Pseudodifferential calculus and Hadamard states Local Quantum Physics and beyond - in memoriam Rudolf Haag Hamburg, Sept. 26-27 2016

Christian Gérard Département of Mathématiques Université Paris-Sud

- 1 The mode decomposition method
- 2 Pdo calculus on manifolds

- 3 Hadamard states on general spacetimes
- 4 The Hartle-Hawking-Israel state

The mode decomposition revisited

Cosmological spacetimes: $M = \mathbb{R}_t \times \Sigma$, (Σ, h) 3-dimensional Riemannian manifold, $g = -dt^2 + \lambda^2(t)h_{ij}(x)dx^idx^j$.

-
$$P:=\lambda^{3/2}(-\Box_g+m^2)\lambda^{3/2}=\partial_t^2+a(t,\epsilon)$$
, for $\epsilon=(-\Delta_h)^{\frac{1}{2}}$.

- -the conserved charge for solutions of $P\phi=0$ is $(\bar{\phi}_1|q\phi_2)=\mathrm{i}(\partial_t\phi_1|\phi_2)_{\mathcal{H}}-\mathrm{i}(\phi_1\ \partial_t\phi_2)_{\mathcal{H}}$, for $(u|v)_{\mathcal{H}}=\int_{\Sigma}\bar{u}vdVol_h$.
- Mode decomposition: associate 'creation-annihilation operators' to families of solutions of $P\phi = 0$ (see eg [Birrell-Davies]).

Mode decomposition

In modern language: creation-annihilation operators become a pure quasi-free state for the quantum Klein-Gordon field.

- assume that Σ is compact, $\epsilon = \sum_{j \in \mathbb{N}} \epsilon_j |e_j| (e_j|$.

$$\phi_j(t,x) = \chi_j(t)e_j(x) \Rightarrow$$
 family of $1-d$ Schroedinger equations:

$$\chi_j''(t) + a(t, \epsilon_j)\chi_j(t) = 0.$$

One imposes the conditions:

$$(\phi_j|q\phi_k)=-(ar{\phi}_j|qar{\phi}_k)=\delta_{jk},\ (\phi_j|qar{\phi}_k)=0$$
 equivalent to

$$i\bar{\chi}'_{i}(0)\chi_{j}(0) - i\bar{\chi}_{j}(0)\chi'_{i}(0) = 1.$$

Heuristics: such a family produces a Hadamard state if (BKW)

$$\chi_j(t) \sim_{j\to\infty} e^{i\int_0^t \sqrt{a(s,\epsilon_j)}ds} (a(t,\epsilon_j)^{-1/4} + \sum_{n\geq 1} c_n(t,\epsilon_j)\epsilon_j^{-n}).$$

Mode decomposition

- more compact notation using functional calculus for ϵ : set

$$\begin{split} \phi^+(t,\epsilon) &= \sum_{j\in\mathbb{N}} \chi_j(t) |e_j| (e_j|,\\ \phi^-(t,\epsilon) &= \sum_{j\in\mathbb{N}} \overline{\chi}_j(t) |e_j| (e_j| = \phi^+(t,\epsilon)^*.\\ T(\epsilon) &= \left(\begin{array}{cc} \phi^+(0,\epsilon) & \phi^-(0,\epsilon) \\ \mathrm{i}^{-1}\partial_t\phi^+(0,\epsilon) & \mathrm{i}^{-1}\partial_t\phi^-(0,\epsilon) \end{array} \right). \text{ Then:}\\ T(\epsilon)^*qT(\epsilon) &= \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right),\\ \pi^+ &:= T(\epsilon) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) T(\epsilon)^{-1}, \ \pi^- := T(\epsilon) \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) T(\epsilon)^{-1} \text{ are projections with} \end{split}$$

- 1) $\pi^+ + \pi^- = 1$. 2) $(\pi^+)^* q \pi^- = 0$ (ranges are q-orthogonal),
- 3) $\lambda^{\pm} := \pm q \circ \pi^{\pm} > 0$ ($\pm \pi^{\pm}$ is q-positive).

Quasi-free state associated to a mode decomposition

Consider the charged symplectic space $(\mathcal{H} \oplus \mathcal{H}, q)$, $\mathcal{H} = L^2(\Sigma)$.

