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1967: KMS CONDITION
Haag-Hugenholtz-Winnick

C*-dynamical system (O, rt). A state w on O is called (7, 3)-
KMS, where 8 € R, ifforall A, B e O
Fy p(t) = w(ATY(B))

Fap(t+iB8) = w(r'(B)A)
The definition is the same in the W *- case with w normal.

If © = B(H), dimH < oo, 71(A) = e'tH Ae—tH then
w(A) = tr(Ae P /tr(e=PH)
is the unique (7, 3)-KMS state.



1967: MODULAR THEORY
Tomita-Takesaki

(91, ©2), <M von Neumann algebra on H, 2 cyclic and separat-
ing vector.

SAQ = A*Q
Polar decomposition:
S = JA1/?

J anti-unitary involution (modular conjugation), A > 0 modular
operator. The modular group:

ol(A) = AltAATT,
Natural cone: P = {AJAJQ : A € M}



Theorem (Tomita-Takesaki)
JMJ = ', ot (IN) = M.

Moreover, the vector state w(A) = (2, AQ) is (o, —1)-KMS
state.

KMS Condition and Modular theory = Golden Era of algebraic
quantum statistical mechanics (Bratteli-Robinson).



1974. DYNAMICAL STABILITY
Haag—Kastler—Trych-Pohlmeyer

C*-dynamical system (O, rt), w a stationary state.
KMS condition < dynamical stability of w under local perturba-
tionsV =V* € O.

rt=el rf = e, §,(-) = () +iA[V,-]. Perturbed station-
ary states:

wy (A) = tjrinoow(fg(A)).

We assume existence and ergodicity of w/\i. Ergodicity =
w;\|_ 1wy or wj_ = w, . The stability

in the first order of A gives



Stability Criterion (SB)

/_O;w([v, (A)])dt = 0.

Assumption L1(Og) asymptotic abelianness:

[ v rteade < oo

for V, A in the norm dense x-subalgebra Og.

Theorem (Haag—Kastler—Trych-Pohlmeyer, Bratteli—Kishimoto-
Robinson)

Suppose in addition that w is a factor state and that (SB) holds
for V,;A € Opg. Then w is a (7, 3)-KMS state for some 3 &
R U {£o0}.



DYNAMICAL INSTABILITY

Same setup, but

w;\FJ_w;

Dynamical instability < Non-equilibrium

Quantification of non-equilibrium (our main message):

Degree of separation of the pair of mutually normal states

(wo rf\, W O r;t) as they approach the mutually singular limits
(wi,w;) ast — oo.



PICTURE: OPEN QUANTUM STSTEMS
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RELATIVE MODULAR THEORY
Araki

(H, 7, 2) GNS-representation of (O, 7t,w), M = = (O)",
Q2 cyclic and separating (assumption), w(A) = (2, AQ2),
Ti(A) — eitL)\Ae_itL)‘, e—itL)\P — 73’

Q: = e *EAQ € P the vector representative of w o 7¢.

SAQ = A*Q,,  S=JAl?

A > 0 is the relative modular operator of the pair of states
(wo T}f\, w). Non-commutative Radon-Nikodym derivative.



RENYI AND RELATIVE ENTROPY

Si(a) = 10g(2, AFQ?), Ent; = (£2¢, 109 A4€24).
S:(0) = S5¢(1) = 0, a — Si(«x) convex, we assume it is finite,
S/(1) = Ent; > 0.

Si(a) = log [ e~***dPy(s).

where IP; is the spectral measure for —% log A+ and S2.

Time-reversal invariance (TRI) =

Si(a) = S (1 — o).



BASIC OBJECTS

e(a) = tlLrQo %St(oz).

Assumption Existence of limit and real-analyticity of e(«).

a — e(a) is convex, e(0) = e(1) = 0.
TRl = e(a) = e(1 — a).

