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1. Unruh effect
I Long time limit: adiabatic scaling versus plateau scaling

2. Detector
I Unruh-DeWitt

3. Results
I Thermalisation time at large Egap

4. Summary



1. Unruh effect

Well established

I Uniformly linearly accelerated observer sees Minkowki vacuum
as thermal, T = a

2π Unruh 1976

I Weak coupling, long time, negligible switching effects

I Thermal: Detector records detailed balance:

P↓
P↑

= eEgap/T

Beyond: non-stationary

I Non-uniform acceleration

I Curved spacetime: Hawking effect
E.g. detector falling into a black hole

“Time-dependent temperature” ?
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Our aim

How long does a detector need to operate to record
(approximate) detailed balance,

P↓
P↑

= eEgap/T ?

Novel setting

I How long in terms of Egap, at large Egap

−→ experiment?

I Switching: smooth and compact support

I Mathematically precise (nothing hidden in iε)

Limitations

I Weak coupling −→ first-order perturbation theory

I (3 + 1) Minkowski, massless scalar field (for core results)
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How long?
Adiabatic switching

τ0

λ 1
χ  (τ) = χ  (τ/λ)

λτ

Plateau switching

τ
p

χ  (τ)
λ

τ s τ sλτ

Long time: λ→∞



2. Detector (Unruh-DeWitt)

Quantum field Two-state detector (atom)

(3 + 1) spacetime dimension ‖0〉〉 state with energy 0

φ real scalar field, m = 0 ‖1〉〉 state with energy E

|0〉 Minkowski vacuum x(τ) detector worldline,
τ proper time

Interaction

Hint(τ) = cχ(τ)µ(τ)φ
(
x(τ)

)
c coupling constant
χ switching function, C∞0 , real-valued
µ detector’s monopole moment operator
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Probability of transition

‖0〉〉 ⊗ |0〉 −→ ‖1〉〉 ⊗ |anything〉

in first-order perturbation theory:

P(E ) = c2
∣∣〈〈0‖µ(0)‖1〉〉

∣∣2︸ ︷︷ ︸
detector internals only:

drop!

× F (E )︸ ︷︷ ︸
trajectory and |0〉:
response function

F (E ) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′ e−iE(τ ′−τ ′′) χ(τ ′)χ(τ ′′)W (τ ′, τ ′′)

W (τ ′, τ ′′) = 〈0|φ
(
x(τ ′)

)
φ
(
x(τ ′′)

)
|0〉 Wightman function

(distribution)



Stationary

W (τ ′, τ ′′) = W (τ ′ − τ ′′)

F (E ) =
1

2π

∫ ∞
−∞

dω |χ̂(ω)|2 Ŵ (E + ω)

Unruh

Ŵ (ω) =
ω

2π
(
e2πω/a − 1

) a > 0: proper acceleration

Ŵ (−ω)

Ŵ (ω)
= e2πω/a ⇒ T =

a

2π
Unruh temperature



3. Results

Theorem 0. With either switching, for any fixed E ,

Fλ(E )

λ
−−−→
λ→∞

(const)× Ŵ (E )

⇒ Detailed balance at λ→∞ (as expected)

Theorem 1. For fixed λ, Fλ(E ) is not exponentially suppressed
as E →∞.

⇒ Detailed balance at λ→∞ cannot be uniform in E .

Theorem 2. For either switching,

Fλ(−E )

Fλ(E )
−−−−→
E→∞

e2πE/a

with exponentially growing λ(E )

⇒ Detailed balance at large Egap in exponentially long waiting
time
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Theorem 3. For adiabatic switching,

Fλ(−E )

Fλ(E )
−−−−→
E→∞

e2πE/a (∗)

with polynomially growing λ(E ), provided
∣∣χ̂(ω)

∣∣ has sufficiently
strong falloff (Cf. Fewster and Ford 2015)

⇒ Detailed balance at large Egap in polynomially long waiting
time

Theorem 4. For plateau switching, no polynomially growing
λ(E ) gives (∗)
⇒ Detailed balance at large Egap requires longer than
polynomial waiting time.
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4. Summary

Detailed balance in the Unruh effect at Egap →∞:

I (3 + 1) massless scalar

I Polynomial waiting time suffices for adiabatically scaled
switching with sufficiently strong Fourier decay

I No polynomial waiting time suffices for plateau scaled
switching

Upshots:

I Large Egap regime has limited relevance for defining a “time
dependent temperature”

I Interest for (analogue) experiments?