We associate to it the CCR algebra generated by symbols $\psi(f)$, $\psi^*(f)$, $f \in \mathcal{H} \oplus \mathcal{H}$ with relations:

- $f \mapsto \psi^*(f)$ resp. $\psi(f)$ is \mathbb{C} -linear resp. antilinear.
- $[\psi(f_1), \psi(f_2)] = [\psi^*(f_1), \psi^*(f_2)] = 0$, $[\psi(f_1), \psi^*(f_2)] = \bar{f_1} \cdot qf_2\mathbb{1}$,

$$-\psi(f)^* = \psi^*(f).$$

There is a unique quasi-free state ω on $CCR(\mathcal{H} \oplus \mathcal{H}, q)$ defined by:

$$\omega(\psi(f_1)\psi^*(f_2)) = \bar{f}_1 \cdot \lambda^+ f_2,$$

$$\omega(\psi^*(f_2)\psi(f_1)) = \bar{f}_1 \cdot \lambda^- f_2.$$

note
$$\lambda^{\pm} \geq 0$$
, $\lambda^{+} - I^{-} = q$.

Quasi-free state associated to a mode decomposition

 ω induces a quasi-free state for the quantum Klein-Gordon field on M by the isomorphisms:

$$E: (\frac{C_0^{\infty}(M)}{PC_0^{\infty}(M)}, \mathrm{i}^{-1}E) \to (\mathrm{Sol}_{\mathrm{sc}}(P), q)$$

E causal propagator,

$$\rho: (\operatorname{Sol}_{\operatorname{sc}}(P), q)(C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma), q) \phi \mapsto (\phi_{|t=0}, i^{-1}\partial_t \phi_{|t=0}),$$
 Cauchy data map.

Quasi-free state associated to a mode decomposition

pdo calculus, Egorov's theorem, see later.

A side question: how to justify that WKB solutions produce Hadamard states:

- 1) if $\Sigma = \mathbb{R}^3$ or \mathbb{S}^3 with their standard metrics: use Fourier analysis.
- 2) if (Σ, h) arbitrary complete Riemannian manifold: one needs to use more advanced tools:

The mode decomposition method, although limited to cosmological models, allows to understand many things:

- 1) non-uniqueness of Hadamard states: different solutions have same WKB expansion,
- 2) adiabatic vacua: stop the expansion after a finite number of terms.

Pdo calculus on manifolds

We start with pseudodifferential calculus on \mathbb{R}^d :

symbol classes:
$$a(x,\xi) \in S^m(T^*\mathbb{R}^d)$$
 for $m \in \mathbb{R}$ if

$$\partial_x^{\alpha}\partial_{\xi}^{\beta}a(x,\xi)\in O(\langle\xi\rangle^{m-|\beta|}), \ \alpha,\beta\in\mathbb{N}^d.$$

quantization of symbols: $A \in \Psi^m(\mathbb{R}^d)$ if

$$Au(x) = \operatorname{Op}(a)u()x = (2\pi)^{-d} \int e^{\mathrm{i}(x-y)\cdot\xi} a(x,\xi)u(y)dyd\xi,$$

$$u \in C_0^{\infty}(\mathbb{R}^d).$$

- A preserves $\mathcal{S}(\mathbb{R}^d)$,
- $\Psi^{\infty}(\mathbb{R}^d) = \bigcup_{m \in \mathbb{R}} \Psi^m(\mathbb{R}^d)$ is a graded *-algebra.

Pdo calculus on manifolds

Let Σ a smooth manifold.

a linear operator $A: C_0^\infty(\Sigma) \to C_0^\infty(\Sigma)$ belongs to $\Psi_c^m(\Sigma)$ if:

- 1) A is properly supported: $\pi_x, \pi_y : \operatorname{supp} A(\cdot, \cdot) \to \Sigma$ is proper,
- 2) if $U_1, U_2 \subset \Sigma$ are chart neighborhoods, $\psi_i : U_i \to \mathbb{R}^d$ chart diffeomorphisms, $\chi_i \in C_0^{\infty}(U_i)$ then:

$$\chi_1 \circ A \circ \chi_2 = \psi_2^* \circ B \circ (\psi_1^*)^{-1}, \text{ for } B \in \Psi^m(\mathbb{R}^d).$$

 $\Psi^{\infty}_{\rm c}(\Sigma)$ is a graded *-algebra.

Well defined notion of principal symbol $\sigma_{pr}(A)$.