Entropy production of (O, 7§, w) is

1 1
> = Iim ZEnt, = lim =S%(1).
t—oo t t t—oo t t( )

TRl = ¥ = 0iff e(a) = O.
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LARGE DEVIATIONS

Rate function
I1(0) = — inf (a8 4+ e()).
aER

For any O C R open,
1

tlngoglog P:(O) = — mg 1(0).

s

TRI =
1(—6) = 6+ 1(0)

Quantum Gallavotti-Cohen Fluctuation Relation.
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BACK TO TIME SEPARATION

Shorthand w! := w o 7¥.
(wh,w™?) - (wT,w ) ast — co.

im ol — w7l = ot —w || = 2.
t—00

D= (2~ It —w ).

Quantum Neyman-Pearson Lemma

Dy = inf (W'(T) + w71 = T)),

where inf is over all orthogonal projections T" € 9.

Quantum Hypothesis Testing
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CHERNOFF EXPONENT

Theorem (JOPS)

1
lim —log Dy = min e(a)
t—oo 2t ae[0,1]

Proof; Based on the estimate
1
EPt(R—) < D¢ < (Qa A?Q), Q€ [Oa 1]

The difficult part is the upper-bound. o = 1/2 proven by Araki
in 1973. In the case of matrices:

1
S(Tr A4 Tr B—Tr |[A— BJ) < Tr Al—ape

K. M. R. Audenaert, J. Calsamiglia, R. Munoz-Tapia, E. Bagan,
LI. Masanes, A. Acin, and F. Verstraete (2007). Simple proof:
Ozawa (unpublished). General case: Ogata, JOPS.
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e €]0, 1],

Se — inf

{13}

Theorem (JOPS)

|

STEIN EXPONENT

1
lim =logw ™ Y(T})

t—oo ¢

wH(Ty) > 6}

14



HOEFFDING EXPONENT

r > 0,

1 1
h(r) = inf ¢ lim =logw™ %1 —=T}) | limsup = log W' (T}) < —
() = inf { jim 109071~ T) | limsup  log (1) < 1

Theorem (JOPS)

—ra — e(oz).

Y(r) = — sup

ac[0,1] 1l -«
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THE MEANING OF P,

Consider a confined quantum system on ‘H, dim ’H < oo.
O = B(H),
ri(A) = etfhhae™Hr H=H 4V
The state w = density matrix on H, w > 0, w(A) = tr(wA),
wg\ — o itHy  oitHy
Assume TRI.

Entropy observable
S = —logw.

Confined open quantum systems:

S =BsHs+ ) BrHy.
k
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S:ZSPS

Measurement at ¢t = 0 yields s with probability tr(wPs).

State after the measurement:
wPs/tr(wPs).
State at later time ¢:

ey, Pl /tr (wPs).

Another measurement of S yields value s’ with probability
tr(Py ety Psel™) /tr(wPs).
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Probability distribution of the mean change of entropy

¢ = (s'—s)/t
Pi(p) = > tr(Pye tHpeth),
s'—s=t¢
Si(e) = log tr([w]*~*[w']¥) = log >~ e~ ¥P,(¢).
¢
Si(a) = S¢(1 — «) is equivalent to
Py(—) _ ot
P:(9) .

P;, spectral measure of —1 log A, is identified with so called
full statistics of the energy/entropy change in a repeated mea-
surement protocol described above. Thermodynamic limit gives
physical interpretation of P; of extended systems.



CONCLUSION

Equlibrium. KMS-condition, dynamical stability, equivalence of
the two directions of time.

Non-equilibrium. Dynamical instability, the directions of time
are not-equivalent. The separation of time directions is quanti-
fied by entropic exponents. The exponents are in turn related to
LDP for suitable spectral measure of relative modular Hamilto-
nian. This spectral measure is linked to full statistics of repeated
measurements of energy/entropy. TRI implies Fluctuation Rela-
tions.

Entropy production. >, the Stein exponent, related to ex-
pected value of heat/charge fluxes in non-equilibrium steady
state. > = O for sufficently many V”’s + AA = dynamical sta-
bility and KMS condition (J, Pillet).
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TOPICS NOT DISCUSSED

(1) Concrete physically relevant models.

(2) Onsager reciprocity relations, Fluctuation-Dissipation Theo-
rem.

(3) Host of other entropic functionals

(4) Quantum transfer operators and Ruelle’s resonance picture
of e(«)
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