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Introduction

• Supersymmetry in Flat space was developed as an extension
of the Standard Model of particle physics

• Supersymmetric QFTs are mathematically better behaved
• We study rigid superconformal symmetry on a fixed curved

space-time (as opposed to local supersymmetry = supergravity)

• Supersymmetry can be manifest as
1 Symmetries of Minkowski S-matrix on Hilbert space

[Haag-Lopuszanski-Sohnius ‘75,...]

2 Algebra of transformations of an invariant Lagrangian
e.g. N = 1, 2, 4-gauge theories on R3,1.

3 Conformal symmetry superalgebra on curved space-times
[deMedeiros - Hollands ‘13]
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Basic Idea of Supersymmetry

• Symmetry transformations of (M, g) form a Lie algebra.
• Supersymmetry transformations form a Lie superalgebra.

(i) Z2-graded algebra S = B ⊕ F = even ⊕ odd,
(ii) Graded Lie bracket [B,B] ⊂ B, [B,F ] ⊂ F , [F ,F ] ⊂ B .
(iii) Graded Jacobi identity

• For a d-dim, Lorentzian manifold (M, g), it is given by a
Conformal symmetry superalgebra [de Medeiros - Hollands ‘13]

B = {Conformal KVs (LXg = −2σXg)} ⊕R

F =
{

Twistor spinors (∇µψ = 1
d
γµ 6∇ψ)

}
⊗W.

R: real Lie algebra with constant elements (R-symmetry),
W : complex R-module.
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Classification of S’s [deMedeiros - Hollands ‘13]

(M , g) d type R S0(Rp,q) Nahm label
Lorentzian 6 H sp(N ) osp(6, 2|N ) X

Lorentzian 5 H sp(1) f(4)′′ IX2

Riemannian 5 H sp(1) f(4)′ IX1

Lorentzian 4 C u(N 6= 4) su(2, 2|N ) VIII

Lorentzian 4 C su(4) psu(2, 2|4) VIII1

Lorentzian 3 R so(N 6= 1) osp(N |2) VII

Riemannian 3 H u(1) osp(2|1, 1) VII1

• type: the ground field K over which the rep. of R is defined
• N : the dimension over K of this representation.
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4 dim, N = 2 Superconformal Yang-Mills

Manifolds admitting twistor spinors in 4-dim. [Lewandowski ‘91]

1 Locally conformally flat
(Ex. R1,3, dS4, AdS4)

2 pp-waves
(can describe the region of a gravitational wave far from the source)

3 Fefferman space

4d,N = 2 Classical Field Theory
• Symmetry (rigid Superconformal S + local gauge symm. C∞(M, g)),
• Fields Φ = (Aµ, φ, ψ)
• Action S =

∫ 1
4F ∧ ?F + 1

2(Dφ)2 + 1
2 ψ̄ 6Dψ + 1

6Rφφ
∗ + . . .
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Interacting QFT [ Hollands, Wald ‘01, Brunetti, Fredenhagen ‘01]

Split S = S0 + λS1. If S0 generates hyperbolic PDEs for Φi

1 I Deform the classical theory (P(M), ·)→ (P[[~]], ?) := W0

[Φ(x),Φ(y)]? = i~∆(x, y).

I Factor out the ideal J0 generated by free e.o.m.
2 Perturbative interacting QFT consists of interacting fields

Φ(x)int := T (eiλS1/~
⊗ )−1 ? T (eiλS1/~

⊗ ⊗ Φ(x)) ∈W0[[λ]].

• Tn : P⊗n →W0: renormalization schemes (satisfy certain axioms),
• Tn exist, but is unique up to local finite counter terms Dn = O(~).

Difficulties in our case
• Due to local gauge symm., S0 does not generate a hyperbolic PDE!

• Solution: the (extended) BRST formalism [Becchi-Rouet-Stora, ‘74, Tyutin‘75].
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BRST Formalism

1 Enlarge the space of fields (Aµ, φ, ψ) to include
• Dynamical ghosts: c, c̄
• Rigid ghosts: ε(SUSY), α (R-symmetery), X (conformal)
• Anti-fields: Φ‡(x) associated to all fields and ghosts

(In a GNS rep. rigid ghosts, anti fields are represented by 0 element)
2 Extend S → Sext s.t. Sext

0 does generate a hyperbolic PDE:

Sext = S + Y (Φ‡)2 + sG +
∫
sΦ · Φ‡

3 Replace the whole superconformal + (fixed) gauge symmetries
with one symmetry ŝ = s+ δ (BRST + Koszul-Tate)

ŝSext = 0, ŝ2 = 0.

