) 1291, arXiv:hep-th/0403213)

Gauge theories in curved spacetimes: (Anomalous) Ward identities and the underlying L_∞ algebra

Perturbative Algebraic Quantum Field Theory

Perturbative Algebraic Quantum Field Theory

Perturbative Algebraic Quantum Field Theory 1/5

- Dynamical fields {\u03c6\u03c6K}, where the index \u03c6 distinguishes the type of field, and Lorentz, spinor and Lie algebra indices when necessary
- $\epsilon_{\mathcal{K}} \in \{0,1\}$ is the Grassmann parity of $\phi_{\mathcal{K}}$
- Action $S = S_0 + S_{int}$, with free action S_0 , interaction S_{int} at least cubic in the fields
- Free action $S_0 = \frac{1}{2} \int \phi_K(x) P_{KL}(x) \phi_L(x) dx$ with P_{KL} formally self-adjoint: $P_{KL}^* = (-1)^{\epsilon_K \epsilon_L} P_{LK}$

• Unique retarded and advanced Green's functions: $P_{KL}(x)G_{LM}^{\text{ret/adv}}(x,y) = \delta_{KM}\delta(x,y) = P_{LK}^*(y)G_{ML}^{\text{ret/adv}}(x,y) \text{ with } \sup \int G_{KL}^{\text{ret/adv}}(x,y)f(y) \, \mathrm{d}y \subset J^{\pm}(\operatorname{supp} f) \text{ and } G_{KL}^{\text{adv}}(x,y) = (-1)^{\epsilon_{K}\epsilon_{L}}G_{LK}^{\text{ret}}(y,x)$

Pauli–Jordan (commutator) function $\Delta_{KL}(x, y) \equiv G_{KL}^{\text{ret}}(x, y) - G_{KL}^{\text{adv}}(x, y) = G_{KL}^{\text{ret}}(x, y) - (-1)^{\epsilon_{K}\epsilon_{L}}G_{LK}^{\text{ret}}(y, x)$

Perturbative Algebraic Quantum Field Theory 2/5

■ \mathfrak{A}_0 : free *-algebra generated by the expressions $\phi_K(f)$, where f is a test function, with the product denoted by \star_\hbar , the *-relation given by $[\phi_K(f)]^* = \phi_K^{\dagger}(f^*)$, unit element $\mathbb{1}$, factored by (anti-)commutation relation

$$\begin{split} \left[\phi_{\mathcal{K}}(f),\phi_{\mathcal{L}}(g)\right]_{\star_{\hbar}} &\equiv \phi_{\mathcal{K}}(f)\star_{\hbar}\phi_{\mathcal{L}}(g) - (-1)^{\epsilon_{\mathcal{K}}\epsilon_{\mathcal{L}}}\phi_{\mathcal{L}}(g)\star_{\hbar}\phi_{\mathcal{K}}(f) \\ &= \mathrm{i}\hbar\int f(x)\Delta_{\mathcal{K}\mathcal{L}}(x,y)g(y)\,\mathrm{d}x\,\mathrm{d}y\,\mathbb{1} \equiv \mathrm{i}\hbar\Delta_{\mathcal{K}\mathcal{L}}(f,g)\,\mathbb{1} \end{split}$$

• Completion of \mathfrak{A}_0 w.r.t. weak topology: free-field algebra $\overline{\mathfrak{A}}_0$

• Practical completion: Consider fixed two-point functions $G_{KL}^+(x, y)$ of Hadamard form, which are bisolutions $P_{KL}(x)G_{LM}^+(x, y) = 0 = P_{LK}^*(y)G_{ML}^+(x, y)$ and satisfy $G_{KL}^+(x, y) - (-1)^{\epsilon_K \epsilon_L}G_{LK}^+(y, x) = \Delta_{KL}(x, y)$ and a certain wave front set condition (microlocal spectrum condition)