Problem: if $A = a(x, \partial_x)$ elliptic, selfadjoint differential operator $(A = -\Delta_h)$, for h complete Riemannian metric on Σ), then

$$A \in \Psi^{\infty}_{\mathrm{c}}(\Sigma), \text{ but } (A+\mathrm{i})^{-1} \not\in \Psi^{\infty}_{\mathrm{c}}(\Sigma).$$

 $\Psi_c^{\infty}(\Sigma)$ not closed under inverses!

Pdo calculus on manifolds

Instead one has

$$(A+\mathrm{i})^{-1}\in \Psi^\infty(\Sigma)=\Psi^\infty_\mathrm{c}(\Sigma)+\mathcal{W}^{-\infty}(\Sigma),$$

where $\mathcal{W}^{-\infty}(\Sigma)$ is the ideal of smoothing operators.

Not a good solution: $\Psi^{\infty}(\Sigma)$ is not an algebra: operators in $\Psi^{\infty}(\Sigma)$ cannot be composed!

Need for an intermediate calculus, located between $\Psi_{\rm c}^{\infty}(\Sigma)$ and $\Psi^{\infty}(\Sigma)$.

A convenient calculus is Shubin's calculus of uniform pdos $\Psi_{\mathrm{bg}}^{\infty}(\Sigma)$, relying on the notion of manifolds of bounded geometry.

 $\Psi^{\infty}_{\mathrm{bg}}(\Sigma)$ is a graded *-algebra, stable under (elliptic) inverses.

A more general framework for Hadamard states

We fix (M,g) globally hyperbolic spacetime, $\Sigma \subset M$ space-like Cauchy surface.

$$\underset{\rho_{\Sigma}}{\rho_{\Sigma}}: \mathit{C}^{\infty}_{\mathrm{sc}}(\mathit{M}) \ni \phi \mapsto (\phi_{|\Sigma}, \mathrm{i}^{-1}\partial_{\nu}\phi_{|\Sigma}) \in \mathit{C}^{\infty}_{0}(\Sigma) \otimes \mathbb{C}^{2}.$$

normal Gaussian coordinates: $\chi: U \ni (s,x) \mapsto \exp_x^g(sn_x) \in V$ U neighb. of $\{0\} \times \Sigma$ in $\mathbb{R} \times \Sigma$,

V neighb. of Σ in M, n_x future unit normal at $x \in \Sigma$.

Standing hypothesis: $]-\epsilon, \epsilon[\times \Sigma \subset U \text{ for some } \epsilon > 0.$

We are reduced to $M = I \times \Sigma$, I open interval,

$$g = -dt^2 + h_{ij}(t, x)dx^i dx^j.$$

Space-time and Cauchy surface covariances

The KG equation $(-\Box_{g} + m)\phi = 0$ can be reduced to:

$$\partial_t^2 \phi + a(t, x, \partial_x) \phi = 0$$
,

for $a(t, x, \partial_x)$ 2nd order, elliptic, selfadjoint for $(u|v)_{\Sigma} = \int_{\Sigma} \bar{u}v |h_0|^{\frac{1}{2}} dx$.

The conserved charge is

$$(\phi|q\phi) = i \int_{\Sigma} (\partial_t \bar{\phi}\phi - \bar{\phi}\partial_t \phi) |h_0|^{\frac{1}{2}} dx.$$

Space-time and Cauchy surface covariances

Let ω be a quasi-free state for quantum Klein-Gordon field.

Space-time covariances: $\Lambda^{\pm}: C_0^{\infty}(M) \to C^{\infty}(M)$

- 1) $P\Lambda^{\pm} = \Lambda^{\pm}P = 0$,
- 2) $\Lambda^{+} \Lambda^{-} = i^{-1}E$,
- 3) $(u|\Lambda^{\pm}u) \ge 0$, $u \in C_0^{\infty}(M)$.

Cauchy surface covariances: $\lambda_{\Sigma}^{\pm}: C_0^{\infty}(\Sigma) \otimes \mathbb{C}^2 \to C^{\infty}(\Sigma) \otimes \mathbb{C}^2$

1)
$$\lambda^+ - \lambda^- = q$$
, $q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,

2)
$$(f|\lambda_{\Sigma}^{\pm}f) \geq 0$$
, $f \in C_0^{\infty}(\Sigma) \otimes \mathbb{C}^2$.

