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The theories of QED in external potentials and QFT on curved spacetimes share many
difficulties (absence of Wick rotation, translation invariance, preferred state) and
phenomena (particle creation). Historically, the former developed much earlier.

1934 Dirac: Point-splitting by parametrix
1934 Heisenberg: Hadamard coefficients

1935 Euler & Kockel: Light-light scattering
1935 Serber; Uehling: Vacuum polarization @ lin. order in external field
1936 Heisenberg & Euler: Non-perturbative effective action; particle creation
1947 Lamb & Retherford: Lamb shift
1951 Schwinger: Current (symmetric point-splitting & proper time formalism)
1956 Wichmann & Kroll: Vacuum polarization @ higher orders; mode sum
1970 Brezin & Itzykson: Time-dependent Schwinger effect

1962 Utiyama & DeWitt: Backreaction, renormalization of SET
1968 Parker: Particle creation in expanding universe
1975 Hawking: Particle creation by black holes
1976 Christensen: Point-splitting by Schwinger-DeWitt
1977 Adler, Liebermann & Ng: Point-splitting by parametrix
1996 Radzikowski: Microlocal analysis
2000 Brunetti & Fredenhagen: Renormalizability
2001 Hollands & Wald: Wick & time-ordered products
2003 Brunneti, Fredenhagen & Verch: Local covariance

Nowadays, QFT on curved spacetimes seems conceptually more mature. Perhaps QED in
external potentials can profit from the progress of the last two decades?

Here, I present a generalization of the framework of local covariance to encompass also
external gauge fields. As applications, I discuss the computation of anomalies and some
results in QED in external potentials. The guiding theme is the definition of the current

jµI = ψ̄γµTIψ

in a locally gauge covariant way by a point-splitting w.r.t. the Hadamard parametrix.
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Local covariance

M

To each globally hyperbolic spacetime M, associate the algebra A(M) of observables
measurable there.

For each isometric embedding η : M̃ → M there is an injective homomorphism
αη : A(M̃)→ A(M), such that αη ◦ αη′ = αη◦η′ and αidM = idA(M).

A field Φ associates to each M a linear map Testc(M)→ A(M), such that
αη(ΦM̃(t)) = ΦM(η∗t). This implies that ΦM(x) can only depend on the jet of the
geometric data at x . Examples are

The linear field φ(x).
The stress-energy tensor Tµν(x).
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Hadamard two-point functions

A two-point function
w(x , y) = ω(φ(x)φ(y))

which locally has the same singularities as the vacuum two-point function is called a
Hadamard two-point function (this can be elegantly formulated using the wave front set
[Radzikowski 96]). There is very good reason to assume that physically sensible states have
Hadamard two-point functions:

A Hadamard state always exists [Fulling, Narcowich & Wald 81; . . . ]

The ground state in static situations is Hadamard [Sahlmann & Verch 00, Wrochna 12]

A two-point function that is Hadamard in a neighborhood of a Cauchy surface is
Hadamard everywhere [Fulling, Sweeny & Wald 78; Sahlmann & Verch 01; Sanders 10]

In Hadamard states, Wick powers (stress-energy tensor, current) have finite
fluctuations [Brunetti & Fredenhagen 00]

A further important fact is that Hadamard two-point functions differ only by smooth
functions [Sanders 10].
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Wick powers & the current

Leaving aside the question of how to define interacting fields, let us concentrate on the
definition of non-linear fields (Wick powers) for a free field theory in a given background,
i.e., ignoring backreaction. In particular, we are interested in the current

jµI = ψ̄TIγ
µψ.

