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Regularity structures: what for and how?

In order to

I control singularities (due to the presence of white noise) arising from a fixed
point method to solve a semilinear PDE (stochastic PDE) driven by some very
singular (typically random) input;

I L(u) = F (u, ξ), L (typically parabolic but possibly elliptic) differential operator,
ξ is a typically very irregular random input,and F is some nonlinearity e.g.

I KPZ (Kardar-Parisi-Zhang) ∂tu = ∂2
xu + (∂xu)2 + ξ︸ ︷︷ ︸

F (u,ξ)

,

I ϕ4 model in 3-dim ∂tϕ = ∆ϕ−ϕ3 + ξ︸ ︷︷ ︸
F (ϕ,ξ)

;

I in making sense of the resulting products of distributions;

By means of an algebraic device which involves

I a graded structure (via the set A) reminiscent of the graded structure arising in Taylor expansions;

I in order to renormalize (the singularities) by means of a (co)algebraic approach governing the addition of diverging counterterms,

I while keeping track of power counting of divergences, a procedure familiar to physicists.
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Aims and tools

Our aims

I investigate the geometry of regularity structures,

I leaving aside the analytic aspects;

I unravel the role of Rd as a translation group (symmetry) and as a
displacement (when differentiating).

Our tools

I direct connections on groupoids in order to describe re-expansion maps
(the displacement)– direct connections were introduced by Teleman for frame

groupoids and arise in synthetic geometry (Kock).

I gaugeoid transformations on groupoids in order to understand the role
of the symmetry group,

I jet prolongations in order to decribe a toy model: polynomial regularity
expansions.
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Hairer’s setup (2013)

The model space T encodes the jet or local expansion of a function (or distribution!)

at any given point. The group G translates coefficients from a local expansion around

a given point into coefficients for an expansion around a different point.

Regularity structure

A triple (A,T ,G), where A ⊂ R is a discrete set bounded from below,

I the model space T = ⊕α∈ATα is an A-graded vector space with T0 = R 1 ' R
and dim(Tα) <∞ finite dimensional; Tα comes equipped with a norm ‖ · ‖α.

I the structure group G is a Lie group acting on T by an action ρ : G × T → T
such that g 1 = 1 for any g ∈ G and (g − Id) (Tα) ⊂ ⊕β<αTβ .

A model associates to abstract elements in T concrete functions or distributions on

Rd .

Model for a regularity structure (mod. α-Hölder continuity cdn’s)

A model (Π, Γ = ρ ◦ γ) for the regularity structure built from

I a contn’s map γ : Rd × Rd −→ G s.t. γ(x , x) = 1G (and
γ(x , y) γ(y , z) = γ(x , z));

I continuous linear maps Πx : T −→ D′(Rd ) s.t. Πy = Πx Γ(x , y).
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Reconstructing Hölder functions:
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Reconstructing Hölder functions:
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A function ϕ : Rd → R is α-Hölder continuous (Cα) for α > 0

I Definition: if ∀x ∈ Rd , ∃ a polynomial Px such that
|ϕ(x + h)− Px (x + h))| . |h|α locally uniformly on x and on |h| ≤ 1.

I Reconstruction: if and only if ∃ ϕ̂ : Rd → ⊕k<αT k such that ϕ̂0 = ϕ and
‖ϕ̂(x + h)− Γhϕ̂(x)‖m . |h|α−m uniformly over m ≤ α, |h| ≤ 1 and x in any
compact set in Rd .

