

Supersymmetric Quantum Field Theory in Curved Space-time

Mojtaba Taslimitehrani

Joint work with Stefan Hollands LQP 36 - Leipzig 29.05.2015

Introduction

- Supersymmetry in Flat space was developed as an extension of the Standard Model of particle physics
- Supersymmetric QFTs are mathematically better behaved
- We study rigid superconformal symmetry on a fixed curved space-time (as opposed to local supersymmetry = supergravity)
- Supersymmetry can be manifest as
 - Symmetries of Minkowski S-matrix on Hilbert space

[Haag-Lopuszanski-Sohnius '75,...]

- 2 Algebra of transformations of an invariant Lagrangian e.g. $\mathcal{N} = 1, 2, 4$ -gauge theories on $\mathbb{R}^{3,1}$.
- **③** Conformal symmetry superalgebra on curved space-times

[deMedeiros - Hollands '13]

- Symmetry transformations of (M,g) form a Lie algebra.
- Supersymmetry transformations form a Lie superalgebra.
 - (i) \mathbb{Z}_2 -graded algebra $\mathcal{S} = \mathcal{B} \oplus \mathcal{F} =$ even \oplus odd,
 - (ii) Graded Lie bracket $[\mathcal{B},\mathcal{B}] \subset \mathcal{B}, \quad [\mathcal{B},\mathcal{F}] \subset \mathcal{F}, \quad [\mathcal{F},\mathcal{F}] \subset \mathcal{B}$.
 - (iii) Graded Jacobi identity
- For a d-dim, Lorentzian manifold (M, g), it is given by a Conformal symmetry superalgebra [de Medeiros - Hollands '13]

$$\mathcal{B} = \{ \text{Conformal KVs} \ (\mathcal{L}_X g = -2\sigma_X g) \} \oplus \mathcal{R}$$

$$\mathcal{F} = \left\{ \text{Twistor spinors } (\nabla_{\mu} \psi = \frac{1}{d} \gamma_{\mu} \nabla \psi) \right\} \otimes W.$$

 \mathcal{R} : real Lie algebra with constant elements (*R*-symmetry), *W*: complex \mathcal{R} -module.

\sim
1000

(\mathscr{M},g)	d	type	${\cal R}$	$\mathcal{S}_0(\mathbb{R}^{p,q})$	Nahm label
Lorentzian	6	\mathbb{H}	$\mathfrak{sp}(\mathscr{N})$	$\mathfrak{osp}(6,2 \mathscr{N})$	Х
Lorentzian	5	\mathbb{H}	$\mathfrak{sp}(1)$	$\mathfrak{f}(4)''$	IX_2
Riemannian	5	\mathbb{H}	$\mathfrak{sp}(1)$	$\mathfrak{f}(4)'$	IX1
Lorentzian	4	$\mathbb C$	$\mathfrak{u}(\mathscr{N}\neq 4)$	$\mathfrak{su}(2,2 \mathscr{N})$	VIII
Lorentzian	4	\mathbb{C}	$\mathfrak{su}(4)$	$\mathfrak{psu}(2,2 4)$	VIII ₁
Lorentzian	3	\mathbb{R}	$\mathfrak{so}(\mathscr{N}\neq 1)$	$\mathfrak{osp}(\mathscr{N} 2)$	VII
Riemannian	3	\mathbb{H}	$\mathfrak{u}(1)$	$\mathfrak{osp}(2 1,1)$	VII1

- type: the ground field $\mathbb K$ over which the rep. of $\mathcal R$ is defined
- $\mathcal{N}:$ the dimension over $\mathbb K$ of this representation.

Manifolds admitting twistor spinors in 4-dim. [Lewandowski '91]

- Locally conformally flat (Ex. ℝ^{1,3}, dS₄, AdS₄)
- 2 pp-waves

(can describe the region of a gravitational wave far from the source)

8 Fefferman space

$4d, \mathcal{N} = 2$ Classical Field Theory

- Symmetry (rigid Superconformal S + local gauge symm. $C^{\infty}(M, \mathfrak{g})$),
- Fields $\Phi = (A_{\mu}, \phi, \psi)$
- Action $S = \int \frac{1}{4}F \wedge \star F + \frac{1}{2}(D\phi)^2 + \frac{1}{2}\bar{\psi}D\psi + \frac{1}{6}R\phi\phi^* + \dots$

Split $S=S_0+\lambda S_1.$ If S_0 generates hyperbolic PDEs for Φ^i

① ► Deform the classical theory $(\mathbf{P}(M), \cdot) \rightarrow (\mathbf{P}[[\hbar]], \star) := W_0$

$$[\Phi(x),\Phi(y)]_{\star}=i\hbar\Delta(x,y).$$

▶ Factor out the ideal \mathcal{J}_0 generated by free e.o.m.

