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Algebraic QFT

® Rudolf Haag was one of the founding fathers of an
operator-algebraic approach to QFT.

® Book “Local Quantum Physics —
Fields, Particles, Algebras”

m Describes QFT via families of local
algebras

O — A(O)

instead of quantum fields
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Algebraic QFT (AQFT)
Sketch of AQFT setting (on Minkowski space):

Study maps O — A(O) of spacetime regions to von Newmann algebras.

“Axioms”:
® |sotony: Inclusions of regions give inclusions of algebras
® |ocality: Algebras of spacelike separated regions commute

m Covariance: The isometry group of spacetime acts covariantly by
automorphisms

further axioms regarding states (vacuum ....)
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Algebraic QFT (AQFT)
Advantages of the algebraic approach:

Local algebras are ess singular than local quantum fields:
® bounded operators vs unbounded operator-valued distributions

Local algebras are more invariant than local quantum fields:
® many different quantum fields correspond to the same physics, and
to the same net of local algebras

The algebraic approach brings new mathematical tools into QFT:
® operator-algebraic tools, e.g. Tomita-Takesaki modular theory

AQFT has led to deep conceptual insights. Examples:

® Doplicher-Haag-Roberts theory of localized charges / global gauge
theories

® Haag-Ruelle scattering theory

® Formulation of thermal equilibrium (KMS) states [Haag, Hugenholtz,

Winnink ’67]
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Models in AQFT

Disadvantages of the algebraic approach: More abstract formulation,
not clear at first sight how to build models (examples).

This situation has changed a lot since the beginnings of AQFT.

There now exist several programmes
aiming at building models with the
tools of AQFT:
® perturbative AQFT

— talk by Rejzner
m conformal AQFT

— talk by Longo

®m AQFT on curved or quantum
spacetimes
— talks by Doplicher, Gérard

m |[ow-dimensional AQFT models
— this talk
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Starting point: interaction-free models

free QFT = particle spectrum + localization + second quantization

® particle spectrum: fixed by representation U; of Poincaré group
(masses, spins), and representation V; of global gauge group (charges)
on a single particle Hilbert space #;.
This also defines a single particle TCP operator 7, = Uy (—1) @ I';.

® |ocalization: also encoded in U (modular localization)
Here it is useful to first look at special O (wedges)

® A(t): boosts into W

m A= U (A(—271))
m hc Hyis “localized in W” if

HAY h=h.
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Gives (real) spaces H(W) C H; of “localized vectors”.
Example: d = 1+ 1, massive irreducible rep U, gauge group arbitrary.
In this case, we have
Hi=LR,d) @K, (A")(0) =90 —271),  (he)(0) = T13(0)
and H(W) = Hardy space H? ® K C L? ® K on the strip 0 < Im(#) < 7
satisfying

h(0 + ir) =T1h(6), deR.

® | ocalization in smaller regions = simultaneous localization in several
wedges:

mﬂw=DMM»

® [f U; has positive energy, this always leads to a meaningful concept
of localization of vectors [Brunetti, Guido, Longo].
® A free QFT (with localized algebras) follows by second quantization:
A(O) = {ei(“T(h)Jr“(h)) : he HO)}, a,a' : CCR.
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Deformations of free QFTs

Free QFT is the basis for constructions of interacting QFTs.

interacting QFT = free QFT + “deformation”

® Guided by Haag-Ruelle scattering theory, can base construction of

interacting theory on second quantized representations Uy, Vi, H,
as in free theory.

® But second quantization structure of the algebras A(O) must be
avoided.

Simplest deformation of CCR over H; = L?(RR, df) @ C":
a,(0)a,(0) = R 50 — 0') ag(6') aa(0)
a,(0)al(0') = R5(0 — 6') al,(0")ag(6) + 6,,0(6 — 0') - 1

® 4, v, ...: labels basis in K = CN
® R(#): Unitarymap CO K - K@K
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Deformations of free QFTs

Free QFT is the basis for constructions of interacting QFTs.

interacting QFT = free QFT + “deformation”

® Guided by Haag-Ruelle scattering theory, can base construction of

interacting theory on second quantized representations Uy, V1, H1,
as in free theory.

® But second quantization structure of the algebras A(O) must be
avoided.

Simplest deformation of CCR over H; = L*(R, df) @ CN:
au(0)a,(0') = R/5(0 — 0') ag(0')an(0)
4 (0)al(0) = RS(0 — ') al, (0')as(0) + 6,60 — ) - 1

More general deformations conceivable, but this is the easiest case
7/20



Invariant Yang-Baxter operators
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(Ry @ 1)(1 & Ro9)(Ryr @ 1) = (1 @ Ry ) (Rg9r ® 1)(L ® Ry) .
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m Associativity of algebra of the a, a' requires R to solve the
Yang-Baxter equation (on X ® K ® K):

(Ry @ 1)(1 & Ro9)(Ryr @ 1) = (1 @ Ry ) (Rg9r ® 1)(L ® Ry) .