The geometry of regularity structures 6 of 30



Polynomial regularity structures

Jets and polynomial functions

I A = Z≥0 is the grading given by the degree of homogeneous polynomials;

I T = Jk (Rd ,R) is the space of jets on Rd , isomorphic to the space of real
abstract polynomials in X1, · · · ,Xd of total degree ≤ k;

I Given s ∈ Nd , n ∈ N, T n := 〈X k1
1 · · ·X

kd
d ,

∑d
i=1 si ki = n〉;

I G = Rd acting via translation th : x 7−→ x + h on Rd and by pull-back
Γh : P 7−→ t∗hP on P ∈ T ;

I for any x ∈ Rd the map Πx : T −→ C∞(Rd ) is given by Πx (X k )(y) := (y − x)k

realises an abstract polynomial X k as a polynomial function fx : y 7−→ (y − x)k ;

Reconstructing Hölder functions:
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Hairer’s reconstruction theorem

γ-distributions: a function ϕ̂ : Rd → ⊕α<γTα lies in

Dγ for γ ∈ R if ‖ϕ̂(x)‖β is bounded and ‖ϕ̂(x + h)− Γh ϕ̂(x)‖β . |h|γ−β
uniformly over β ≤ α, |h| ≤ 1 and x in any compact set in Rd .

Dγ consists of jets of distributions that locally, around any given point x , look like

the model distribution Πx ϕ̂(x).

Reconstructing the distributions if Πxτ is continuous for any τ ∈ T

There is a continuous map R : Dγ → D ′(Rd) such that

C(Rd) 3 Rφ̂(x) =
(

Πx φ̂(x)
)

(x).
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A. Dahlqvist, J. Diehl, B. Driver’s generalisation to a Riemannian
manifold (2017)

Regularity structure on a manifold

A regularity structure on a Riemannian manifold (M, g) is a couple (A,T) where
A ⊂ R is a discrete set bounded from below and

I T = ⊕α∈ATα → M is an A-graded vector bundle s.t. rk(Tα) <∞.

Model for a regularity structure on a Riemannian manifold

A model on a Riemannian manifold (M, g) consists of

I re-expansion maps Γ(x , y) : Tx −→ Ty

defined for δg (x , y) < ρinj, where ρinj is the injectivity radius;

I maps Πx : Tx −→ D′(M).
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The need for a groupoid setup

Why groupoids?

In order the make sense of the re-expansion map Γ on M ×M and the relations

(0) Γ(x , x) = Idx ; (1) Γ(x , y) Γ(y , z) = Γ(x , z) and (2) Πy = Πx Γ(x , y),

provided they hold.

Geometric data for the regularity structure

I Γ(x , y) is a local section of (T∗ � T)inv −→ M ×M with Γ(x , x) = Ix ;

I Γ is a (direct) connection on the corresponding frame groupoid Iso(T);

I Iso(T) acts on T by ρ : (Lyx , tx ∈ Tx ) 7−→ ty := Lyx (tx ) ∈ Ty ;
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Groupoids

I A groupoid G
t
⇒
s
M is a small category in which every morphism γxy is

invertible; we set Gx y := t−1(x) ∩ s−1(y);

I A groupoid whose structure maps are smooth maps and whose source map s
and target map t are surjective submersions, i.e. fibrations, is a Lie groupoid ;

I A trivial Lie groupoid is of the form M ×M × G , e.g. the pair groupoid
P(M) = M ×M ⇒ M (G = {1});

I We consider locally trivial Lie groupoids i.e., locally: GUU ' U × U × G ;

I Example 1: gauge groupoid: G(P) = P×G P⇒ M, with P→ M a principal
G -bundle;

I Example 2: frame groupoid Iso(T) = G (GL(T)) = (T∗ � T)inv ⇒ M;

I Lie algebroid of a Lie groupoid G is the vector bundle
L(G) := ∪x∈MT1xGx −→ M;

I Examples: L(P(M)) = TM −→ M; L (Iso(T)) = Hom(T) −→ M.
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Direct connections on groupoids

Direct connections

I Direct connections: local maps Γ : P(M) ∗−→G (i.e. defined on a neighborhood
of the diagonal ∆ ∈ M ×M and Γ(x , y) ∈ Gyx ) such that Γ(x , x) = Idx

(Condition (0));

I A direct connection on a gauge groupoid G induces a connection (called
infinitesimal connection on G) on the Lie algebroid ∇Γ : TM −→ L(G) by
differentiation along the diagonal;

Warning: the converse does not hold in general. Not all direct connections come

from lifting an infinitesimal connection. Yet they do when they are flat!

