Infinite Index Extensions of Local Nets and Defects

Simone Del Vecchio

Dipartimento di Matematica, Università di Roma Tor Vergata

based on a joint work with Luca Giorgetti

Leipzig, 24 June 2017

Plan of the talk

- Preliminaries
- How to "describe" discrete extensions of QFTs (local nets)?
- Braided Products
- Transparent boundary conditions for CFTs

see [arXiv:1703.03605]

Local nets

Algebraic Quantum Field Theory (AQFT) [Haag, Kastler 64]:

$$\big\{\mathcal{O} \in \mathsf{spacetime} \ \mathsf{regions} \ \longmapsto \ \mathcal{A}(\mathcal{O}) \subset \mathcal{B}(\mathcal{H})\big\}$$

 $\mathcal{O}=$ e.g. double cones in \mathbb{R}^{3+1} , or intervals in \mathbb{R}

 $\mathcal{H}=\mathsf{Hilbert}$ space of the quantum theory,

 $\mathcal{A}(\mathcal{O})=$ von Neumann algebra generated by observables localized in \mathcal{O} (local algebras)

 \rightarrow net of local observables or local net, denoted by $\{A\}$, if

- $\mathcal{A}(\mathcal{O})\subset\mathcal{A}(\tilde{\mathcal{O}})$ if $\mathcal{O}\subset\tilde{\mathcal{O}}$ (isotony)
- $\mathcal{A}(\mathcal{O})\subset\mathcal{A}(\tilde{\mathcal{O}})'$ if \mathcal{O} and $\tilde{\mathcal{O}}$ are space-like separated (locality)
- $g\mapsto U(g)$ unitary representation of a spacetime symmetry group \mathcal{P} , e.g. Poincaré or Möbius group, such that $U(g)\mathcal{A}(\mathcal{O})U(g)^*=\mathcal{A}(g\mathcal{O})$ (covariance)
- $\Omega \in \mathcal{H}$ ground state of the energy, $U(g)\Omega = \Omega$ (vacuum vector) and $V_{\mathcal{O}} \mathcal{A}(\mathcal{O})\Omega = \mathcal{H}$
- Positive energy condition

Subfactors

"Index" for subfactors [Jones 83]:

- Subfactor: $\mathcal{N} \subset \mathcal{M}$ where \mathcal{N} , \mathcal{M} von Neumann algebras in $\mathcal{B}(\mathcal{H}) = \text{bounded linear op's on } \mathcal{H}$, and \mathcal{N} , \mathcal{M} have trivial center (factors).
- Index: $\operatorname{Ind}(\mathcal{N} \subset \mathcal{M}) \geq 1$ "relative dimension of \mathcal{M} wrt \mathcal{N} "

$$\mathcal{N} \subset \mathcal{M} \longmapsto \operatorname{Ind}(\mathcal{N} \subset \mathcal{M})$$

- invariant for subfactors ⇒ classification results
- quantization for small admissible values (Jones' rigidity theorem) $\operatorname{Ind}(\mathcal{N} \subset \mathcal{M}) \in \{4\cos^2(\frac{\pi}{n}), n=3,4,\ldots\} \cup [4,\infty]$

Subfactors in QFT

Extensions of QFTs are "nets of subfactors" [Longo, Rehren 95] :

$$\big\{\mathcal{A}\subset\mathcal{B}\big\}$$

i.e.

$$\mathcal{A}(\mathcal{O})\subset\mathcal{B}(\mathcal{O})$$

is a subfactor (or inclusion of von Neumann algebras) for every \mathcal{O} . (Hilbert space \mathcal{H} is fixed).

Additionally require:

- \exists E standard (normal, faithful) conditional expectation from $\{\mathcal{B}\}$ to $\{\mathcal{A}\}$ i.e. \exists a family $E_{\mathcal{O}} \in E(\mathcal{B}(\mathcal{O}), \mathcal{A}(\mathcal{O}))$ with $E_{\mathcal{O}_2 \upharpoonright \mathcal{B}(\mathcal{O}_1)} = E_{\mathcal{O}_1}$ for $\mathcal{O}_1 \subset \mathcal{O}_2$
- Vacuum state $\omega(\cdot) = (\Omega, \cdot \Omega)$ is preserved by E, i.e. $\omega = \omega \circ E$.