Defining the point-wise product by a coinciding point limit and evaluating in a Hadamard
state, one obtains a divergence. An approach inspired by QFT in the vacuum would be
to take a reference two-point function w0 and define

ω(jµI (x)) = lim
x′→x

(
ω(ψ̄(x)TIγ

µψ(x ′))− trTIγ
µw0(x , x ′)

)
,

i.e., normal ordering. However, there is no locally covariant choice of a two-point
function. The way out [Adler, Liebermann & Ng 77; Wald 77; Hollands & Wald 01] is to replace w0 by the
Hadamard parametrix, which is locally and covariantly defined and has the same
singularities as a Hadamard two-point function. It is not a solution to the wave equation,
which can be seen as the origin of anomalies. It is not unique, but smooth, locally and
covariantly constructed terms can be added. This is a reflection of the renormalisation
ambiguity of Wick powers.
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The parametrix

To construct the parametrix for the Dirac operator D = /∇+ m, one first defines

P = D2 = ∇̃µ∇̃µ + 1
4
eFλρ[γλ, γρ]− 1

4
R − (d − 1)m2,

with ∇̃µ = ∇µ + mγµ. Positive/negative frequency parametrices for P are formally given
by [Sahlmann & Verch 01]

h±(x , x ′) =
1

2π

∞∑
k=0

Vk(x , x ′)T±k (x , x ′),

where the Hadamard coefficients Vk are smooth sections, locally defined by the geometric
data and T±k are distributions. Explicitly, in even dimension d = 2m, they are given by

T±k = lim
ε→+0

{
C ′k,m(−Γ±ε)k+1−m k + 1 < m

Ck,mΓk+1−m log(−Γ±ε)/Λ2 k + 1 ≥ m

where Γε is the squared geodesic distance equipped with some iε prescription and Λ is a
length scale. The parametrices for D are given by

H±(x ′, x) = 1
2
(D + D∗

′
)h±(x , x ′).

This is the analog of the construction of propagators for D [Dimock 82; Mühlhoff 11]:

Sret/adv = D ◦∆ret/adv = ∆ret/adv ◦ D.
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The divergence of the current

Classically, the divergence ∇µjµI of the current jµ = tr ψ̄TIγ
µψ vanishes on-shell. That

this also holds at the quantum level is not guaranteed. An obstruction to fulfill this
constitutes an anomaly.

In the present setting, anomalies occur, because the parametrix is a bi-solution only
modulo smooth remainders. An anomaly can then be understood as an obstruction to
finding a locally and covariantly defined parametrix H such that

tr[QH] = 0,

where Q is a bi-differential operator which vanishes on bi-solutions, and the square
brackets denote the coinciding point limit. Thus, the trace anomaly for scalar
[Moretti 03; Hollands & Wald 05] and Dirac fermions [Dappiaggi, Hack & Pinamonti 09] was computed.

In the present framework, we can calculate the chiral anomalies in an elementary way,
without recourse to Riemannian spaces, ill-defined objects (loop integrals . . . ), or fancy
mathematics (index theory, extension of distributions).
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Absence of anomalies for Dirac fermions & renormalization ambiguities

Consider Dirac fermions. For the divergence of the current, we have

∇µjµ = ψ̄TI /∇ψ + /∇ψ̄TIψ = ψ̄TIDψ − D∗ψ̄TIψ

so classically the divergence of the current vanishes on-shell. On the quantum level, we
have to consider

trTI [(D
′ − D∗)H] = 1

2
trTI [(D

′ − D∗)(D ′ + D∗)h]

= 1
2

trTIγ
µ[P ′h − P∗h],

which vanishes [Moretti 03]. Hence, there is no gauge anomaly for Dirac fermions.

Possible redefinitions (finite renormalizations) of the current can only consist in adding
locally and covariantly defined vector fields with vanishing divergence. There is only one,
namely the external current. This ambiguity corresponds to a charge renormalization.
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Anomalies

For left-handed fermions, we obtain (χ is the chirality operator)

∇µjµI = ~
2

tr
(
TI

(
[Ph] + [ /∇ /∇′h]

)
χ
)

= ~
2π
Cm tr (TI [Vm]χ) .