Further requirements on R:

® R must be Poincaré invariant and gauge invariant (commute with
U ® U and V1 ® V), including TCP invariance.

® R must be crossing symmetric: 0 — R(6) analytically extends to
0 <Im(f) < 7 and

(@1, Riim —0) (¢ ® ) kox = (¥ @T1E, RO) (I'1€ ® ¢))kek -
This crossing symmetry is key to locality [Schroer]

Given a gauge group G in a representation Vi, what are its
crossing-symmetric Yang-Baxter operators and how do they give rise to

QFT models?
Will mainly focus on two examples: G = O(N) and G = O(N, 1)

These will lead to O(N)- and O(N, 1)- Sigma models 620
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creation/annihilation operators:

w(---ag) =0 =wlal---), w(l)=1.

Theorem

Let R be a crossing-symmetric G-invariant Yang-Baxter operator, and let
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Vacuum representations and wedge-locality

We define a vacuum state w on the algebra CCRy, of the “deformed”
creation/annihilation operators:

w(---ag) =0 =wlal---), w(l)=1.

Theorem

Let R be a crossing-symmetric G-invariant Yang-Baxter operator, and let

(m,H,8, U, V) be the GNS representation of CCRg w.r.t. w. Then the von
Neumann algebra

My = {e@&W+a®) . p e H(W)}" C B(H)
is localized in the wedge W in the sense that
B Ulx, \)MgU(x,\)"! € Mg forxe W
B IMR] = Mj
B Vacuum $Q is cyclic and separating for Mg

Any such wedge algebra is a germ of a full QFT.
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The O(N) model
Take G = O(N) in its defining representation on C~.
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The O(N) model

Take G = O(N) in its defining representation on C~.

R(9) : CN® CN — CN @ CNis essentially fixed by invariance, YBE
and crossing;:

R(0) = 01.(0) O+ 02(0) 1 + o3(0) F

with F =tensor flip, Q a 1-dim O(N)-invariant projection, and

CP(R ) TG )T (4 b i) T+ i)

02(9)_ I
r(%+%2—i%)r(—i%)r(1+ﬁ+i%)r(%+i%)
27i 0
O e ]

This is Zamolodchikov’s O(N)-invariant two-particle S-matrix.
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The O(d, 1) model

Take G = O(d, 1) = Lorentz group in d + 1 dimensions in a principal or
complementary series irrep V7 on K.

B /C can be realized as a space of (P()

homogeneous functions on a light cone

PeR™ : P.P=0 Py >0},
YiC ST (AP = AT (P, A > 0} CF

Ci =A{
K, = {

v: complex parameter.
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The O(d, 1) model

Take G = O(d, 1) = Lorentz group in d + 1 dimensions in a principal or
complementary series irrep V7 on K.

B /C can be realized as a space of (P()
homogeneous functions on a light cone

C;={PeR*™ : P.P=0 P, >0},
K, ={

YiC ST (AP = AT (P, A > 0} CF

v: complex parameter.
® SO, (d,1) acts by
(Vo (A)3)(P) = 9 (A™1P).

® For certain v, find scalar product on IC,, such that V,, is unitary:
O principal series: v € R.
O complementary series: iv € (0, 452)
O discrete series: iv € (0, 45%) + Ny
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Some representation theory of 50, (d, 1)

B To define a scalar product on IC,, pick an
“orbital base” B and the (d — 1)-form

d
P _
w= z:(—l)k“P—O dPy A .. AdPE A ... A dPy.
k=1

For principal series, define inner product
(¥1,92), = [w 1Py 2 . —> makes V,, unitary.
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Some representation theory of 50, (d, 1)

B To define a scalar product on IC,, pick an
“orbital base” B and the (d — 1)-form

d
P _
w= z:(—l)"*lp—O dPy A .. AdPE A ... A dPy.
k=1

For principal series, define inner product
(Y1,102)y := [zw b1 12 . —> makes V,, unitary.