Perturbative Algebraic Quantum Field Theory 3/5

• Normal-ordered products $:\phi_{K_1}\cdots \phi_{K_n}:_G(f_1\otimes\cdots\otimes f_n) = \int :\phi_{K_1}(x_1)\cdots \phi_{K_n}(x_n):_G f_1(x_1)\cdots f_n(x_n) dx_1\cdots dx_n$: defined by $:\phi_K:_G(f) \equiv \phi_K(f)$ and inductively such that

$$\phi_{K_1}(x_1)\cdots\phi_{K_n}(x_n):_G\star_{\hbar}:\phi_{L_1}(y_1)\cdots\phi_{L_m}(y_m):_G$$

=: $\phi_{K_1}(x_1)\cdots\phi_{K_n}(x_n)\exp\left(i\hbar\overleftrightarrow{G}\right)\phi_{L_1}(y_1)\cdots\phi_{L_m}(y_m):_G$

with $\overleftarrow{G} \equiv \int \overleftarrow{\frac{\delta_{R}}{\delta\phi_{M}(u)}} G^{+}_{MN}(u,v) \overrightarrow{\frac{\delta_{L}}{\delta\phi_{N}(v)}} du dv$ holds

- Take the limit $f_1(x_1) \otimes \cdots \otimes f_n(x_n) \to f_1(x_1)\delta(x_1, \ldots, x_n)$ (Wick monomials), well-defined thanks to microlocal spectrum condition
- Locally covariant normal products $:\phi_{K_1}(x_1)\cdots\phi_{K_n}(x_n):_H:$ use only geometrically defined singular part (Hadamard parametrix H_{MN}) instead of two-point function

Perturbative Algebraic Quantum Field Theory 4/5

- On-shell free-field algebra $\overline{\mathfrak{A}}_0/\mathfrak{I}_0$, where \mathfrak{I}_0 is ideal generated by equations of motion $P_{KL}\phi_L = 0$, i.e., elements $\phi_L(P_{KL}^*f)$ and their normal-ordered products
- \mathcal{F} : space of local smeared field polynomials (e.g., $\int g(x)F^{\mu\nu}(x)F_{\mu\nu}(x) dx$)
- Time-ordered products: multilinear maps $\mathcal{T}_n \colon \mathcal{F}^{\otimes n} \to \overline{\mathfrak{A}}_0$
- Causal factorisation: $\mathcal{T}_n(F_1 \otimes \cdots \otimes F_n) = \mathcal{T}_{\ell}(F_1 \otimes \cdots \otimes F_{\ell}) \star_{\hbar} \mathcal{T}_{n-\ell}(F_{\ell+1} \otimes \cdots \otimes F_n)$ if $J^+(\operatorname{supp} F_i) \cap J^-(\operatorname{supp} F_j) = \emptyset$ for all $1 \le i \le \ell, \ \ell+1 \le j \le n$
- Graded symmetry: $\mathcal{T}[\cdots F \otimes G \cdots] = (-1)^{\epsilon_F \epsilon_G} \mathcal{T}[\cdots G \otimes F \cdots]$ for elements $F, G \in \mathcal{F}$ with definite Grassmann parity
- Locality and covariance (cumbersome notation)

Perturbative Algebraic Quantum Field Theory 5/5

- Non-uniqueness: $\hat{\mathcal{T}}\left[\exp_{\otimes}\left(\frac{\mathrm{i}}{\hbar}F\right)\right] = \mathcal{T}\left[\exp_{\otimes}\left(\frac{\mathrm{i}}{\hbar}F + \frac{\mathrm{i}}{\hbar}\mathcal{Z}\left(\mathrm{e}_{\otimes}^{F}\right)\right)\right]$ with local and covariant, multilinear maps \mathcal{Z}_{n} such that $\mathcal{Z}_{n}(F_{1}\otimes\cdots\otimes F_{n})=0$ for $\operatorname{supp} F_{i}\cap\operatorname{supp} F_{j}=\emptyset$, $\mathcal{Z}[\cdots\otimes F\otimes G\otimes\cdots]=(-1)^{\epsilon_{F}\epsilon_{G}}\mathcal{Z}[\cdots\otimes G\otimes F\otimes\cdots],$ $\mathcal{Z}_{n}(F^{\otimes n})=\mathcal{O}(\hbar)$
- Interacting time-ordered products:

$$\mathcal{T}_{L}\left[\exp_{\otimes}\left(\frac{\mathrm{i}}{\hbar}G\right)\right] \equiv \mathcal{T}\left[\exp_{\otimes}\left(\frac{\mathrm{i}}{\hbar}L\right)\right]^{\star_{\hbar}(-1)} \star_{\hbar} \mathcal{T}\left[\exp_{\otimes}\left(\frac{\mathrm{i}}{\hbar}(L+G)\right)\right]$$