Perturbative interacting QFT consists of interacting fields

$$\Phi(x)_{\mathsf{int}} := T(e_{\otimes}^{i\lambda S_1/\hbar})^{-1} \star T(e_{\otimes}^{i\lambda S_1/\hbar} \otimes \Phi(x)) \in W_0[[\lambda]].$$

- $T_n: \mathbf{P}^{\otimes n} \to W_0$: renormalization schemes (satisfy certain axioms),
- T_n exist, but is unique up to local finite counter terms $D_n = O(\hbar)$.

Difficulties in our case

- Due to local gauge symm., S_0 does not generate a hyperbolic PDE!
- Solution: the (extended) BRST formalism [Becchi-Rouet-Stora, '74, Tyutin'75].

BRST Formalism

1 Enlarge the space of fields (A_{μ}, ϕ, ψ) to include

- Dynamical ghosts: c, \bar{c}
- Rigid ghosts: ϵ (SUSY), α (R-symmetery), X (conformal)
- Anti-fields: $\Phi^{\ddagger}(x)$ associated to all fields and ghosts

(In a GNS rep. rigid ghosts, anti fields are represented by 0 element)

2 Extend $S \rightarrow S^{\text{ext}}$ s.t. S_0^{ext} does generate a hyperbolic PDE:

$$S^{\mathsf{ext}} = S + Y(\Phi^{\ddagger})^2 + s\mathcal{G} + \int s\Phi \cdot \Phi^{\ddagger}$$

3 Replace the whole superconformal + (fixed) gauge symmetries with one symmetry $\hat{s} = s + \delta$ (BRST + Koszul-Tate)

$$\hat{s}S^{\mathsf{ext}} = 0, \qquad \hat{s}^2 = 0.$$

(e.g.
$$\hat{s}\phi = [\phi, c] + 2\alpha\phi + (\mathcal{L}_X - \sigma_X)\phi + \bar{\epsilon}\psi$$
)

We proceed by quantizing the enlarged (non-physical) theory ...

- ${\sf Q}\,$: How to recover the original, physical interacting QFT?
- A : the cohomology of a realization of BRST diff. on $W_0[[\lambda]]$ At quantum level, symmetries are generated by Noether charge. Therefore, if the following two criteria hold,

1 The Noether current associated to BRST symm. is conserved:

$$d\mathbf{J}_{\mathsf{int}} = 0 \Rightarrow Q_{\mathsf{int}} = \int_{\Sigma} \mathbf{J}_{\mathsf{int}}$$

2 $[Q_{\text{int}}, -]_{\star} = \hat{s} + \mathcal{O}(\hbar)$ is nilpotent:

$$[Q_{\text{int}}, [Q_{\text{int}}, F_{\text{int}}]_{\star}]_{\star} = 0 \quad \forall F_{\text{int}} \in W_0[[\lambda]],$$

then, we can define the algebra of interacting fields as

$$\{ \textbf{Physical Quantum Observables} \} = \frac{\text{Ker}[Q_{\text{int}}, -]_{\star}}{\text{Im}[Q_{\text{int}}, -]_{\star}}$$

Ward Identity

$d\mathbf{J}_{int} = 0$, follows from a renormalization condition (Ward Identity):

$$\hat{s}_0 T(e_{\otimes}^{iF/\hbar}) = \frac{i}{2\hbar} T((S_0 + F, S_0 + F) \otimes e_{\otimes}^{iF/\hbar})$$

- $F=\int f\mathcal{O},$ with $f\in C_0^\infty(M)$ being an IR cutoff function
- (F,G) is the anti-bracket, with $\hat{s} = (S, -)$.

The Ward identity ensures that

- ${\rm I}{\rm I}$ Generating functional of T_n respects the classical symmetry \hat{s}_0
- **2** FORMALLY, if $f \rightarrow 1$ (adiabatic limit), then

$$\int f\mathcal{L}_1 \to S_1 \text{ and } (S_0 + F, S_0 + F) \to (S, S) = \hat{s}^2 = 0,$$

 $\hat{s}_0 T(e_{\otimes}^{iS_1/\hbar}) = 0 \qquad \text{``S-matrix is BRST invariant ''}.$

Anomaly

To prove the Ward identity,

1 set up an Anomalous WI [Hollands '07, Brennecke, Duetsch '07].

$$\hat{s}_0 T(e_{\otimes}^{iF/\hbar}) = \frac{i}{2\hbar} T((S_0 + F, S_0 + F) \otimes e_{\otimes}^{iF/\hbar}) + \frac{i}{\hbar} T(A(e_{\otimes}^F) \otimes e_{\otimes}^{iF/\hbar}),$$