Flat direct connections ←→ flat infinitesimal connections

I A direct connection Γ is flat (Mackenzie’s local morphism Γ : P(M) ◦−→G) if it
has trivial curvature Γ(x , y) Γ(y , z) Γ(z, x) = Idx (Condition (1)).

I Flat direct connections on a groupoid G are in one to one correspondence with
flat infinitesimal connections on L(G);

I Any flat direct connection Γ(x , y) on a gauge groupoid is trivialisable i.e., it is

locally of the form Γi (x , y) = F i
x

(
F i
y

)−1
, F i ’s local section atlas of G.
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From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: the general case:

Path connection: parallel transport along paths

infinitesimal connection ∇ ←→ path connection ∇̃

∇̃ : P(M)→ Ps
M(G);

d∇̃(ν)

dt
(t0) = T (R∇̃(ν(t0))

)

(
∇
(
dν

dt
(t0)

))
.

Holonomy map

The holonomy map of an infinitesimal connection ∇ on G along a path ν ∈ P(M):

H∇ : P(M) −→ G; ν 7−→ H∇(ν) := ∇̃(ν)|t=1.

A direct connection from an infinitesimal connection ∇
I We lift pairs of points to paths (e.g using geodesics) via a local map
η : P(M) 3 (x , y) −→ ν(x , y) ∈ P(M)

I which we combine with the holonomy map H∇ to build a direct
connection: Γ∇,η := H∇ ◦ η : P(M) ∗−→G.

The geometry of regularity structures 13 of 30



From infinitesimal to direct connections: back to the flat case

Integrating a morphism of Lie algebroids

A morphism of Lie algebroids φ : L(G1)→ L(G2) integrates to a (locally trivial Lie)

groupoid local morphism Φ : G1 ◦−→G2 uniquely determined modulo germ equivalence.

Integrating a flat infinitesimal connection

Since TM = L(Π(M)) = L(P(M)),

1. id : TM → L(Π(M)) integrates to a flat direct connection τ : P(M) −→ Π(M);

2. a flat infinitesimal connection ∇ : TM −→ L(G) on a (locally trivial) Lie
groupoid G integrates to a flat direct connection:

I Γ∇ : P(M) ◦−→G;
I the holonomy morphism H∇ : Π(M) ◦−→G.

P(M)

τ

{{

Γ

!!
Π(M)

H∇Γ // G

,
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Geometric Regularity structure

Regularity structure

A triple (A,T ,G , ρ), where A ⊂ R is a discrete set bounded from below and

I T = ⊕α∈ATα is an A-graded vector space with T0 ' R,

I G is a Lie group (the symmetry group in physics) acting on T by an
action ρ : G × T → T such that (ρ(G)− Id) (Tα) ⊂ ⊕β<αTβ .

A geometric counterpart

An A-graded geometric regularity structure on a (closed) manifold M is a
t-uple (A,T,G(P), Γ) built from a regularity structure (A,T ,G , ρ) in the
following way

1. P→ M is a G -principal bundle and G(P) the associated gauge groupoid;

2. T = P×ρ T is the model fibre bundle ;

3. Γ is a direct connection ( ”gaugeoid” field/ re-expansion map) on G(P),
which respects the A- filtration.
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Example: trivial direct connection (rough paths and polynomial reg. str.)

The geometric data

I E , F two vector spaces, A ⊂ Z≥0 and

T =
⊕
n∈A

Tn, Tn := Ls(En,F ),

where we have set T0 = F .