This corresponds to the expression obtained by heat kernel techniques. For d = 4,

∇µjµI = i
32π2

1√
−g
εµνλρ trV TI

(
FµνFλρ + 1

24
RσξµνR

σξ
λρ

)
.

Vanishing of ∇µjµI implies that there exists a renormalization prescription such that
the current is conserved also in the interacting theory (Adler-Bardeen theorem).

Also the purely gravitational anomaly [Alvarez-Gaumé & Witten 83] can be computed in this
framework.
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Renormalization prescriptions for the current

In Schwinger’s prescription [Schwinger 51], one performs the limit of coinciding points in
a symmetric way, thus canceling some divergences:

jµ(x) = e
2

lim
t→0

(
U(x + tv , x)ψ̄(x + tv)γµψ(x) + U(x , x + tv)ψ̄(x)γµψ(x + tv)

)
,

where v is some direction, and U(x , y) the parallel transport along the straight line
from y to x .

Not all divergences are canceled, unless the external current Jµ vanishes.
Even if Jµ vanishes, the result depends on v .
Often, the parallel transport U is omitted, leading to further divergences.

For static external potentials, there is the mode sum formula [Wichmann & Kroll 56]

〈ρ(x)〉 = e
2

(∑
+
ψ̄n(x)γ0ψn(x)−

∑
−
ψ̄n(x)γ0ψn(x)

)
,

where
∑
± stands for the sum over positive and negative frequency modes.

In general, the expression is ill-defined.
In situations where one might make sense out of it, it gives the wrong result.
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The theories of QED in external potentials and QFT on curved spacetimes share many
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A distribution [two-point function] R such as occurs in nature according to the
above assumption can be divided naturally into two parts

R = Ra + Rb,

where Ra contains all the singularities and is also completely fixed for any given
field, so that any alteration one can make in the distribution of electrons and
positrons will correspond to an alteration in Rb but none in Ra.
[...]
It therefore appears reasonable to make the assumption that the electric and
current densities corresponding to Rb are those which are physically present,
arising from the distribution of electrons and positrons. In this way we can
remove the infinities [...].

P.A.M. Dirac, Discussion of the infinite distribution of electrons in the theory of the
positron, Proc. Camb. Phil. Soc. 30 (1934) 150.
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The Hadamamard parametrix

Explicitly, the relevant contraction of the Hadamard parametrix is given by

U(x , x + y) trH(x , x + y)γµ =

− 1

2π2

{
4i
yµ
y 4
ε

+ im2 yµ
y 2
ε

− e

3

yλyρ

y 2
ε

(∂λFρµ + gµλJρ) +
e

6
Jµ log

−y 2
ε

Λ2

}
+O(y)

The red terms are odd in y , so they cancel in Schwinger’s prescription. However, there is
a logarithmic divergence due to the blue term, unless Jµ = 0. Even then, the violet term
leads to a direction dependence of the limit.

Omitting the parallel transport in Schwinger’s prescription, even more divergences
survive. Consider, for example a static external potential Aµ(x) = δµ0 V (x) and v = e0.
From the leading term, one then obtains

U(x + te0, x)

t3
− U(x , x + te0)

t3
=

ieV (x)

t2
− i(eV (x))3

6
+O(t).

The need to remove these unwanted terms explains the appearance of supplementary
renormalization conditions, for example in the computation of higher order corrections to
the Uehling potential [Wichmann & Kroll 56].
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An example in 1 + 1 dimensions

Consider massless fermions in 1 + 1 dimensions on a spatial interval of length L in the
presence of a constant electric field E . Use bag boundary conditions

iγ1ψ(±L/2) = ±ψ(±L/2).

With En = −(n + 1
2
)π/L, for n ∈ Z, we have the normalized modes

ψn(x) =
1√
2L

(
exp( i

2
eE( L2

4
− x2)− iEnx)

−(−1)n exp(− i
2
eE( L2

4
− x2) + iEnx)

)
.