(e.g. ŝφ = [φ, c] + 2αφ+ (LX − σX)φ+ ε̄ψ)
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Quantum BRST charge

We proceed by quantizing the enlarged (non-physical) theory ...
Q : How to recover the original, physical interacting QFT?
A : the cohomology of a realization of BRST diff. on W0[[λ]]

At quantum level, symmetries are generated by Noether charge.
Therefore, if the following two criteria hold,

1 The Noether current associated to BRST symm. is conserved:

dJint = 0⇒ Qint =
∫

Σ
Jint

2 [Qint,−]? = ŝ+O(~) is nilpotent:

[Qint, [Qint, Fint]?]? = 0 ∀Fint ∈W0[[λ]],

then, we can define the algebra of interacting fields as

{Physical Quantum Observables} = Ker[Qint,−]?
Im[Qint,−]?
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Ward Identity

dJint = 0, follows from a renormalization condition (Ward Identity):

ŝ0T (eiF/~⊗ ) = i

2~T ((S0 + F, S0 + F )⊗ eiF/~⊗ )

• F =
∫
fO, with f ∈ C∞0 (M) being an IR cutoff function

• (F,G) is the anti-bracket, with ŝ = (S,−).
The Ward identity ensures that

1 Generating functional of Tn respects the classical symmetry ŝ0

2 FORMALLY, if f → 1 (adiabatic limit), then∫
fL1 → S1 and (S0 + F, S0 + F )→ (S, S) = ŝ2 = 0,

ŝ0T (eiS1/~
⊗ ) = 0 “ S-matrix is BRST invariant ”.

Supersymmetric QFT in CST Mojtaba Taslimitehrani 9/14



Anomaly

To prove the Ward identity,
1 set up an Anomalous WI [Hollands ‘07, Brennecke, Duetsch ‘07].

ŝ0T (eiF/~⊗ ) = i

2~T ((S0+F, S0+F )⊗eiF/~⊗ )+ i

~
T (A(eF⊗)⊗eiF/~⊗ ),

2 try to remove the Anomaly A(eF⊗) =
∑
n

1
n!An(F⊗n).

An : P(M)⊗n → P(M)[[~]]

(a) each An is a local functional supported on total diagonal,
(b) An(F⊗n) = O(~)

Anomaly = failure of a classical symmetry to be a symm. of QFT
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Removal of anomaly

• The lowest order expansion in ~ of anomaly Am satisfies

ŝAm = 0 =⇒ Am ∈ H4
1 (ŝ|d,M)

• If A is the trivial element in H4
1 (ŝ|d,M), then Am = ŝB.

We can prescribe another scheme via D = −B.
Then, the anomaly Â in T̂ (eL⊗) = T (eL+D

⊗ ) vanishes.
• Iterate the argument for higher orders of ~.

In the case of 4d,N = 2 superconformal theory, with

S =
(
{X
∣∣LXg = 2σXg} ⊕ u(2)

)
⊕
(
{ε|∇µε = 1

4γµ 6∇ε} ⊗ C2
)

A(eS1
⊗ ) = 0 is trivial if and only if EITHER [deMedeiros - Hollands ‘13]

1 Twistors are parallel ( 6∇ε = 0) and CKV are Killing (σX = 0)
(e.g. R3,1, pp-wave, but not e.g. dS4, Fefferman!) OR

2 S contains non-parallel twistor spinors, but β = 0.
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Conservation of interacting current

In case one of the above criteria is satisfied (A(eS1
⊗ ) = 0), then:

Theorem 1
The interacting Nother current associated to the BRST symmetry
is conserved: dJint = 0.

• Therefore, there exists a well-defined (independent of the
Cauchy surface Σ) interacting BRST charge Qint =

∫
Σ Jint.

Theorem 2
The commutator of Qint and any interacting observable Fint can
be written as

[Qint, Fint]? = (ŝF +A(eS1
⊗ ⊗ F ))int mod J0

• Although A(eS1
⊗ ) = 0, but A(eS1

⊗ ⊗ F ) = d
dτA(eS1+τF

⊗ )|τ=0 6= 0.
• Similar to an expression for local symm. in BV-formalism [Rejzner ‘13]
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Nilpotency of BRST diff. generated by Qint

When A(eS1
⊗ ) = 0, we have the following corollaries:

Corollary 1
Consistency condition implies that [Qint,−]? is nilpotent:

[Qint, [Qint, Fint]?]? = 0, ∀Fint ∈W0[[λ]]

Corollary 2
The Jacobi identity implies that

Q2
int = 1

2[Qint, Qint]? = 0

Corollary 3
Given a gauge invariant classical observable Ψ with zero ghost
number, ŝΨ = 0,

[Qint,Ψint]? = 0.
Supersymmetric QFT in CST Mojtaba Taslimitehrani 13/14



Outlook

I Under certain criteria, N = 2 superconformal Yang-Mills
theory in 4 dimensions on fixed Lorentzian space-times
admitting twistor spinors can be consistently formulated at
quantum level.

I What about dimensions 3, 5, 6?
B Conformal symmetry superalgebra has constant R-symmetry.
B What about gauging the R-symmetry? What are the

classifications of S with local R-symmetery? Does QFT
respect local R-symmetry?

> Non-perturbative effects?
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