Q-systems

How to encode inclusion $\mathcal{N} \overset{E}{\subset} \mathcal{M}$ with data of \mathcal{N} ?

When $Ind(\mathcal{N} \subset \mathcal{M}) < \infty$ (\mathcal{N}, \mathcal{M} infinite factors) can use Q-systems in $End(\mathcal{N})$ [Longo 94].

 \sim Purely categorical notion.

Same for inclusions of nets $\{\mathcal{A} \subset \mathcal{B}\}$ with finite index. Use Q-systems in DHR $\{\mathcal{A}\}$ (Representation category of $\{\mathcal{A}\}$) [Longo, Rehren 95].

Q-systems

Definition (Longo 94)

A Q-system in a simple C^* tensor category $\mathcal C$ is a triple (θ,w,x)

with
$$\theta \in Obj(\mathcal{C})$$
, $w \in \operatorname{Hom}_{\mathcal{C}}(\operatorname{id}, \theta)$, $x \in \operatorname{Hom}_{\mathcal{C}}(\theta, \theta^2)$

satisfying the following properties:

- Unit property: $(w^* \times 1_{\theta}) \circ x = (1_{\theta} \times w^*) \circ x = 1_{\theta}$
- Associativity: $(x \times 1_{\theta}) \circ x = (1_{\theta} \times x) \circ x$
- Frobenius property: $(1_{\theta} \times x^*) \circ (x \times 1_{\theta}) = x \circ x^* = (x^* \times 1_{\theta}) \circ (1_{\theta} \times x)$
- Standardness: $w^* \circ w = \sqrt{\dim(\theta)} 1_{\mathrm{id}}$, $x^* \circ x = \sqrt{\dim(\theta)} 1_{\theta}$

 $\dim(\theta)$ = minimal dimension of θ .

Jones' basic construction

Let $\mathcal{N} \overset{E}{\subset} \mathcal{M}$ with \mathcal{M} in standard form in $B(\mathcal{H})$ i.e. $\exists \Phi \in \mathcal{H}$ cyclic and separating for \mathcal{M} .

Let $\Omega \in \mathcal{H}$ implement the state $(\Phi, E(\cdot)\Phi)$ on \mathcal{M} .

Define the Jones Projection:

$$e_{\mathcal{N}} := [\overline{\mathcal{N}\Omega}] \in \mathcal{N}'$$

implements expectation E: $e_{\mathcal{N}} m e_{\mathcal{N}} = E(m) e_{\mathcal{N}}$ for $m \in \mathcal{M}$

Jones extension: $\mathcal{M}_1 := \mathcal{M} \vee \{e_{\mathcal{N}}\}$

$$\mathcal{N} \subset \mathcal{M} \subset \mathcal{M}_1$$

Longo's canonical endomorphism

 $\mathcal{N} \overset{E}{\subset} \mathcal{M}$ with \mathcal{N}, \mathcal{M} properly infinite.

Let $\Phi \in \mathcal{H}$ be a bicyclic and biseparating vector for \mathcal{N}, \mathcal{M} .

Longo's canonical endomorphism:

$$\gamma: \mathcal{M} \to \mathcal{N}$$

$$\gamma(m) = J_{\mathcal{N},\Phi} J_{\mathcal{M},\Phi} m J_{\mathcal{M},\Phi} J_{\mathcal{N},\Phi}$$

 $J_{\mathcal{N},\Phi},J_{\mathcal{M},\Phi}$ are Tomita's modular conjugations of \mathcal{N} , \mathcal{M} wrt $\Phi.$

$$\gamma(\mathcal{M}) \subset \mathcal{N} \subset \mathcal{M} \subset \mathcal{M}_1$$

 $\theta:=\gamma_{\uparrow\mathcal{N}}$ is canonical endomorphism for dual inclusion $\gamma(\mathcal{M})\subset\mathcal{N}$

 $\sim \theta$ is the dual canonical endomorphism of $\mathcal{N} \subset \mathcal{M}$

$$(\gamma(\mathcal{M})\subset\mathcal{N})\cong(\mathcal{M}\subset\mathcal{M}_1)$$