In particular,
ψ̄n(x)γ0ψn(x) = 1/L

is constant, so that the formal mode sum yields a vanishing (or constant) charge density,
as claimed in the literature [Ambjørn & Wolfram 83].

The two-point function

ω(ψ̄(t, x)ψ(t′, x ′)) =
∑∞

n=0
ψ̄n(x)ψn(x ′)e−iEn(t−t′)

can be explicitly computed. With parametric point-splitting, one obtains

ω(j0(x)) =
1

π
e2Ex1, ω(Tµν(x)) = −

(
π

24L2
− e2E 2(x1)2

2π

)(
1 0
0 1

)
.
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The Coulomb potential in 3 + 1 dimensions

Our aim is to compute the vacuum polarization ρ(r) due to electrons in a Coulomb
potential. We define the two-point function by filling up the negative continuum:

ω(ψ̄(x)ψ(x ′)) =

∫
(−∞,−m2]

∑
l,m

ψ̄l,m(E , x)ψl,m(E , x ′)e iE(t−t′)dE .

Consider the limit x → x ′ for x = x ′:

ω(ψ̄(t, x)γ0ψ(t′, x)) =

∫
(−∞,−m2]

f (E , r)e iE(t−t′)dE .

For the contraction of the parametrix, on the other hand, one obtains

tr γ0H((t, x), (t′, x)) =
2i

π2

U(t′, t)

(t′ − t)3
+

im2

2π2

U(t′, t)

t′ − t
+

1

12π2
J0(x) log

t′ − t

Λ2
+O(t′ − t).

The red term vanishes away from the origin. The blue terms are as for the vacuum
two-point function, up to the parallel transport U(t′, t), which can be accommodated as

e ieA0(t−t′)

∫
(−∞,−m2]

f0(E , r)e iE(t−t′)dE =

∫
(−∞,−m2+eA0(r)]

f0(E − eA0(r), r)e iE(t−t′)dE .

Hence, the expectation value of the renormalized charge density can be written as

〈ρ(r)〉 =

∫ (
χ(−∞,−m2](E)f (E , r)− χ(−∞,−m2+eA0(r)](E)f0(E − eA0(r), r)

)
e iE(t−t′)dE .
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Comparison with the Uehling potential

A comparison with the Uehling potential for small charge (αZ = 0.1).
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Time-dependent homogeneous field

For a time dependent homogeneous field Aµ = δ3µA(t), one can use the same trick for
the computation of 〈j3(t)〉 as for the computation of 〈ρ(r)〉 in the static case.

For the time-dependent field A(t) = −E tanh(wt)/w , the normalized modes and the
corresponding pair production probabilities are known explicitly [Narozhnyi & Nikishov 70].

For the vacuum current 〈jµ〉 at linear order in the external potential, a corrected version
of Serber’s expression is:

〈jµ(x)〉 =

∫
d4x ′ K(x − x ′)��Jµ(x ′),

K(x) =
α

8π2
√
x2

∫ π/2

0

dψ cos4 ψ

∫ ∞
m

dk J1(2k
√
x2/ cosψ)/k2.
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Super-critical peak field strength

For a super-critical peak field strength E = 10Ec , one sees how the asymptotic current is
built up (w = 1 in units of m). The blue line shows the external current divided by 100,
the violet line the asymptotic current, computed via the particle production probability.
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Sub-critical peak field strength

For a sub-critical peak field strength E = 0.1Ec , the asymptotic current is very small, but
there are local oscillations (w = 1 in units of m). The blue line shows the external
current divided by 1000 and the violet line the expression at O(E), due to Serber.
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Summary & Outlook

Extension of the framework of locally covariant field theory to charged fields, such
that gauge backgrounds and gauge transformations are treated on equal footing
with gravitational backgrounds and isometries.

Elementary calculation of anomalies.

Possibly also relevant to QED in external potentials.
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