I T = M × T is a trivial bundle;

I the structure group G and the corresponding groupoid G = M ×M × G ;

I an action τ : G × E −→ E , and the induced action on T ;

I The induced action of G on T:

ρ : G(P) −→ Iso(T)
(x , y , g) −→ ((y , t) 7−→ (x , τ(g)(t)))

I A map W : M → G gives rise to a (trivial) direct connection

γW : M ×M ∗−→ G

(x , y) 7−→ W (x)W (y)−1;
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Example: trivial direct connection (contn’d)

The direct connection

I The representation

ρ : G −→ Aut(T )

h 7−→ ρ(h) : t 7−→ t + h 1;

I The composition Γ = ρ ◦ γW : M ×M → Iso(T) therefore defines a flat
direct connection on Iso(T) compatible with the filtration;

Two examples

I Rough path regularity structure: A = {0, 1}, M = Rd , G = E acting on
E by translations, W : R→ E ;

I Polynomial regularity structure on a vector space E : A = Z≥0, M = Rd ,
G = {1}.
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IV. Polynomial regularity structures
by means of jets prolongations (Kolar, Michor, Slovak)
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Polynomial regularity structure on a manifold revisited

The geometric data

I (M, g) an n-dimensional Riemannian manifold;

I ∇ the Levi-Civita connection and τγ the parallel transport along the curve
γ;

I T = J •(V) −→ M, the (filtered) jet bundle of the vector bundle V→ M
with typical fibre V (e.g. V = M × R trivial);

I G =Wn
•GL(V), consisting of jets at (0, IdV ) of automorphisms

φ : Rn ×GL(V) −→ Rn ×GL(V) of the trivial principal bundle
Rn ×GL(V)→ Rn such that if φ(x , g) = (φ0(x), φ(x) g) then φ0(0) = 0;

I P = GL(T) −→ M;

I the groupoid

G (GL(T)) = Iso (T) 3 J •fyx : J •x (V) −→ J •y (V).
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Jet prolongation vs. groupoids

Jet prolongation acts functorially (Kolar and Brno school)

I on fibre bundles F 7−→ J •(F) and on vector bundles V 7−→ J •(V);

I but not on principal bundles

P 7−→ W•(P) = F•(M)× J •(P),

Fk(M) k-th order frame bundle consisting of all k-th jets with source 0 of
the local diffeomorphisms of f : Rn → M;

I act fonctorially on groupoids!

J • (G(P)) = G(W• (P)),

I and also on frame groupoids!

Iso (T) = Iso (J •(V)) = G (GL (J •(V))) = J • (G (GL(V))) = J • (Iso (V)) .
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Geometric polynomial regularity structure

Definition

A geometric polynomial structure on a vector bundle V→ M over a
Riemannian manifold (M, g) is a quadruple

(A,T,G(P), ρ) ,

where A = Z≥0, P = Iso(T), ρ is the canonical representation, where

I The model space is a jet prolonged vector bundle T = J k(V);

I The re-expansion map Γk
g is the direct connection on the frame

groupoid Iso
(
J k(V)

)
built from the exponential prolongation of a

connection γV,g on V;

I The model is the map

Πp : J n
p(V) −→ C(M,V)

jnp(f ) 7−→
n∑

k=0

∂k
p (f (expg

p(•)).
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Results

Regularity structures are indeed geometric regularity structures

I We saw that the rough path regularity structure is indeed a geometric
regularity structure;

I Theorem 1: Driver, Dahlqvist and Diehl’s polynomial regularity structure
is indeed a (local) geometric polynomial regularity structure with
V = M × R;

I Theorem 2: When the Riemannian metric is flat, the re-expansion
map/direct connection is flat.
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V. Gauge theory vs. ”Gaugeoid” theory
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Gauge theory from a geometric perspective

Gauge field ←→ principal connection

∇P : TM −→ TP/G ,

equivalently,
Φ ∈ Ω1(P,TP), such thatRg

∗Φ = Φ.

In the trivial bundle case P = M × G =⇒ ∇P : TM −→ g.