Space-time and Cauchy surface covariances

Link between the two objects:

$$\Lambda^{\pm} = (\rho \circ E)^* \lambda^{\pm}_{\Sigma} (\rho \circ E), \ \rho$$
 Cauchy data map

$$\lambda_{\Sigma}^{\pm} = \pm q \circ \pi^{\pm}$$
 with

$$\pi^{\pm} = \begin{pmatrix} i\partial_{s}\Lambda^{\pm}(0,0) & \Lambda^{\pm}(0,0) \\ \partial_{t}\partial_{s}\Lambda^{\pm}(0,0) & i^{-1}\partial_{t}\Lambda^{\pm}(0,0) \end{pmatrix}$$

$$\Lambda^{\pm}(t,s): C_0^{\infty}(\Sigma) \to C^{\infty}(\Sigma)$$
 time-kernel of Λ^{\pm} .

Problem: conditions on λ_{Σ}^{\pm} ensuring that ω is a pure Hadamard state?

- 1) purity: π^{\pm} should be projections.
- 2) Hadamard property: if $f \in \mathcal{E}'(\Sigma) \otimes \mathbb{C}^2$ and $\pi^{\pm} f = f$ then WF(Uf) $\subset \mathcal{N}^{\pm}$,

where Uf solution of the Cauchy problem for f, \mathcal{N}^{\pm} positive/negative energy surfaces see [GW], [GOW].

To ensure condition 2) we look for operators $b(t) = b(t, x, \partial_x) \in \Psi^1(\Sigma)$ such that:

$$(\partial_t^2 + a(t, x, \partial_x))$$
Texp $(i \int_0^t b(s)ds) = 0.$

- equivalent to the following Riccati equation:

(R)
$$i\partial_t b(t) - b^2(t) + a(t) = 0$$
.

Can be solved modulo $\Psi^{-\infty}(\Sigma)$ with the ansatz:

$$b(t) = \mathsf{a}(t)^{rac{1}{2}} + \sum_{j=0}^{\infty} b_{-j}(t), \ \ b_{-j}(t) \in \Psi^{-j}(\Sigma).$$

- Exact analog of WKB solutions in the cosmological case!

If $b^+(t) = b(t)$ is a solution of (R), then $b^-(t) = -b^*(t)$ is another solution.

(R) is equivalent to a factorization:

$$\partial_t^2 + \mathsf{a}(t) = (\partial_t + \mathrm{i} \mathit{b}(t)) \circ (\partial_t - \mathrm{i} \mathit{b}(t)) \; \mathsf{modulo} \; \Psi^{-\infty}(\Sigma).$$

Junker (1995) noticed the relevance of such a factorization to prove that a state is Hadamard.

Main result ([G-Wrochna], [G-Oulghazi-Wrochna]): set

$$T = i^{-1} \begin{pmatrix} 1 & -1 \ b^+(0) & -b^-(0) \end{pmatrix} (b^+(0) - b^-(0))^{-\frac{1}{2}}.$$

Then:

$$\lambda^+ = \mathcal{T}^* \left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight) \mathcal{T}, \; \lambda^- = \mathcal{T}^* \left(egin{array}{cc} 0 & 0 \ 0 & 1 \end{array}
ight) \mathcal{T}$$

are the Cauchy surface covariances of a pure Hadamard state.

To make the construction rigorous one needs a global pdo calculus ϕ on Σ . In particular:

- 1) $(b^+(0) b^-(0))^{-\frac{1}{2}}$ should also be a pdo (example of a Seeley's theorem on powers of elliptic pdos)
- 2) to show Hadamard property one needs an Egorov's theorem: if $A \in \Psi^m(\Sigma)$ then

$$A(t) = \operatorname{Texp}(\mathrm{i} \int_0^t b(s) ds) \circ A \circ \operatorname{Texp}(\mathrm{i} \int_t^0 b(s) ds) \in \Psi^m(\Sigma)$$

and $\sigma_{\mathrm{pr}}(A(t)) = \sigma_{\mathrm{pr}}(A) \circ \Phi_{0,t}$, $\Phi_{s,t}$ symplectic flow for the time-dependent Hamiltonian $\sigma_{\mathrm{pr}}(b)(t,x,\xi)$.

First done in [GW] for $\Sigma=\mathbb{R}^d$ using the standard pdo calculus on \mathbb{R}^d

Extended in [GOW] to a much wider framework: (Σ, h) Riemannian manifold of bounded geometry: related notion of bounded geometry for Lorentzian manifolds.