Pimsner-Popa bases

Definition

A Pimsner-Popa basis for $\mathcal{N} \overset{E}{\subset} \mathcal{M}$ is a collection $\{M_i\} \subset \mathcal{M}$, $i \in I$, such that

- $E(M_iM_j^*) = \delta_{i,j}q_i$, q_i projection in $\mathcal N$ (orthogonality " $\langle \xi_i | \xi_j \rangle = \delta_{i,j}$ ")
- $\sum_{i \in I} M_i^* e_{\mathcal{N}} M_i = \mathbb{1}$ (completeness " $\sum_i |\xi_i \rangle \langle \xi_i| = \mathbb{1}$ ")

 $e_{\mathcal{N}} = \text{Jones projection for } \mathcal{N} \overset{E}{\subset} \mathcal{M}.$

Expansion of $m \in \mathcal{M}$ wrt PiPo basis $\{M_i\} \subset \mathcal{M}$

$$m = \sum_{i \in I} M_i^* E(M_i m)$$

Convergence in the topology induced by E-invariant states.

Theorem (Fidaleo, Isola 99)

Every inclusion $\mathcal{N} \overset{E}{\subset} \mathcal{M}$ of properly infinite von Neumann algebras with a normal faithful conditional expectation $E: \mathcal{M} \to \mathcal{N}$ admits a Pimsner-Popa basis $\{M_i\} \subset \mathcal{M}$.

Generalized Q-systems

Definition (Fidaleo, Isola 99)

$$\theta \in \text{End}(\mathcal{N}), \quad w \in \mathcal{N}, \quad \{m_i\} \subset \mathcal{N}$$

is a generalized (semidiscrete) Q-system iff

- $w^*w = 1$, $w : \mathrm{id} \to \theta$ in $\mathcal N$ ("intertwining property" of w)
- $m_i^*ww^*m_i$, $i \in I$ are mutually orthogonal projections in $\mathcal N$ such that $\sum_i m_i^*ww^*m_i = \mathbb 1$ ("Pimsner-Popa condition")
- if $n \in \theta(\mathcal{N}) \vee \{m_i\}$ and nw = 0 then n = 0 ("faithfulness condition")

Generalized Q-systems

Theorem (Fidaleo, Isola 99)

Let $\mathcal N$ be a properly infinite von Neumann algebra with separable predual and $\theta \in \operatorname{End}(\mathcal N)$. Then the following are equivalent

- There is a von Neumann algebra $\mathcal M$ such that $\mathcal N \subset \mathcal M$ with $E \in E(\mathcal M, \mathcal N) \neq \emptyset$, and θ is a dual canonical endomorphism for $\mathcal N \subset \mathcal M$, i.e., $\theta = \gamma_{\uparrow \mathcal N}$ where $\gamma \in \operatorname{End}(\mathcal M)$ is a canonical endomorphism for $\mathcal N \subset \mathcal M$.
- The endomorphism θ is part of a generalized Q-system, $(\theta, w, \{m_i\})$.

Idea: Given $\mathcal{N} \overset{E}{\subset} \mathcal{M}$, choose γ canonical endomorphism.

Set $\theta = \gamma_{\uparrow \mathcal{N}}$.

 $E(\cdot) = w^*\gamma(\cdot)w \text{ for some } w: id \to \theta.$

Choose PiPo basis $\{M_i\}$ for $\mathcal{N} \overset{E}{\subset} \mathcal{M}$, and set $m_i := \gamma(M_i)$

Generalized Q-systems (of intertwiners)

Problem: Not clear how to "transport" generalized Q-systems to different local algebras.

Generalized Q-systems (of intertwiners)

Problem: Not clear how to "transport" generalized Q-systems to different local algebras.

 \sim Restrict to a more specialized case.

Definition

A generalized Q-system of intertwiners in $\operatorname{End}(\mathcal{N})$ is a generalized Q-system $(\theta, w, \{m_i\})$ with additionally $m_i : \theta \to \theta^2$, $i \in I$.

$$w = \oint_{\theta}^{id}$$
 , $m_i = \bigcap_{\theta=\theta}^{\theta}$, $i \in I$

Discreteness

Turns out: gen Q-sys of intertwiners characterize discrete inclusions.