Gauge transformations ←→ Automorphisms of the principal
bundle

I Morphisms of a principal G -bundle P are G -equivariant smooth maps f : P→ P;
we consider the group AutM(P) of automorphisms of P over IdM .

I Adjoint bundle Ad(P) = P×G Ad(G);

I In the trivial bundle case P = M × G =⇒ Ad(P) = M × G ;

I Gauge group of (local) gauge transformations
C∞G (P,Ad(G)) ' AutM(P);

I In the trivial bundle case AutM(P) = M ×Aut(G).

Gauge transformations act on gauge fields by pull-back.
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Principal bundles with connections vs. gauge groupoids with
connections

Gauge groupoids (Ehresman, Mackenzie)

There is a one to one correspondence

principal bundles P←→ gauge groupoids G(P)

Extension to gauge groupoids with connection

Theorem 3: There is a one to one correspondence

flat principal bundles (P,∇)←→ flat gauge groupoids (G(P), Γ∇) .

Flat connections are locally trivial

Flat direct connections Γ(x , y) are trivialisable i.e., they are locally of the form

Γi (x , y) = F i
x

(
F i
y

)−1

with the F i ’s given in terms of local sections of P (local section atlas of the groupoid).
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Gaugeoid transformations vs. gauge transformations

Gaugeoid group of gaugeoid transformations

I Aut(G) := {Φ ∈ Diff(G), Φ(γ1 γ2) = Φ(γ1) Φ(γ2) for composable
(γ1, γ2) ∈ G2} 3 diffeomorphisms of G which are groupoid morphisms,

I AutM(G) ' {Φ ∈ Aut(G), ΦM = IdM}.
I The case of a gauge groupoid: AutM(G(P)) := Z∞G (P× P,Ad(G))

:= {Γ ∈ C∞G (P× P,Ad(G)), which obey the cocycle condition i.e.,
Γ(p, q) Γ(q, r) Γ(r , p) = Idp} (Condition (1)).

From gauge to gaugeoid transformations on gauge groupoids

I The map Φ : AutM(P) 3 F 7−→
(

(p, q) 7−→ F p (F q)−1
)
∈ AutM (G (P))

I is neither injective nor surjective;

I Gaugeoid transformations which are not gauge transformations

Z∞G (P× P,Ad(G))/B∞G (P× P,Ad(G)) ' AutM(G(P))/AutM(P) AutM(P)−1,

with AutM(P) AutM(P)−1

:= {Γ ∈ AutM(G(P)), Γ(p, q) = F (p)F (q)−1, for an F ∈ AutM(P)}.
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Γ(p, q) Γ(q, r) Γ(r , p) = Idp} (Condition (1)).

From gauge to gaugeoid transformations on gauge groupoids

I The map Φ : AutM(P) 3 F 7−→
(

(p, q) 7−→ F p (F q)−1
)
∈ AutM (G (P))

I is neither injective nor surjective;

I Gaugeoid transformations which are not gauge transformations

Z∞G (P× P,Ad(G))/B∞G (P× P,Ad(G)) ' AutM(G(P))/AutM(P) AutM(P)−1,

with AutM(P) AutM(P)−1

:= {Γ ∈ AutM(G(P)), Γ(p, q) = F (p)F (q)−1, for an F ∈ AutM(P)}.
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A gaugeoid theoretic picture of regularity structures

”Gaugeoid theory”  Geometry of gauge groupoids

I gaugeoid fields are direct connections (or re-expansion maps) on the gauge
groupoid G (P) = P×G P⇒ M;

I if P = GL(T), gaugeoid fields lie in Iso(T) = G (GL(T));

I gaugeoid transformations ∈ AutM(G(P)) act on direct connections (or
re-expansion maps) by composition;

I the field strength of the ”gaugeoid” field is the curvature of the direct
connection, so the obstruction to the flatness of Γ (Condition (1)).
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