Three canonical choices for B:

a) flat base, B = Cjﬂ (lightlike plane)

b) spherical base, B = C;ﬂ (spacelike plane)

c) hyperbolic base, B= C; N (two parallel timelike planes)
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The flat base and Euclidean conformal symmetry

B Take complementary series rep v € i(0, %) and “flat base” B of C;

Ci

)
o

N

B Bparameterized as R 3 x — P(x) = (3(|x]* + 1), x, 3 (|«]*> = 1))
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Ci

)
o

N

B Bparameterized as R 3 x — P(x) = (3(|x]* + 1), x, 3 (|«]*> = 1))

B Representation space KC,, has scalar product

—a [l [ @y x- 5 aly)

d—1 d—
S—T71V6<0,?.
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The flat base and Euclidean conformal symmetry

B Take complementary series rep v € i(0, %) and “flat base” B of C;

Ci

)
o

N

B Bparameterized as R 3 x — P(x) = (3(|x]* + 1), x, 3 (|«]*> = 1))

B Representation space KC,, has scalar product

(9 =c / di / YT |x - 3% ()

s=4—ive(0,%52).

BV, acts as Euclidean conformal group of R~ in x-variable
-y
(Vo (AN (x) = Ya(x)" =" flA - x)
This double role of SO(d, 1) is at the basis of the dS/CFT correspondence.
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SO, (d, 1)-invariant R-matrices

An “R-matrix” for the representations V,, of SO(d, 1) is an integral operator
RO): K, @K, =K, oK,.

Theorem

Consider a principal or complementary series representation, and the integral
kernels

R9(P17P2; Qla QQ) = 0(9) (P]PQ)_iG_iV(PlQl)_diTl—Ha(PQQQ)_KFTI""iG(Qle)—ieﬁ‘iV

with a suitable scalar function o. Then R is a unitary SO(d, 1)-invariant crossing
symmetric Yang-Baxter operator.

14/20



SO, (d, 1)-invariant R-matrices

An “R-matrix” for the representations V,, of SO(d, 1) is an integral operator

RO): K, @K, =K, ®K,.

Theorem
Consider a principal or complementary series representation, and the integral
kernels

RQ(PlaPZ; Qla QZ) = 0(9) (P]PQ)_iG_iV(Plgl)_FTI—HQ(PQQQ)_FTI'HG(QIQz)—ie"riV

with a suitable scalar function o. Then R is a unitary SO(d, 1)-invariant crossing
symmetric Yang-Baxter operator.

B Form of R essentially fixed by invariance, unitarity, YBE, and crossing.

B Proof of YBE, crossing, ... relies on relations known from analysis of de
Sitter Feynman diagrams [Hollands 2012 + Marolf/Morrison 2011], [Hollands
2013]

B Using flat model and principal series reps, YBE was already shown by
[Chicherin, Derkachov, Isaev 2001]
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SO, (d, 1)-invariant R-matrices

An “R-matrix” for the representations V,, of SO(d, 1) is an integral operator

RO): K, @K, = K, ®K, .

Theorem
Consider a principal or complementary series representation, and the integral
kernels

Ro(P1, Pa; Q1, Q2) = o(6) (PP2) ™~ (PLQ1) =T+ (PyQy) % +10(01 ) ¥+

with a suitable scalar function o. Then R is a unitary SO(d, 1)-invariant crossing
symmetric Yang-Baxter operator.

it iy it o+

in
Py Q P > Q
= + P> pid e
_ “, o H _ %, \
= > 2 - %
P, — Q P, = Q
—a—iv  —a—if4v,  —ativ —a—iv —a— i+,
—a—if—vy —ativ —a—if4vh
Py Q Py ~_. Q
n = R hEN
S Z\ = = S
=i % = i
< ; N < &
Pz — Qz Pz — = QZ
—a—ifi—vg —amib—vy
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® Elements of are
characterized only indirectly. Existence?
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From wedge algebras to full QFTs

Ty

&

B Any wedge algebra defines a Haag-Kastler net, and any QFT can be
obtained from its wedge algebra (in any dimension).

® Elements of
characterized only indirectly. Existence?

are

Theorem: If there exist non-trivial local operators, then this
construction yields an integrable two-dimensional QFT.

In that case, R represents the two-particle scattering operator of
Haag-Ruelle theory, and the theory is even asymptotically complete.

15/20



Modular nuclearity
A sufficient criterion for the existence of local observables exists:

B Theorem: [Buchholz/GL] If the modular nuclearity condition of
Buchholz-D’Antoni-Longo holds, then “many” local observables exist
(cyclic vacuum for double cones).

This means that

1/4

MR9A|—>A(MQ) U(x)AQ, xXe W,

should be a nuclear map between Banach spaces.
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Modular nuclearity
A sufficient criterion for the existence of local observables exists:

B Theorem: [Buchholz/GL] If the modular nuclearity condition of
Buchholz-D’Antoni-Longo holds, then “many” local observables exist
(cyclic vacuum for double cones).

This means that

MR9A|—>A2//§Q) UX)AQ, xeW,

should be a nuclear map between Banach spaces.

