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Part 1:

Motivation



The Maxwell action

For Fµν = ∂µAν − ∂νAµ, the Maxwell action equals

S[A] = 1
4

ˆ
Rd

dxFµν(x)Fµν(x)

= 1
4

ˆ
Rd

dx (∂µAν(x)− ∂νAµ(x))(∂µAν(x)− ∂νAµ(x))

= 1
2

ˆ
Rd

dp

(2π)d
Âµ(p)Âν(−p)(−gµνp2 + pµpν).

This is put in
´

d[A]ei~
−1S[A] and out comes the propagator

µ ν
p

=
(
gµν + (ξ − 1)

pµpν

p2

)
,

for gauge fixing parameter ξ. Together with the other Feynman rules of
QED, this leads to experimental predictions.



Hold on. Could

S[A] =

ˆ
Rd

(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

be the remnant of something operator algebraic? We vaguely recognize
the operators

A = γµAµ, D = −iγµ∂µ
that also appear in ψ(D +A)ψ, e.g., [D,A] = −iγµγν∂µAν .

What if the true action only depends on D +A?



What if the true action only depends on D + A?

Surely, it won’t depend on the way D +A is represented on the Hilbert
space. So Connes and Chamseddine conjectured:

The action depends only on the class of D + A modulo
unitary invariance (i.e., on its spectrum).

If the action behaves nicely under direct sums, it follows that

S[A] = Tr(f(D +A)) (the spectral action)

for some function f : R→ R. Sanity check:
Tr(f(U(D +A)U∗)) = Tr(Uf(D +A)U∗) = Tr(f(D +A)).
Remarkably, in the weak-field limit, (truncated asymptotic expansion of
Tr(f(D+A

Λ )) as Λ→∞), one exactly recovers the Maxwell action.



Gauge invariance

Writing

D 7→ DU = D

A 7→ AU = UAU∗ + U [D,U∗]

one sees that DU +AU = D + U [D,U∗] + UAU∗ = U(D +A)U∗.
A subclass of unitaries is given by

Uψ(x) = eiα(x)ψ(x).

One obtains

AUµ = (eiαAe−iα + eiαiγν∂ναe
−iα)µ = Aµ + i∂µα,

i.e., the spectral action is gauge invariant. But much more is true.



I The real reason for believing in the spectral action is that it recovers
GR+the full standard model, including e.g. the Higgs as a gauge
field and U(1)× SU(2)× SU(3), from simple axioms that encode
geometry in operator algebra (Chamseddine, Connes, Mukhanov,
2014).

I It uses the spectral action, where instead of
(C0(Rd), L2(Rd)⊗ Cs, D = −iγµ∂µ) more general spectral triples
(A,H, D) are considered.

I Examples are noncommutative planes, which led to great progress
towards construction of NCφ4 (Grosse, Wulkenhaar, Rivasseau, ...).
The spectral action is the obvious next step.

I Quantization of the spectral action is hard.

I A spectral action matrix-model was introduced in [vN& van
Suijlekom, 2022 & 2022], leading to one-loop Gomis–Weinberg
renormalizability. But the role of A was unclear.

I So let us go back to Maxwell, which should emerge from
A = S(Rd) ⊆ C0(Rd).



Part 2:

Towards quant�ation of the
spectral action



Step 1: subtract a constant term

The Feynman path integral (Wick-rotated to Euclidean signature) is

´
d[A]e−~

−1 Tr(f(D+A))G[A]´
d[A]e−~−1 Tr(f(D+A))

=

´
d[A]e−~

−1 Tr(f(D+A)−f(D))G[A]´
d[A]e−~−1 Tr(f(D+A)−f(D))

,

so we may as well consider S[A] = Tr(f(D +A)− f(D)), thus
answering the question from the audience.



Step 2: Taylor expand

How should you compute

´
d[A]e−~

−1 Tr(f(D+A)−f(D))G[A]´
d[A]e−~−1 Tr(f(D+A)−f(D))

=?

Use the noncommutative Taylor expansion:

Tr(f(D +A)− f(D))

=

∞∑
n=1

1

n!
Tr
( dn

dtn
f(D + tA)

∣∣
t=0

)
=

∞∑
n=1

Tr
( ˆ

R
dt f̂ (n)(t)

ˆ
∆n

ds eits0DAeits1D · · ·AeitsnD
)
.

