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1967: KMS CONDITION
Haag-Hugenholtz-Winnick

C∗-dynamical system (O, τ t). A state ω on O is called (τ, β)-
KMS, where β ∈ R, if for all A,B ∈ O

FA,B(t) = ω(Aτ t(B))

FA,B(t+ iβ) = ω(τ t(B)A)

The definition is the same in the W ∗- case with ω normal.

If O = B(H), dimH <∞, τ t(A) = eitHAe−itH , then

ω(A) = tr(Ae−βH)/tr(e−βH)

is the unique (τ, β)-KMS state.
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1967: MODULAR THEORY
Tomita-Takesaki

(M,Ω), M von Neumann algebra on H, Ω cyclic and separat-
ing vector.

SAΩ = A∗Ω

Polar decomposition:

S = J∆1/2

J anti-unitary involution (modular conjugation), ∆ ≥ 0 modular
operator. The modular group:

σt(A) = ∆itA∆−it.

Natural cone: P = {AJAJΩ : A ∈M}cl.
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Theorem (Tomita-Takesaki)

JMJ = M′, σt(M) = M.

Moreover, the vector state ω(A) = (Ω, AΩ) is (σ,−1)-KMS
state.

KMS Condition and Modular theory⇒ Golden Era of algebraic
quantum statistical mechanics (Bratteli-Robinson).
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1974: DYNAMICAL STABILITY
Haag–Kastler–Trych-Pohlmeyer

C∗-dynamical system (O, τ t), ω a stationary state.
KMS condition⇔ dynamical stability of ω under local perturba-
tions V = V ∗ ∈ O.

τ t = etδ. τ tλ = etδλ, δλ(·) = δ(·) + iλ[V, ·]. Perturbed station-
ary states:

ω±λ (A) = lim
t→±∞

ω(τ tλ(A)).

We assume existence and ergodicity of ω±λ . Ergodicity⇒
ω+
λ ⊥ ω

−
λ or ω+

λ = ω−λ . The stability

ω+
λ = ω−λ

in the first order of λ gives
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Stability Criterion (SB)

∫ ∞
−∞

ω([V, τ t(A)])dt = 0.

Assumption L1(O0) asymptotic abelianness:∫ ∞
−∞
‖[V, τ t(A)]‖dt <∞

for V,A in the norm dense ∗-subalgebra O0.

Theorem (Haag–Kastler–Trych-Pohlmeyer, Bratteli–Kishimoto-
Robinson)

Suppose in addition that ω is a factor state and that (SB) holds
for V,A ∈ O0. Then ω is a (τ, β)-KMS state for some β ∈
R ∪ {±∞}.
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DYNAMICAL INSTABILITY

Same setup, but

ω+
λ ⊥ ω

−
λ

Dynamical instability⇔ Non-equilibrium

Quantification of non-equilibrium (our main message):
Degree of separation of the pair of mutually normal states
(ω ◦ τ tλ, ω ◦ τ

−t
λ ) as they approach the mutually singular limits

(ω+
λ , ω

−
λ ) as t→∞.
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PICTURE: OPEN QUANTUM STSTEMS
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RELATIVE MODULAR THEORY
Araki

(H, π,Ω) GNS-representation of (O, τ t, ω), M = π(O)′′,
Ω cyclic and separating (assumption), ω(A) = (Ω, AΩ),

τ tλ(A) = eitLλAe−itLλ, e−itLλP = P,

Ωt = e−itLλΩ ∈ P the vector representative of ω ◦ τ tλ.

SAΩ = A∗Ωt, S = J∆
1/2
t ,

∆t ≥ 0 is the relative modular operator of the pair of states
(ω ◦ τ tλ, ω). Non-commutative Radon-Nikodym derivative.
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RENYI AND RELATIVE ENTROPY

St(α) = log(Ω,∆α
t Ω), Entt = (Ωt, log ∆tΩt).

St(0) = St(1) = 0, α 7→ St(α) convex, we assume it is finite,
S′t(1) = Entt ≥ 0.

St(α) = log
∫
R

e−αtsdPt(s),

where Pt is the spectral measure for −1
t log ∆t and Ω.

Time-reversal invariance (TRI)⇒

St(α) = St(1− α).
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BASIC OBJECTS

e(α) = lim
t→∞

1

t
St(α).

Assumption Existence of limit and real-analyticity of e(α).

α 7→ e(α) is convex, e(0) = e(1) = 0.
TRI⇒ e(α) = e(1− α).

Entropy production of (O, τ tλ, ω) is

Σ = lim
t→∞

1

t
Entt = lim

t→∞
1

t
S′t(1).