Definition

 $\mathcal{N} \subset \mathcal{M}$ is discrete iff it is semidiscrete (i.e. $\exists E \in E(\mathcal{M}, \mathcal{N})$ normal, faithful conditional expectation) and \hat{E} restricted to $\mathcal{M}_1 \cap \mathcal{N}'$ is semifinite.

Here $\hat{E}:\mathcal{M}_1 \to \mathcal{M}$ dual operator-valued weight ("unbounded expectation")

$$\mathcal{N} \stackrel{E}{\subset} \mathcal{M} \stackrel{\hat{E}}{\subset} \mathcal{M}_1 = \mathcal{M} \vee \{e_{\mathcal{N}}\}.$$

Proposition (Izumi, Longo, Popa 98)

If $\mathcal{N} \subset \mathcal{M}$ is an irreducible subfactor $(\mathcal{M} \cap \mathcal{N}' = \mathbb{C})$ then

 $\mathcal{N} \subset \mathcal{M}$ discrete $\Leftrightarrow \theta \cong \bigoplus_i \rho_i$ with $\dim(\rho_i) < \infty$.

Discreteness

Theorem (S.D., Giorgetti)

Let N be an infinite factor with separable predual and $\theta \in \operatorname{End}(N)$. Then the following are equivalent

- There is a von Neumann algebra \mathcal{M} such that $\mathcal{N} \subset \mathcal{M}$ is discrete and θ is a dual canonical endomorphism for $\mathcal{N} \subset \mathcal{M}$.
- The endomorphism θ is part of a generalized Q-system of intertwiners in $\operatorname{End}(\mathcal{N})$, $(\theta, w, \{m_i\})$.

Examples of discrete extensions in QFT

Examples of (infinite index) discrete extensions in QFT are:

- [Doplicher, Roberts 90] canonical field net extensions $\{A \subset \mathcal{F}\}$ in 3+1D with compact gauge group G, $A = \mathcal{F}^G$.
- [Buchholz, Mack, Todorov 88] extensions $\{\mathcal{A}\subset\mathcal{B}\}$ in 1D with $\mathcal{A}=U(1)$ -current, $G=\mathbb{T}.$
- Many extensions of $\{\operatorname{Vir}_{c=1}\}$, classified by [Carpi 04], [Xu 05].
- "Braided product" of discrete extensions.

From gen Q-sys of intertwiners to local net extensions

Gen Q-sys of intertwiners $(\theta, w, \{m_i\})$ in $DHR\{A\}$: same thing with $\theta \in DHR\{A\}$.

Take θ localized in some reference region \mathcal{O} .

"Faithfulness condition" required for all spacetime regions $\tilde{\mathcal{O}}\supset\mathcal{O}.$

Theorem (S.D., Giorgetti)

Let $\{\mathcal{A}\}$ be a local net of infinite von Neumann factors fulfilling Haag duality and standardly realized on \mathcal{H}_0 .

A generalized Q-system of intertwiners $(\theta, w, \{m_i\})$ in $\mathrm{DHR}\{\mathcal{A}\}$ induces an isotonous net of von Neumann algebras $\{\mathcal{B}\}$ such that $\{\mathcal{A} \subset \mathcal{B}\}$ is a standard, discrete inclusion of nets with a normal faithful standard conditional expectation E.

 θ is the dual canonical endomorphism for $\{\mathcal{A} \subset \mathcal{B}\}$, $E(\cdot) = w^* \gamma(\cdot) w$ and " $\gamma^{-1}(m_i)$ " is a Pimsner-Popa basis for $\mathcal{A}(\tilde{\mathcal{O}}) \overset{E}{\subset} \mathcal{B}(\tilde{\mathcal{O}})$, for all $\tilde{\mathcal{O}} \supset \mathcal{O}$.