E.g., the first term is Tr(f ′(D)A), linear in A (a tadpole), the second
term is quadratic in A, et cetera. All terms are still nonlocal.



Step 3: Tricks of Feynman and Newton.
Feynman wrote numbers on top of operators to encode their ordering:

1

A
3

B
2

C := ACB.

In terms of this notation, abbreviate (Krein, Birman, Solomyak),

TA0,...,An

φ (B1, . . . , Bn) := φ(
1

A0,
3

A1,
5

A2, . . . ,
2n+1

An )
2

B1

4

B2 · · ·
2n

Bn.

Next, the Newton divided differences of f ′ are

f ′[n−1](x1, . . . , xn) :=
∑
j

f ′(xj)∏
i 6=j(xj − xi)

.

Combining Newton and Feynman,

Tr(
dn

dtn
f(D + tA)

∣∣
t=0

)

=

ˆ
Rdn

dpÂµ1
(p1) · · · Âµn

(pn)

ˆ
Rd

dk tr(γµ1T
/p1+/k, /p1+ /p2+/k,...,/k

f ′[n−1] (γµ2 , . . . , γµn)).



Result 1: Vanishing tadpole

With these techniques, one easily proves that

Theorem

If f ∈ S(R) is even, then for all odd n ∈ N,

Tr
( dn

dtn
f(D + tA)

∣∣
t=0

)
= 0.

In particular for n = 1: the tadpole term vanishes.

This extends [Iochum/Levy(2011)].

So, S[A] = Tr( d2

dt2 f(D + tA)
∣∣
t=0

) + Tr( d4

dt4 f(D + tA)
∣∣
t=0

) + . . ..



Result 2: The photon propagator of spectral QED

Theorem

Suppose f(x) = e−x
2

, then

1

2

d2

dt2
Tr(f(D + tA))

∣∣
t=0

=

ˆ
Rd

dp

(2π)d
Âµ(p)Âν(−p)ηf (p)

(
δµνp2 − pµpν

)
,

where ηf is a radial function whose only zero is at p = 0(!!!), namely

ηf (p) =
4

2dπd/2
1

p2

(
ϕ(p)− 1 + 1

2p
2ϕ(p)

)
,

in terms of

ϕ(p) :=

√
πe−p

2

erfi(‖p‖)
2‖p‖

.

This extends to more general f by Laplace transform, and recovers some
asymptotic formulas by van Suijlekom.



Figure: The blue curve is ηf . The blue curve is ϕ(k)− 1 + 1
2
k2ϕ(k). (Of

course the functions depicted are slices of radial functions.)

µ ν
p

=
1

p2ηf (p)

(
δµν + (ξηf (p)− 1)

pµpν

p2

)
,

As p→ 0, ηf (p)→ 1, recovering the QED photon propagator.
As p→∞, ηf (p)→ 0 polynomially, recovering [Iochum, Levy,
Vassilevich, 2012].



The next challenge is therefore to explicitly compute the fourth order
derivative.

µ
p1

p3

ρ

ν

p2

σ

p4

f = ?

It seems that it is a linear combination of
ϕ(p1), . . . , ϕ(p4), ϕ(p1 + p2), ϕ(p1 + p3), whose coefficients are rational
functions in p1, . . . , p4, with a combinatorial interpretation.



Mathematical question

Let ∆2 := {(s1, s2, s3) ∈ [0, 1]3 : s1 + s2 + s3 = 1}.
Let Es(k) :=

∑3
i=1 siki, and let pi := ki − ki−1 (so that

p1 + p2 + p3 = 0).

Lemma
For all k1, k2, k3 ∈ R we have

ˆ
∆2

eEs(k)2−Es(k2)ds =
ϕ(p1)

p2p3
+
ϕ(p2)

p3p1
+
ϕ(p3)

p1p2
.

The left-hand side makes sense for ki ∈ Rd, what is the right-hand side?



Outlook
If we have the quartic vertex, we can already calculate the 1-loop
quantum corrections to the spectral propagator:

+

+ f + f + f

I Ambitious, but in principle possible: calculate the magnetic moment
of the electron (constraining f : relevant beyond QED)

I Find a Ward–Takahashi identity

I Power counting. Joint work with Reimann and Hekkelman: spectral
action matrix model admits power counting.

I For spectral QED, again divided differences show up, but now more
convoluted ones. Free mathematical puzzles! :D

�anks for listening!


