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Algebraic QFT
■ Rudolf Haag was one of the founding fathers of an
operator-algebraic approach to QFT.

■ Book “Local Quantum Physics −
Fields, Particles, Algebras”

■ Describes QFT via families of local
algebras

O 7−→ A(O)

instead of quantum fields
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Algebraic QFT (AQFT)
Sketch of AQFT setting (on Minkowski space):

Study maps O 7→ A(O) of spacetime regions to von Neumann algebras.

“Axioms”:
■ Isotony: Inclusions of regions give inclusions of algebras
■ Locality: Algebras of spacelike separated regions commute
■ Covariance: The isometry group of spacetime acts covariantly by
automorphisms

■ further axioms regarding states (vacuum …. )
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Algebraic QFT (AQFT)
Advantages of the algebraic approach:

Local algebras are less singular than local quantum fields:
■ bounded operators vs unbounded operator-valued distributions

Local algebras are more invariant than local quantum fields:
■ many different quantum fields correspond to the same physics, and
to the same net of local algebras

The algebraic approach brings new mathematical tools into QFT:
■ operator-algebraic tools, e.g. Tomita-Takesaki modular theory

AQFT has led to deep conceptual insights. Examples:
■ Doplicher-Haag-Roberts theory of localized charges / global gauge
theories

■ Haag-Ruelle scattering theory
■ Formulation of thermal equilibrium (KMS) states [Haag, Hugenholtz,

Winnink ’67]
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Models in AQFT
Disadvantages of the algebraic approach: More abstract formulation,
not clear at first sight how to build models (examples).

This situation has changed a lot since the beginnings of AQFT.

There now exist several programmes
aiming at building models with the
tools of AQFT:
■ perturbative AQFT
→ talk by Rejzner

■ conformal AQFT
→ talk by Longo

■ AQFT on curved or quantum
spacetimes
→ talks by Doplicher, Gérard

■ low-dimensional AQFT models
→ this talk
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Models in AQFT
Starting point: interaction-free models

free QFT = particle spectrum + localization + second quantization

■ particle spectrum: fixed by representation U1 of Poincaré group
(masses, spins), and representation V1 of global gauge group (charges)
on a single particle Hilbert space H1.
This also defines a single particle TCP operator J1 = U1(−1)⊗ Γ1.

■ localization: also encoded in U (modular localization)
Here it is useful to first look at special O (wedges)

■ Λ(t): boosts into W
■ ∆it := U1(Λ(−2πt))
■ h ∈ H1 is “localized in W” if

J1∆
1/2
1 h = h.
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Gives (real) spaces H(W) ⊂ H1 of “localized vectors”.

Example: d = 1+1, massive irreducible rep U1, gauge group arbitrary.
In this case, we have

H1 = L2(R, dθ)⊗K, (∆itψ)(θ) = ψ(θ − 2πt), (J1ψ)(θ) = Γ1ψ(θ)

and H(W) = Hardy space H2 ⊗K ⊂ L2 ⊗K on the strip 0 < Im(θ) < π
satisfying

h(θ + iπ) = Γ1h(θ) , θ ∈ R .

■ Localization in smaller regions = simultaneous localization in several
wedges:

H(
∩
i

Wi) =
∩
i

H(Wi).

■ If U1 has positive energy, this always leads to a meaningful concept
of localization of vectors [Brunetti, Guido, Longo].

■ A free QFT (with localized algebras) follows by second quantization:

A(O) = {ei(a†(h)+a(h)) : h ∈ H(O)}′′, a, a† : CCR.
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Deformaধons of free QFTs
Free QFT is the basis for constructions of interacting QFTs.

interacting QFT = free QFT + “deformation”

■ Guided by Haag-Ruelle scattering theory, can base construction of
interacting theory on second quantized representations U1,V1,H1,
as in free theory.

■ But second quantization structure of the algebras A(O) must be
avoided.

Simplest deformation of CCR overH1 = L2(R, dθ)⊗CN:
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■ µ, ν, ...: labels basis in K = CN

■ R(θ): Unitary map K ⊗K → K⊗K
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More general deformations conceivable, but this is the easiest case
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Invariant Yang-Baxter operators
■ Associativity of algebra of the a, a† requires R to solve the
Yang-Baxter equation (on K ⊗K ⊗K):

(Rθ ⊗ 1)(1⊗ Rθ+θ′)(Rθ′ ⊗ 1) = (1⊗ Rθ′)(Rθ+θ′ ⊗ 1)(1⊗ Rθ) .

Further requirements on R:
■ R must be Poincaré invariant and gauge invariant (commute with
U1 ⊗ U1 and V1 ⊗ V1), including TCP invariance.

■ R must be crossing symmetric: θ 7→ R(θ) analytically extends to
0 < Im(θ) < π and

⟨ξ ⊗ ψ, R(iπ − θ) (φ⊗ ξ′)⟩K⊗K = ⟨ψ ⊗ Γ1ξ
′, R(θ) (Γ1ξ ⊗ φ)⟩K⊗K .