- Smeared interaction: $L = \int g(x) \mathcal{L} dx$ (limit $g \to \text{const possible on algebraic level, called "algebraic adiabatic limit")$
- Contrary to appearance, T_L is formal power series in ħ, special case: interacting field operator corresponding to classical F: T_L(F)
- Algebra ${\mathfrak A}$ of interacting quantum fields: formal power series in \hbar with coefficients in $\overline{\mathfrak A}_0$

Gauge theories in curved spacetimes: (Anomalous) Ward identities and the underlying L_{∞} algebra

Gauge theories – the BV-BRST approach

Gauge theories – the BV-BRST approach

Gauge theories – the BV-BRST approach

Gauge theories – the BV-BRST approach 1/3

- Gauge problem: P_{KL} has non-trivial kernel ⇒ Batalin–Vilkovisky formalism building on Becchi–Rouet–Stora–Tyutin
- For each symmetry transformation δ_{ξ} with parameter ξ_M acting on the fields $\{\phi_K\}$, we introduce a *ghost field* c_M , an *antighost field* \bar{c}_M , an *auxiliary* field B_M (together $\{\Phi_K\} = \{\phi_K, c_K, \bar{c}_K, B_K\}$)
- Fermionic symmetries (e.g., supersymmetry): ξ is fermionic, global symmetries: no antighost/auxiliary field (non-minimal fields), reducible symmetries: rinse and repeat ("ghosts for ghosts")
- Antifield Φ_K^{\ddagger} for each field Φ_K
- New gradings: ghost number g, antifield number a such that

$$\begin{split} \epsilon(c_{\mathcal{K}}) &= \epsilon(\bar{c}_{\mathcal{K}}) = \epsilon(\xi_{\mathcal{K}}) + 1, \quad \epsilon(B_{\mathcal{K}}) = \epsilon(\xi_{\mathcal{K}}), \quad \epsilon(\Phi_{\mathcal{K}}^{\ddagger}) = \epsilon(\Phi_{\mathcal{K}}) + 1, \\ g(\phi_{\mathcal{K}}) &= 0, \quad g(c_{\mathcal{K}}) = 1, \quad g(\bar{c}_{\mathcal{K}}) = -1, \quad g(B_{\mathcal{K}}) = 0, \\ g(\Phi_{\mathcal{K}}^{\ddagger}) &= -1 - g(\Phi_{\mathcal{K}}), \quad a(\Phi_{\mathcal{K}}) = 0, \quad a(\Phi_{\mathcal{K}}^{\ddagger}) = 1. \end{split}$$

Gauge theories – the BV-BRST approach

Gauge theories – the BV-BRST approach 2/3

- Antibracket: $(F, G) \equiv \int \left(\frac{\delta_R F}{\delta \Phi_K(x)} \frac{\delta_L G}{\delta \Phi_K^{\dagger}(x)} \frac{\delta_R F}{\delta \Phi_K^{\dagger}(x)} \frac{\delta_L G}{\delta \Phi_K(x)} \right) dx$ for $F, G \in \mathcal{F}$ (canonical bracket in field/antifield space)
- Graded symmetry: $(F, G) = (-1)^{\epsilon_F + \epsilon_G + \epsilon_F \epsilon_G} (G, F)$ Graded Leibniz rule: $(F, GH) = (F, G)H + (-1)^{(1+\epsilon_F)\epsilon_G}G(F, H)$ Jacobi identity: $(-1)^{(\epsilon_F+1)(\epsilon_H+1)}(F, (G, H)) + \text{cyclic} = 0$ Grading: $\{g, a, \epsilon\}[(F, G)] = \{g, a, \epsilon\}(F) + \{g, a, \epsilon\}(G) \pm 1$
- BRST differential: $sF \equiv (S_{tot}, F)$ with total action $S_{tot} = S + S_{ext}$ chosen such that
 - 1 the *BV* master equation $(S_{tot}, S_{tot}) = 0$ is fulfilled,
 - 2 the original symmetries are recovered by a BRST transformation, with the transformation parameter replaced by the ghost: $s\phi_M = \sum_k \delta_c \phi_M + terms$ containing antifields,
 - **3** the non-minimal fields form *trivial pairs*: $s\bar{c}_M = B_M$, $sB_M = 0$,
 - 4 P_{KL} of the antifield-independent free part of S_{tot} has unique retarded and advanced Green's functions