2 try to remove the **Anomaly** $A(e^F_{\otimes}) = \sum_n \frac{1}{n!} A_n(F^{\otimes n}).$

$$\underline{A}_n: \mathbf{P}(M)^{\otimes n} \to \mathbf{P}(M)[[\hbar]]$$

(a) each A_n is a local functional supported on total diagonal, (b) $A_n(F^{\otimes n}) = \mathcal{O}(\hbar)$

Anomaly = failure of a classical symmetry to be a symm. of QFT

• The lowest order expansion in \hbar of anomaly A^m satisfies

$$\hat{s}A^m = 0 \Longrightarrow A^m \in H^4_1(\hat{s}|d, M)$$

- If A is the trivial element in $H_1^4(\hat{s}|d, M)$, then $A^m = \hat{s}B$. We can prescribe another scheme via D = -B. Then, the anomaly \hat{A} in $\hat{T}(\mathbf{e}^L_{\otimes}) = T(e^{L+D}_{\otimes})$ vanishes.
- Iterate the argument for higher orders of ħ.

In the case of $4d, \mathcal{N}=2$ superconformal theory, with

$$\mathcal{S} = \left(\{ X | \mathcal{L}_X g = 2\sigma_X g \} \oplus \mathfrak{u}(2) \right) \oplus \left(\{ \epsilon | \nabla_\mu \epsilon = \frac{1}{4} \gamma_\mu \nabla \epsilon \} \otimes \mathbb{C}^2 \right)$$

$$\begin{split} A(e_{\otimes}^{S_1}) &= 0 \text{ is trivial if and only if EITHER}_{[deMedeiros - Hollands '13]} \\ \bullet \quad \text{Twistors are } parallel (\forall \epsilon = 0) \text{ and CKV are } Killing (\sigma_X = 0) \\ (\text{e.g. } \mathbb{R}^{3,1}, \text{ pp-wave, but not e.g. } dS_4, \text{ Fefferman!}) \text{ OR} \\ \bullet \quad \mathcal{S} \text{ contains } non-parallel \text{ twistor spinors, but } \beta = 0. \end{split}$$

In case one of the above criteria is satisfied $(A(e_{\otimes}^{S_1})=0)$, then:

Theorem 1

The interacting Nother current associated to the BRST symmetry is conserved: $d\mathbf{J}_{int} = 0$.

• Therefore, there exists a well-defined (independent of the Cauchy surface Σ) interacting BRST charge $Q_{\text{int}} = \int_{\Sigma} \mathbf{J}_{\text{int}}$.

Theorem 2

The commutator of $Q_{\rm int}$ and any interacting observable $F_{\rm int}$ can be written as

$$[Q_{\mathsf{int}},F_{\mathsf{int}}]_{\star}=(\hat{s}F+A(e^{S_1}_{\otimes}\otimes F))_{\mathsf{int}} \mod \mathcal{J}_0$$

- Although $A(e^{S_1}_{\otimes}) = 0$, but $A(e^{S_1}_{\otimes} \otimes F) = \frac{d}{d\tau} A(e^{S_1 + \tau F}_{\otimes})|_{\tau=0} \neq 0.$
- Similar to an expression for local symm. in BV-formalism [Rejzner '13]

Nilpotency of BRST diff. generated by Q_{int}

When $A(e_{\otimes}^{S_1}) = 0$, we have the following corollaries:

Corollary 1

Consistency condition implies that $[Q_{int}, -]_{\star}$ is nilpotent:

$$[Q_{\text{int}}, [Q_{\text{int}}, F_{\text{int}}]_{\star}]_{\star} = 0, \quad \forall F_{\text{int}} \in W_0[[\lambda]]$$

Corollary 2

The Jacobi identity implies that

$$Q_{\rm int}^2 = \frac{1}{2}[Q_{\rm int},Q_{\rm int}]_\star = 0$$

Corollary 3

Given a gauge invariant classical observable Ψ with zero ghost number, $\hat{s}\Psi=0,$

$$[Q_{\rm int}, \Psi_{\rm int}]_{\star} = 0.$$

Outlook

- ► Under certain criteria, N = 2 superconformal Yang-Mills theory in 4 dimensions on fixed Lorentzian space-times admitting twistor spinors can be consistently formulated at quantum level.
- What about dimensions 3, 5, 6?
- \triangleright Conformal symmetry superalgebra has constant *R*-symmetry.
- ▷ What about gauging the *R*-symmetry? What are the classifications of S with local *R*-symmetery? Does QFT respect local *R*-symmetry?
- > Non-perturbative effects?