B In this case, the inclusions U(x) MzU(x) =1 C Mg, x € W, are split (cf.
Rédei's talk)
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A single particle illustration of modular nuclearity

Consider the Hardy space H? C L?, and the operator
AY4U(x) - H? C 12 — 12
—m(xy e’ —x_e i
(AYAU(x)) (0) = e "0 b0+ %)

which is unbounded.
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A single particle illustration of modular nuclearity

Consider the Hardy space H* C L?, and the operator
AY4U(x) - H? C 12 — 12
—m(xy e’ —x_e i
(AYAU(x)) (0) = e "0 b0+ %)

which is unbounded.

But if H? is completed in the graph norm of A'/? to a Hilbert space (i.e., with
scalar product

ol =5 [ a0 (F006) + TOF mie(0 + im))

), then the operator A/*U(x) is “almost finite-dimensional” (s-class), and in
particular nuclear.
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Modular Nuclearity in the O(N)-model

In the O(N)-model, we have a proof of “n-particle nuclearity” based on
complex analysis of n-particle wedge-local wavefunctions.

To conclude modular nuclearity / split, we need in addition the
so-called “intertwiner property” (an analytic intertwining between two
representations of the symmetric/braid group)
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Modular Nuclearity in the O(N)-model

In the O(N)-model, we have a proof of “n-particle nuclearity” based on
complex analysis of n-particle wedge-local wavefunctions.

To conclude modular nuclearity / split, we need in addition the
so-called “intertwiner property” (an analytic intertwining between two
representations of the symmetric/braid group)

Conclusion on O(d, 1)-models:

® The construction of the O(N)-sigma models by methods in AQFT is
almost complete.

® |f the intertwiner property holds, the emerging QFT satisfies the
axioms of Haag-Kastler, has the factorizing S-matrix calculated by
the Zamolodchikov’s, and is asymptotically complete.

® The open intertwiner problem is related to analysis of holomorphic
solutions of Yang-Baxter and braid group representations.
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A dS/CFT correspondence for the O(d, 1) model

For the O(d, 1)-invariant R-matrices, we may build from the same data two
different models:

B A O(d, 1) sigma model, describing a field on R? (or on a lightray) with de
Sitter target space dS; = SO(d, 1)/SO(d)

B A CFT on Euclidean R*!
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A dS/CFT correspondence for the O(d, 1) model

For the O(d, 1)-invariant R-matrices, we may build from the same data two
different models:

B A O(d, 1) sigma model, describing a field on R? (or on a lightray) with de
Sitter target space dS; = SO(d, 1)/SO(d)

B A CFT on Euclidean R*!

B The second version is based on single particle space CN ® K,,, and a choice
of Nnumbers 01, ..., 0y € R. The R-matrix is

(R\I/)U = R(Gl — 9}-)\1/ﬁ .
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A dS/CFT correspondence for the O(d, 1) model

For the O(d, 1)-invariant R-matrices, we may build from the same data two
different models:

B A O(d, 1) sigma model, describing a field on R? (or on a lightray) with de
Sitter target space dS; = SO(d, 1)/SO(d)

B A CFT on Euclidean R*!

B The second version is based on single particle space CN ® K,,, and a choice
of Nnumbers 01, ..., 0y € R. The R-matrix is

(R\I/)U = R(Gl — 9}-)\1/ﬁ .

B Analogous procedure as before yields R-deformed CCR operators ay(x),
k=1, ...,N, such that

af (x1)aj(x2) — Ro,—e, aj(x2)al (x1) = ¢, 05 - |x1 — x| ™%

af (x1)a] (x2) — R, 0, @] (x2)a] (1) = 0.
with s = % — V.
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A dS/CFT correspondence for the O(d, 1) model

m GNS representation w.r.t. a “vacuum state” yield representation
space on which conformal symmetry group of R% ! acts
® Fields ¢;(x) = z;-r(x) + zj(x) are covariant under V,,, but not “local”

(in the sense of permutation symmetric correlation functions)
because of the R(6; — 6;).

20/20



A dS/CFT correspondence for the O(d, 1) model

m GNS representation w.r.t. a “vacuum state” yield representation
space on which conformal symmetry group of R% ! acts

® Fields ¢;(x) = z;-r(x) + zj(x) are covariant under V,,, but not “local”
(in the sense of permutation symmetric correlation functions)
because of the R(6; — 6;).

Conclusion on O(d, 1)-models:

® SO(d, 1)-invariant crossing-symmetric Yang-Baxter operators exist
and yield different QFT models: SO(d, 1)-sigma models and Eucl.
CFTon R4 L

B Both cases are generated by non-local fields, but might have also
have local fields.

® The two models are related by the same input data (R, V). Currently
we do not have a more direct link.

® The CFTs come with a discretization parameter N. Might give rise to
a dS/CFT correspondence in the limit N — oo.
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