—Gauge theories – the BV-BRST approach

Gauge theories – the BV-BRST approach 3/3

- Explicit algorithm to find S_{ext} as series in antifields, often terminates because of dimensional constraints
- s is odd (fermionic) differential, left derivation (from Leibniz rule), nilpotent s² = 0 (from Jacobi identity and BV master equation)
- s augments ghost number by 1, define cohomology classes

$$\mathcal{H}^{g}(\mathsf{s})\equivrac{\operatorname{Ker}(\mathsf{s}\colon\mathcal{F}^{g} o\mathcal{F}^{g+1})}{\operatorname{Im}(\mathsf{s}\colon\mathcal{F}^{g-1} o\mathcal{F}^{g})}$$

 $\mathcal{F}^{\mathsf{g}} \subset \mathcal{F}$ subspace of homogeneous elements of ghost number g

- H⁰(s): classical gauge-invariant observables (representatives independent of trivial pairs, check that also antifield-independent)
- $H^1(s|d)$: obstruction to quantisation, d is exterior differential
- $H^1(s)$: obstruction for quantum observables

Gauge theories in curved spacetimes: (Anomalous) Ward identities and the underlying L_∞ algebra

Anomalous Ward identities

Anomalous Ward identities

Anomalous Ward identities 1/9

- Classical theory: symmetry transformation on phase space = Poisson bracket with Noether charge
- Product of classical invariant observables is again invariant, since Poisson bracket obeys Leibniz and classical observables factorise: $(\mathcal{O}_1\mathcal{O}_2)_L = (\mathcal{O}_1)_L(\mathcal{O}_2)_L$, with $(\mathcal{O})_L$ solution of $\dot{\mathcal{O}} = \{\mathcal{O}, L\}$
- In quantum theory: $\mathcal{T}_L(\mathcal{O}_1 \otimes \mathcal{O}_2) \neq \mathcal{T}_L(\mathcal{O}_1) \star_{\hbar} \mathcal{T}_L(\mathcal{O}_2)$
- Relations between time-ordered products if symmetry is preserved: Ward(-Takahashi-Slavnov-Taylor) identities, but in general extra anomalous terms
- For locally covariant derivation D acting on $\overline{\mathfrak{A}}_0$:

$$D\mathcal{T}\left[\exp_{\otimes}\left(\frac{\mathrm{i}}{\hbar}\mathcal{F}\right)\right] = \frac{\mathrm{i}}{\hbar}\mathcal{T}\left[\left[\mathcal{D}\left(\mathrm{e}_{\otimes}^{\mathcal{F}}\right) + \mathcal{A}\left(\mathrm{e}_{\otimes}^{\mathcal{F}}\right)\right] \otimes \exp_{\otimes}\left(\frac{\mathrm{i}}{\hbar}\mathcal{F}\right)\right]$$