Examples of applications:

- 1) perturbations of Kerr-Kruskal, exterior Kerr- de Sitter.
- 2) future/past lightcones, double cones, wedges in Minkowski.

The appropriate pdo calculus is Shubin's $\Psi_{\rm bg}(\Sigma)$ calculus: relies on Gaussian normal coordinates for a reference Riemannian metric + appropriate ideal of smoothing operators.

Hadamard states on arbitrary spacetimes

A consequence of a result in [GW] is as follows:

- 1) for any spacetime (M,g) globally hyperbolic and $\Sigma \subset M$ spacelike Cauchy surface there exists one Hadamard state ω such that λ_{Σ}^{\pm} belong to $\Psi_{c}^{\infty}(\Sigma)$. (ω is not pure!)
- 2) for all other Hadamard states λ_{Σ}^{\pm} belong to $\Psi^{\infty}(\Sigma)$.

The states constructed in [GOW] lie in between $\Psi_c^{\infty}(\Sigma)$ and $\Psi_c^{\infty}(\Sigma)$, ie in $\Psi_{bg}^{\infty}(\Sigma)$.

We consider the situation studied by Sanders [S] (first rigorous construction of the HHI state for static bifurcate Killing horizons): Framework:

- -(M,g) globally hyperbolic,
- V complete Killing vector field for (M, g),
- $\mathcal{B} = \{x \in M : V(x) = 0\}$ bifurcation surface: compact, connected orientable submanifold of codimension 2.
- there exists Σ spacelike Cauchy surface with $\mathcal{B} \subset \Sigma$,
- V is g-orthogonal to Σ (V is static).
- using the two null directions normal to $\mathcal B$ one generates a bifurcate Killing horizon $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_r$.
- the scalar $\kappa > 0$ defined by $\kappa^2 = -\frac{1}{2} \nabla^a V^b \nabla_a V_b$ is constant on \mathcal{H} : surface gravity. 40) 40) 45) 45)

Figure: spacetime with bifurcate Killing horizon

 $M^{\pm}=D(\Sigma^{\pm})$: right/left wedges, $\mathcal{F},\mathcal{P}=I^{\pm}(\mathcal{B})$ future/past cones. All are globally hyperbolic spacetimes.

bifurcate Killing horizons

An additional assumption is the existence of a wedge reflection:

- $R: (U,g) \to (U,g)$ isometry with $R \circ R = Id$, (U neighborhood of $M^+ \cup M^-$), reversing the time orientation,
- R = Id on \mathcal{B} , $R^*V = V$ on $M^+ \cup M^-$.

One considers the free quantum Klein-Gordon field on (M, g) given by the Klein-Gordon equation:

$$(-\Box_g + m^2(x))\phi = 0, \ m(x) \ge m_0 > 0,$$

and m invariant under the Killing field V and wedge reflection R.

The double β -KMS state

Let ω_{β}^{+} be the thermal state on (M^{+}, g) w.r.t. the time-like isometry group generated by V.

- Kay showed how to extend ω_{β}^+ to $M^+ \cup M^-$, using the wedge reflection R:
- one obtains the double β -KMS state ω_{β} , a pure Hadamard state on $(M^+ \cup M^-, g)$.
- ω_{β} is completely analogous to the vacuum vector in the Araki-Woods representation of a thermal state.
- Sanders (2013) proved that there exists a unique Hadamard extension $\omega_{\rm HHI}$ of ω_{β} to (M,g) if and only if: $\beta^{-1} = T_{\rm H} = \frac{\kappa}{2\pi}$ Hawking temperature.

Construction by pdo calculus

Let t Killing time coordinate in M^+ : $M^+ \sim \mathbb{R} \times \Sigma$,

$$g = -v^2(y)dt^2 + h_{ij}(y)dy^i dy^j, \ v^2 = -V^a V_a.$$

Wick rotation: $t = i\tau$ produces the Riemannian manifold (N, \hat{g}) for

$$N = \mathbb{S}_{\beta} \times \Sigma^+, \hat{g} = v^2(y)d\tau^2 + h_{ij}(y)dy^idy^j.$$

- the associated Laplacian is

$$K = -\Delta_{\hat{g}} + m^2(y)$$

- we set $\Omega =]0, \beta/2[\times \Sigma^+]$ open subset of N.
- $\partial\Omega$ has two connected components $S^0 = \{\tau = 0\}$ and $S^{\beta/2} = \{\tau = \beta/2\}$.
- S^0 identified with Σ^+ , $S^{\beta/2}$ identified with $\Sigma^-=R(\Sigma^+)$.