TRI⇒ Σ = 0 iff e(α) ≡ 0.
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LARGE DEVIATIONS

Rate function

I(θ) = − inf
α∈R

(αθ + e(α)).

For any O ⊂ R open,

lim
t→∞

1

t
log Pt(O) = − inf

θ∈O
I(θ).

TRI⇒

I(−θ) = θ + I(θ)

Quantum Gallavotti-Cohen Fluctuation Relation.
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BACK TO TIME SEPARATION

Shorthand ωt := ω ◦ τ tλ.
(ωt, ω−t)→ (ω+, ω−) as t→∞.

lim
t→∞

‖ωt − ω−t‖ = ‖ω+ − ω−‖ = 2.

Dt =
1

2

(
2− ‖ωt − ω−t‖

)
.

Quantum Neyman-Pearson Lemma

Dt = inf
T

(
ωt(T ) + ω−t(1− T )

)
,

where inf is over all orthogonal projections T ∈M.

Quantum Hypothesis Testing
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CHERNOFF EXPONENT

Theorem (JOPS)

lim
t→∞

1

2t
logDt = min

α∈[0,1]
e(α)

Proof: Based on the estimate
1

2
Pt(R−) ≤ Dt ≤ (Ω,∆α

t Ω), α ∈ [0,1]

The difficult part is the upper-bound. α = 1/2 proven by Araki
in 1973. In the case of matrices:

1

2
(Tr A+ Tr B −Tr |A−B|) ≤ Tr A1−αBα

K. M. R. Audenaert, J. Calsamiglia, R. Munoz-Tapia, E. Bagan,
Ll. Masanes, A. Acin, and F. Verstraete (2007). Simple proof:
Ozawa (unpublished). General case: Ogata, JOPS.
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STEIN EXPONENT

ε ∈]0,1[,

sε = inf
{Tt}

{
lim
t→∞

1

t
logω−t(Tt)

∣∣∣∣∣ ωt(Tt) ≥ ε
}

Theorem (JOPS)

sε = −Σ
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HOEFFDING EXPONENT

r > 0,

h(r) = inf
{Tt}

{
lim
t→∞

1

t
logω−t(1− Tt)

∣∣∣∣∣ lim sup
t→∞

1

t
logωt(Tt) < −r

}

Theorem (JOPS)

ψ(r) = − sup
α∈[0,1[

−rα− e(α)

1− α
.
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THE MEANING OF Pt

Consider a confined quantum system on H, dimH <∞.
O = B(H),

τ tλ(A) = eitHλAe−itHλ, H = H + λV.

The state ω = density matrix on H, ω > 0, ω(A) = tr(ωA),

ωtλ = e−itHλωeitHλ.

Assume TRI.

Entropy observable

S = − logω.

Confined open quantum systems:

S = βSHS +
∑
k

βkHk.
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S =
∑

sPs

Measurement at t = 0 yields s with probability tr(ωPs).

State after the measurement:

ωPs/tr(ωPs).

State at later time t:

e−itHλωPse
itHλ/tr(ωPs).

Another measurement of S yields value s′ with probability

tr(Ps′e
−itHωPse

itH)/tr(ωPs).
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Probability distribution of the mean change of entropy

φ = (s′ − s)/t

Pt(φ) =
∑

s′−s=tφ

tr(Ps′e
−itHPse

itH).

St(α) = log tr([ω]1−α[ωt]α) = log
∑
φ

e−αtφPt(φ).

St(α) = St(1− α) is equivalent to

Pt(−φ)

Pt(φ)
= e−tφ.

Pt, spectral measure of −1
t log ∆t, is identified with so called

full statistics of the energy/entropy change in a repeated mea-
surement protocol described above. Thermodynamic limit gives
physical interpretation of Pt of extended systems.



CONCLUSION

Equlibrium. KMS-condition, dynamical stability, equivalence of
the two directions of time.

Non-equilibrium. Dynamical instability, the directions of time
are not-equivalent. The separation of time directions is quanti-
fied by entropic exponents. The exponents are in turn related to
LDP for suitable spectral measure of relative modular Hamilto-
nian. This spectral measure is linked to full statistics of repeated
measurements of energy/entropy. TRI implies Fluctuation Rela-
tions.

Entropy production. Σ, the Stein exponent, related to ex-
pected value of heat/charge fluxes in non-equilibrium steady
state. Σ = 0 for sufficently many V ′’s + AA ⇒ dynamical sta-
bility and KMS condition (J, Pillet).
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TOPICS NOT DISCUSSED

(1) Concrete physically relevant models.

(2) Onsager reciprocity relations, Fluctuation-Dissipation Theo-
rem.

(3) Host of other entropic functionals

(4) Quantum transfer operators and Ruelle’s resonance picture
of e(α)
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