This crossing symmetry is key to locality [Schroer]

Given a gauge group G in a representation V1, what are its
crossing-symmetric Yang-Baxter operators and how do they give rise to
QFT models?
Will mainly focus on two examples: G = O(N) and G = O(N, 1)

These will lead to O(N)- and O(N, 1)- Sigma models
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Vacuum representaধons and wedge-locality
We define a vacuum state ω on the algebra CCRR of the “deformed”
creation/annihilation operators:

ω(· · · aR) = 0 = ω(a†R · · · ), ω(1) = 1 .

Theorem
Let R be a crossing-symmetric G-invariant Yang-Baxter operator, and let
(π,H,Ω,U,V) be the GNS representation of CCRR w.r.t. ω. Then the von
Neumann algebra

MR := {ei(π(a
†
R (h)+aR(h)) : h ∈ H(W)}′′ ⊂ B(H)

is localized in the wedge W in the sense that

■ U(x, λ)MRU(x, λ)−1 ⊂ MR for x ∈ W

■ JMRJ = M′
R

■ Vacuum Ω is cyclic and separating for MR

Any such wedge algebra is a germ of a full QFT.
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The O(N)model
Take G = O(N) in its defining representation on CN.

R(θ) : CN ⊗CN → C
N ⊗CN is essentially fixed by invariance, YBE

and crossing:

R(θ) = σ1(θ)Q+ σ2(θ) 1 + σ3(θ) F

with F =tensor flip, Q a 1-dim O(N)-invariant projection, and

σ2(θ) =
Γ
(

1
N−2 − i θ

2π

)
Γ
(
1
2 − i θ

2π

)
Γ
(

1
2 + 1

N−2 + i θ
2π

)
Γ
(
1 + i θ

2π

)
Γ
(

1
2 + 1

N−2 − i θ
2π

)
Γ
(
−i θ

2π

)
Γ
(
1 + 1

N−2 + i θ
2π

)
Γ
(
1
2 + i θ

2π

) ,
σ1(θ) = − 2πi

N− 2
· σ2(θ)
iπ − θ

,

σ3(θ) = σ1(iπ − θ).

This is Zamolodchikov’s O(N)-invariant two-particle S-matrix.
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The O(d, 1)model
Take G = O(d, 1) = Lorentz group in d+ 1 dimensions in a principal or
complementary series irrep V1 on K.

■ K can be realized as a space of
homogeneous functions on a light cone

C+
d = {P ∈ Rd+1 : P · P = 0 P0 > 0} ,

Kν = {ψ : C+
d → C : ψ (λ · P) = λ−

d−1
2 −iν · ψ (P) , λ > 0}

ν: complex parameter.
■ SO+(d, 1) acts by
(Vν(Λ)ψ)(P) = ψ(Λ−1P).

■ For certain ν, find scalar product on Kν such that Vν is unitary:
□ principal series: ν ∈ R.
□ complementary series: iν ∈ (0, d−1

2 )
□ discrete series: iν ∈ (0, d−1

2 ) +N0
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Some representaধon theory of SO+(d, 1)
■ To define a scalar product on Kν , pick an
“orbital base” B and the (d− 1)-form

ω =
d∑

k=1

(−1)k+1 Pk
P0

dP1 ∧ ... ∧ d̂Pk ∧ ... ∧ dPd .

For principal series, define inner product
(ψ1, ψ2)ν :=

∫
B ω ψ1 ψ2 . —> makes Vν unitary.

Three canonical choices for B:

a) flat base, B = C+
d ∩ (lightlike plane)

b) spherical base, B = C+
d ∩ (spacelike plane)

c) hyperbolic base, B = C+
d ∩ (two parallel timelike planes)
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The flat base and Euclidean conformal symmetry
■ Take complementary series rep ν ∈ i(0, d−1

2 ) and “flat base” B of C+
d

■ B parameterized asRd−1 ∋ x 7→ P(x) = ( 12 (|x|
2 + 1), x, 12 (|x|

2 − 1))

■ Representation space Kν has scalar product

(f, g) = cν

∫
ddx

∫
ddy f(x) |x− y|−2s g(y)

s = d−1
2 − iν ∈ (0, d−1

2 ).

■ Vν acts as Euclidean conformal group ofRd−1 in x-variable

(Vν(Λ)f)(x) = YΛ(x)−
d−1
2 −iν · f(Λ · x)

This double role of SO(d, 1) is at the basis of the dS/CFT correspondence.
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SO+(d, 1)-invariant R-matrices
An “R-matrix” for the representations Vν of SO(d, 1) is an integral operator

R(θ) : Kν ⊗Kν → Kν ⊗Kν .