Anomalous Ward identities 2/9

- $\mathcal{D}_n, \mathcal{A}_n$: multilinear maps $\mathcal{F}^{\otimes n} \to \mathcal{F}$
- Graded symmetry: $\{\mathcal{D}, \mathcal{A}\}[\dots \otimes F \otimes G \otimes \dots] = (-1)^{\epsilon_F \epsilon_G} \{\mathcal{D}, \mathcal{A}\}[\dots \otimes G \otimes F \otimes \dots]$
- Support on diagonal: {D, A}_n(F₁ ⊗ · · · ⊗ F_n) = 0 if supp F_i ∩ supp F_j = Ø for some i, j
- Grading: $g[\{\mathcal{D}, \mathcal{A}\}_n(F_1 \otimes \cdots \otimes F_n)] = d + \sum_{i=1}^n g(F_i)$ if $D: \overline{\mathfrak{A}}_0^g \to \overline{\mathfrak{A}}_0^{g+d}$
- Locality and covariance
- Order in \hbar : $\mathcal{D}_n(F^{\otimes n}) = \mathcal{O}(\hbar^0)$ ("classical part") and $\mathcal{A}_n(F^{\otimes n}) = \mathcal{O}(\hbar)$ ("anomaly")
- Example: Inner derivation Da = 1/(iħ)[Q, a]_{*ħ} for fixed Q ∈ য়₀ and all a ∈ য়₀ (symmetry obtained by graded commutator with the operator corresponding to the classical Noether charge)

Anomalous Ward identities 3/9

- Explicit formula for classical part
- If D is an inner derivation, then
 - **1** Identifying $Q_{cl} = \lim_{\hbar \to 0} Q$ with an element of \mathcal{F} , we have

$$\mathcal{D}_{1}(F) = \{Q_{cl}, F\} = \iint \frac{\delta_{\mathsf{R}} Q_{cl}}{\delta \phi_{M}(x)} \Delta_{MN}(x, y) \frac{\delta_{\mathsf{L}} F}{\delta \phi_{N}(y)} \, \mathrm{d}x \, \mathrm{d}y$$

2 At second order, we have

$$\mathcal{D}_2(F \otimes F) = \iint \frac{\delta_{\mathsf{R}} F}{\delta \phi_K(x)} \big[G_{KL}^{\mathsf{ret}}(x, y) + G_{KL}^{\mathsf{adv}}(x, y) \big] \bigg\{ \frac{\delta_{\mathsf{L}} Q_{\mathsf{cl}}}{\delta \phi_L(y)}, F \bigg\} \, \mathrm{d}x \, \mathrm{d}y \, .$$

3 $\mathcal{D}_k(F^{\otimes k}) = 0$ for all $k \geq 3$ if Q_{cl} is at most of second order in fields, i.e. if $\delta^3 Q_{cl} / [\delta \phi_K(x) \delta \phi_L(y) \delta \phi_M(z)] = 0$ for all K, L, M.

Anomalous Ward identities 4/9

If D acts by the antibracket with an element Q ∈ F at most of second order in fields (or antifields), that is

$$D\Phi_{\mathcal{K}}(x) = -rac{\delta_{\mathsf{R}}Q}{\delta\Phi_{\mathcal{K}}^{\ddagger}(x)}, \qquad D\Phi_{\mathcal{K}}^{\ddagger}(x) = rac{\delta_{\mathsf{R}}Q}{\delta\Phi_{\mathcal{K}}(x)},$$

and extended to general $A\in\overline{\mathfrak{A}}_0$ by linearity and a graded Leibniz rule, then

1 At first order, we have

$$\mathcal{D}_1(F) = (Q_{\mathsf{cl}}, F).$$

2 At second order, we have

$$\mathcal{D}_{2}(F \otimes F) = \iint \frac{\delta_{\mathsf{R}}F}{\delta\Phi_{K}(x)} \left[G_{KL}^{\mathsf{ret}}(x,y) + G_{KL}^{\mathsf{adv}}(x,y) \right] \left(\frac{\delta_{\mathsf{L}}Q_{\mathsf{cl}}}{\delta\Phi_{L}(y)}, F \right) \mathrm{d}x \, \mathrm{d}y \,.$$
3 $\mathcal{D}_{k}(F^{\otimes k}) = 0$ for all $k > 3$.