The Calderón projector

The Calderón projector is a standard object in elliptic boundary value problems:

if $u\in C^\infty(\overline{\Omega})$ and $\gamma u:=\begin{pmatrix}u_{|\partial\Omega}\\\partial_\nu u_{|\partial\Omega}\end{pmatrix}$, ∂_ν unit normal then the Calderón projector $D:C_0^\infty(\partial\Omega)\to C^\infty(\partial\Omega)$ is defined as:

$$Df := \gamma \circ K^{-1}(\delta_{\partial\Omega} \otimes f_1 + \partial_{\nu}\delta_{\partial\Omega} \otimes f_0), \ f = \begin{pmatrix} f_0 \\ f_1 \end{pmatrix}.$$

A well-known result: D is given by a matrix of pdos on Σ . Thm[G]: Let λ_{β}^{\pm} be the Cauchy surface covariances of ω_{β} and $c^{\pm}=q^{-1}\circ\lambda_{\beta}^{\pm}$. Then

$$c_{\beta}^{+}=D.$$

(valid for any $\beta > 0$). Both sides are operators on $\Sigma^+ \cup \Sigma^-$.

The Calderón projector

- If $\beta = T_H^{-1}$ then (N, \hat{g}) has a unique smooth extension $(N_{\rm ext}, \hat{g}_{\rm ext})$ (well-known fact):

$$\psi: \ \mathbb{S}_{\beta} \times \Sigma^{+} \to \mathbb{R}^{2} \times \mathcal{B} = N_{\mathrm{ext}}$$

$$(\tau, s, \omega) \mapsto (s \cos(\frac{2\pi}{\beta}\tau), s \sin(\frac{2\pi}{\beta}\tau), \omega)$$

for (s, ω) Gaussian normal coordinates to \mathcal{B} in Σ .

For other values of β \hat{g}_{ext} has a conical singularity on \mathcal{B} .

- Moreover ψ restricts to a smooth embedding of Σ into N_{ext} .
- Consequence: a natural candidate for the extension of c^+ to Σ is $D_{\rm ext}$, the Calderón projector for $K_{\rm ext} = -\Delta_{\hat{\mathcal{E}}_{\rm ext}} + m^2$, associated to the open set $\psi(\Omega)$.

The HHI state

We set:

$$\lambda_{
m HHI}^+ = q \circ D_{
m ext}, \,\, \lambda_{
m HHI}^- = q \circ (\mathbb{1} - D_{
m ext}).$$

Then:

- 1) $\lambda_{\rm HHI}^{\pm} \geq$ 0, proof as in [S], uses reflection positivity of K and $K_{\rm ext}$,
- 2) $\lambda_{\rm HHI}^{\pm}$ are the unique extensions of λ_{β}^{\pm} with the property that they map $C_0^{\infty}(\Sigma)\otimes\mathbb{C}^2$ into $C^{\infty}(\Sigma)\otimes\mathbb{C}^2$.
- 3) $\lambda_{\rm HHI}^{\pm}$ are Hadamard covariances.

an elementary proof of the Hadamard property

Sanders used the Hadamard parametrix construction to show that ω_{HHI} is Hadamard.

Using pdo calculus one can give a rather elementary proof:

- 1) $\lambda_{\rm HHI}^+ \in \Psi^\infty(\Sigma)$ since it is a Calderón projector.
- 2) pick a Hadamard state ω_{ref} on M. One knows that $\lambda_{\mathrm{ref}}^{\pm} \in \Psi^{\infty}(\Sigma)$.
- 3) both states are Hadamard in $M^+ \cup M^-$: by a well-known result of Radzikowski, this implies that

$$\lambda_{\mathrm{ref}}^+ - \lambda_{\mathrm{HHI}}^+$$
 'smoothing in $\Sigma^+ \cup \Sigma^-$ ' ie

$$\chi \circ (\lambda_{\mathrm{ref}}^+ - \lambda_{\mathrm{HHI}}^+) \circ \chi$$
 is smoothing if $\mathrm{supp} \chi \cap \mathcal{B} = \emptyset$.

4) this implies that $\lambda_{\rm ref}^+ - \lambda_{\rm HHI}^+$ is smoothing on the whole of Σ : look at the principal symbol and argue by continuity.