Theorem
Consider a principal or complementary series representation, and the integral
kernels

Rθ(P1, P2;Q1,Q2) = σ(θ) (P1P2)−iθ−iν(P1Q1)
− d−1

2 +iθ(P2Q2)
− d−1

2 +iθ(Q1Q2)
−iθ+iν

with a suitable scalar function σ. Then R is a unitary SO(d, 1)-invariant crossing
symmetric Yang-Baxter operator.
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− d−1

2 +iθ(P2Q2)
− d−1

2 +iθ(Q1Q2)
−iθ+iν

with a suitable scalar function σ. Then R is a unitary SO(d, 1)-invariant crossing
symmetric Yang-Baxter operator.

■ Form of R essentially fixed by invariance, unitarity, YBE, and crossing.

■ Proof of YBE, crossing, … relies on relations known from analysis of de
Sitter Feynman diagrams [Hollands 2012 + Marolf/Morrison 2011], [Hollands
2013]

■ Using flat model and principal series reps, YBE was already shown by
[Chicherin, Derkachov, Isaev 2001]
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From wedge algebras to full QFTs

■ Any wedge algebra defines a Haag-Kastler net, and any QFT can be
obtained from its wedge algebra (in any dimension).

■ Elements of intersections of opposite wedge algebras are
characterized only indirectly. Existence?

Theorem: If there exist non-trivial local operators, then this
construction yields an integrable two-dimensional QFT.

In that case, R represents the two-particle scattering operator of
Haag-Ruelle theory, and the theory is even asymptotically complete.
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Modular nuclearity
A sufficient criterion for the existence of local observables exists:

■ Theorem: [Buchholz/GL] If the modular nuclearity condition of
Buchholz-D’Antoni-Longo holds, then “many” local observables exist
(cyclic vacuum for double cones).
This means that

MR ∋ A 7−→ ∆
1/4
(M,Ω)U(x)AΩ , x ∈ W ,

should be a nuclear map between Banach spaces.

■ In this case, the inclusions U(x)MRU(x)−1 ⊂ MR, x ∈ W, are split (cf.
Rédei's talk)
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A single parধcle illustraধon of modular nuclearity
Consider the Hardy space H2 ⊂ L2, and the operator

∆1/4U(x) : H2 ⊂ L2 → L2

(∆1/4U(x)ψ)(θ) = e−m(x+eθ−x−e−θ) · ψ(θ + iπ
2 )

which is unbounded.

But if H2 is completed in the graph norm of ∆1/2 to a Hilbert space (i.e., with
scalar product

⟨ψ,φ⟩′ := 1

2

∫
dθ

(
ψ(θ)φ(θ) + ψ(θ + iπ)φ(θ + iπ)

)
), then the operator ∆1/4U(x) is “almost finite-dimensional” (s-class), and in
particular nuclear.
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Modular Nuclearity in the O(N)-model
In the O(N)-model, we have a proof of “n-particle nuclearity” based on
complex analysis of n-particle wedge-local wavefunctions.

To conclude modular nuclearity / split, we need in addition the
so-called “intertwiner property” (an analytic intertwining between two
representations of the symmetric/braid group)

Conclusion on O(d, 1)-models:
■ The construction of the O(N)-sigma models by methods in AQFT is
almost complete.

■ If the intertwiner property holds, the emerging QFT satisfies the
axioms of Haag-Kastler, has the factorizing S-matrix calculated by
the Zamolodchikov’s, and is asymptotically complete.

■ The open intertwiner problem is related to analysis of holomorphic
solutions of Yang-Baxter and braid group representations.
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A dS/CFT correspondence for the O(d, 1)model
For the O(d, 1)-invariant R-matrices, we may build from the same data two
different models:

■ A O(d, 1) sigma model, describing a field onR2 (or on a lightray) with de
Sitter target space dSd = SO(d, 1)/SO(d)

■ A CFT on EuclideanRd−1

■ The second version is based on single particle spaceCN ⊗Kν , and a choice
of N numbers θ1, ..., θN ∈ R. The R-matrix is

(RΨ)ij := R(θi − θj)Ψji .

■ Analogous procedure as before yields R-deformed CCR operators ak(x),
k = 1, ...,N, such that

a†i (x1)aj(x2)−Rθi−θj aj(x2)a
†
i (x1) = cνδij · |x1 − x2|−2s

a†i (x1)a
†
j (x2)−Rθi−θj a

†
j (x2)a

†
i (x1) = 0 .

with s = d−1
2 − iν.
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A dS/CFT correspondence for the O(d, 1)model
■ GNS representation w.r.t. a “vacuum state” yield representation
space on which conformal symmetry group ofRd−1 acts

■ Fields ϕj(x) = z†j (x) + zj(x) are covariant under Vν , but not “local”
(in the sense of permutation symmetric correlation functions)
because of the R(θi − θj).

Conclusion on O(d, 1)-models:
■ SO(d, 1)-invariant crossing-symmetric Yang-Baxter operators exist
and yield different QFT models: SO(d, 1)-sigma models and Eucl.
CFT onRd−1.

■ Both cases are generated by non-local fields, but might have also
have local fields.

■ The two models are related by the same input data (R,V). Currently
we do not have a more direct link.

■ The CFTs come with a discretization parameter N. Might give rise to
a dS/CFT correspondence in the limit N → ∞.
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