Anomalous Ward identities 5/9

- Application to BRST differential sF = (S, F): consider free part $s_0F = (S_0, F)$ with S_0 quadratic in fields and antifields
- Free BRST differential \hat{s}_0 acts on \mathfrak{A}_0 by $\hat{s}_0 \Phi_K(x) = -\delta_R S_0 / \delta \Phi_K^{\ddagger}(x)$, $\hat{s}_0 \Phi_K^{\ddagger}(x) = \delta_R S_0 / \delta \Phi_K(x)$, linearity, graded Leibniz rule, and we obtain $\mathcal{D}_2(F \otimes F) = (F, F)$
- Anomalous Ward identity:

$$\hat{\mathsf{s}}_0 \mathcal{T} \bigg[\mathsf{exp}_{\otimes} \bigg(\frac{\mathrm{i}}{\hbar} \mathcal{F} \bigg) \bigg] = \frac{\mathrm{i}}{\hbar} \mathcal{T} \bigg[\bigg(\mathsf{s}_0 \mathcal{F} + \frac{1}{2} (\mathcal{F}, \mathcal{F}) + \mathcal{A} \big(\mathrm{e}_{\otimes}^{\mathcal{F}} \big) \bigg) \otimes \mathsf{exp}_{\otimes} \bigg(\frac{\mathrm{i}}{\hbar} \mathcal{F} \bigg) \bigg]$$

• Consistency condition follows from $\hat{s}_0^2 = 0$:

$$\left(S_0 + F, \mathcal{A}\!\left[\mathrm{e}^F_{\otimes}
ight]
ight) = rac{1}{2}\mathcal{A}\!\left[\left(S_0 + F, S_0 + F
ight) \otimes \mathrm{e}^F_{\otimes}
ight] + \mathcal{A}\!\left[\mathcal{A}\!\left[\mathrm{e}^F_{\otimes}
ight] \otimes \mathrm{e}^F_{\otimes}
ight]$$

If H¹(s|d) = Ø, can use freedom in definition of time-ordered products to obtain A[e^L_⊗] = 0 using consistency condition, order by order in ħ

Anomalous Ward identities 6/9

• For interacting time-ordered products: if $\mathcal{A}\!\left[\mathrm{e}^L_{\otimes}
ight]=$ 0, we have

$$\hat{\mathsf{s}}\mathcal{T}_{\mathsf{L}}\left[\exp_{\otimes}\left(\frac{\mathrm{i}}{\hbar}\mathsf{F}\right)\right] = \frac{\mathrm{i}}{\hbar}\mathcal{T}_{\mathsf{L}}\left[\left(\mathsf{s}\mathsf{F} + \frac{1}{2}(\mathsf{F},\mathsf{F}) + \mathcal{A}\left(\mathrm{e}^{\mathsf{L}+\mathsf{F}}_{\otimes}\right)\right) \otimes \exp_{\otimes}\left(\frac{\mathrm{i}}{\hbar}\mathsf{F}\right)\right]$$

with $\hat{s}a \equiv \hat{s}_0 a + 1/(i\hbar)[\mathcal{T}_L(\Delta Q^-), a]_{\star\hbar}$ for $a \in \overline{\mathfrak{A}}_0$ and $\Delta Q^- \in \mathcal{F}$ Define *n*-ary quantum brackets $[\cdot]_{\hbar}$:

$$\begin{split} [F_1]_{\hbar} &\equiv \mathsf{s} F_1 + (-1)^{\epsilon_1} \mathcal{A} \Big[F_1 \otimes \mathrm{e}^L_{\otimes} \Big] \,, \\ [F_1, F_2]_{\hbar} &\equiv (-1)^{\epsilon_1} (F_1, F_2) + (-1)^{\epsilon_1 + \epsilon_2} \mathcal{A} \Big[F_1 \otimes F_2 \otimes \mathrm{e}^L_{\otimes} \Big] \,, \\ [F_1, \dots, F_k]_{\hbar} &\equiv (-1)^{\epsilon_1 + \dots + \epsilon_k} \mathcal{A} \Big[F_1 \otimes \dots \otimes F_k \otimes \mathrm{e}^L_{\otimes} \Big] \,, \qquad k \geq 3 \,. \end{split}$$

Signs ensure *intrinsic oddness*: [αG, F^k]_ħ = (−1)^{ε_α}α[G, F^k]_ħ, graded symmetry inherited from anomaly terms A_n