Braided products

Let $\{\mathcal{A}\subset\mathcal{B}^L\}$ and $\{\mathcal{A}\subset\mathcal{B}^R\}$ be extensions with gen Q-systems of intertwiners $(\theta^L,w^L,\{m_i^L\})$ and $(\theta^R,w^R,\{m_j^R\})$ in $\mathrm{DHR}\{\mathcal{A}\}$ (C^* braided tensor category). Then

$$(\theta^L \theta^R, w^L w^R, \{m_i^L \times_{\epsilon}^{\pm} m_j^R\})$$

where

$$m_i^L \times_{\epsilon}^{\pm} m_j^R := \theta^L(\epsilon_{\theta^L,\theta^R}^{\pm}) m_i^L \theta^L(m_j^R)$$

is the "braided product" of two gen Q-sys of intertwiners.

$$w^L w^R = \prod_{\theta^L \theta^R}, \qquad m_i^L \times_{\epsilon}^+ m_j^R = \bigcap_{\theta^L \theta^R \theta^L \theta^R}^{d^L \theta^R}, \ (i,j) \in I \times J$$

Braided Products

Theorem (S.D., Giorgetti)

The braided product of two generalized Q-systems of intertwiners is again a generalized Q-system of intertwiners.

Theorem (S.D., Giorgetti)

The braided product of two generalized Q-systems of intertwiners is again a generalized Q-system of intertwiners.

 \sim construct a braided product extension $\{\mathcal{A}\subset\mathcal{B}^L imes_\epsilon^\pm\,\mathcal{B}^R\}$

$$\mathcal{B}^{L}$$
 \mathcal{A}
 \mathcal{B}^{L}
 \mathcal{B}^{L}
 \mathcal{B}^{L}
 \mathcal{B}^{L}
 \mathcal{B}^{R}

- $\eta^R \circ \iota^R = \eta^L \circ \iota^L$
- $j^L(\mathcal{B}^L) \vee j^R(\mathcal{B}^R) = \mathcal{B}^L \times_{\epsilon}^{\pm} \mathcal{B}^R$
- $\jmath^R(M_j^R)\jmath^L(M_i^L) = \jmath^R \circ \iota^R(\epsilon_{\theta^L,\theta^R}^\pm)\jmath^L(M_i^L)\jmath^R(M_j^R) \leadsto$ "One sided locality"

Transmissive Boundaries in 1D or 1+1D (defect)

A transmissive boundary between a QFT \mathcal{B}^L on the left halfspace and a QFT \mathcal{B}^R on the right halfspace preserves energy and momentum.

Think of: \mathcal{A} common stress-energy tensor for \mathcal{B}^L and \mathcal{B}^R , not influenced by the boundary, $\{\mathcal{A} \subset \mathcal{B}^L\}$, $\{\mathcal{A} \subset \mathcal{B}^R\}$.

Locality for the observables in their own halfspace only requires that $\mathcal{B}^L(\mathcal{O}_1)$ commutes with $\mathcal{B}^R(\mathcal{O}_2)$ when \mathcal{O}_1 is in the left causal complement of \mathcal{O}_2 ("One sided locality").

Braided products and boundary conditions

Finite index case: classification of transmissive (irreducible) boundary conditions by central decomposition of braided product. [Bischoff, Kawahigashi, Longo, Rehren 16]. Irreducible boundary conditions are in correspondence with minimal central projections of braided product.

Discrete case: Open question. Not true that all irreducible boundary conditions are representations of braided product.

Example

Braided product of BMT local extensions of U(1)-current, $\{A_{U(1)} \subset \mathcal{B}_{\rho}\}$. [Buchholz, Mack, Todorov 88]

$$\mathcal{Z}(\mathcal{B}_{\rho} \times_{\epsilon}^{\pm} \mathcal{B}_{\rho}) \cong L^{\infty}(\mathbb{S}^{1}, d\mu)$$

In any case: central decomposition of $\mathcal{B}^L \times_{\epsilon}^{\pm} \mathcal{B}^R$ yields families of irreducible transmissive boundary conditions.

Open Problems

- Classification of transparent boundary conditions by central decomposition of braided product? (Discrete case)
- Construction of Longo-Rehren subfactor for discrete inclusions?
- Is it possible to improve "faithfulness condition" and express gen Q-sys of intertwiners as data in a W^* category?
- How to describe local net extensions in semidiscrete case?