Anomalous Ward identities 7/9

Interacting Ward identity for k fields:

$$\hat{\mathsf{s}}\mathcal{T}_{L}\Big[\mathsf{F}^{\otimes k}\Big] = \sum_{\ell=1}^{k} \frac{k!}{\ell!(k-\ell)!} \left(\frac{\hbar}{i}\right)^{\ell-1} \mathcal{T}_{L}\Big[[\mathsf{F}^{\ell}]_{\hbar} \otimes \mathsf{F}^{\otimes (k-\ell)}\Big]$$

- Nilpotency $\hat{s}^2 = 0$ implies $\sum_{\ell=1}^n \frac{n!}{(n-\ell)!\ell!} [F^{n-\ell}, [F^\ell]_\hbar]_\hbar = 0$
- Intrinsic oddness, graded symmetry of [·]_ħ and above relation: quantum brackets form an L_∞ algebra over F (in b-picture)
- Level n = 1: [[F]_ħ]_ħ = 0 gives nilpotency of quantum BRST differential q ≡ [·]_ħ = s + O(ħ), quantum observables are in H⁰(q)

Anomalous Ward identities 8/9

- Level n = 2: 2[F, [F]_ħ]_ħ + [[F, F]_ħ]_ħ = 0 ensures compatibility of quantum antibracket (F, G)_ħ ≡ (-1)^{ε_F}[F, G]_ħ = (F, G) + O(ħ) and quantum BRST differential: q(F, F)_ħ = -2(F, qF)_ħ
- Compatibility condition ensures that antibracket is a well-defined map between cohomology classes
 (·,·)_ħ: H^g(q) ⊗ H^{g'}(q) → H^{g+g'+1}(q)
- Level n = 3: 3[F, F, [F]_ħ]_ħ + 3[F, [F, F]_ħ]_ħ + [[F³]_ħ]_ħ = 0 represents the Jacobi identity for the quantum antibracket in cohomology: (F, (F, F)_ħ)_ħ = -[F, F, qF]_ħ - ¹/₃ q[F³]_ħ = 0 mod q

Anomalous Ward identities 9/9

• If moreover $H^1(s) = \emptyset$, we have

1 To each classical observable corresponds an observable in the quantum theory, that is, each representative of $H^0(s)$ can be extended to a representative of $H^0(q)$.

2 There exist maps $C_n: \mathcal{F}^{0 \otimes n} \to \mathcal{F}^0$, $n \ge 1$ (the contact terms), such that the interacting time-ordered product

$$\mathcal{T}_{L}\left[\exp_{\otimes}\left[rac{\mathrm{i}}{\hbar}\mathcal{F}-rac{\mathrm{i}}{\hbar}\mathcal{C}(\mathrm{e}^{\mathcal{F}}_{\otimes})
ight]
ight]$$

is independent of the choice of representative $F \in H^0(q)$, up to \hat{s} -exact terms. They satisfy the identities

$$\left[\exp\left(F - \mathcal{C}\left(\mathbf{e}^{F}_{\otimes}\right)\right)\right]_{\hbar} = \mathbf{0},$$

 $\mathcal{C}_1(F) = 0$, and $\mathcal{C}(e^F_{\otimes} \otimes q \, G) = \left[1 - \expig(F - \mathcal{C}(e^F_{\otimes}ig)ig), Gig]_{\hbar}$

for $G \in \mathcal{F}^{-1}$.

Conclusions

- You are overwhelmed and absolutely fascinated, but it's time to go home.
- There exists an anomalous Ward identity for each derivation on the algebra of perturbatively interacting quantum fields, encoding violations of the classically expected result.
- For the BRST differential in quantum gauge theories, the anomalous terms in this Ward identity form an L_{∞} algebra.
- The relations of this L_{∞} algebra ensure that time-ordered products are independent of the choice of representative for an observable.
- I want to use this to show that nice observables exist in quantum gravity, i.e., that they are renormalisable – lack of time prevented me from actually doing it so far.

Gauge theories in curved spacetimes: (Anomalous) Ward identities and the underlying L_∞ algebra

- Conclusion

Thank you for your attention

Questions?

Funded by the European Union: Marie Skłodowska-Curie fellowship QLO–QG 702750.

Published in Commun. Math. Phys. (2019) Online First arXiv:1803.10235