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Part 1:
Motivation



The Maxwell action

For I, = 0,A, — 0,A,, the Maxwell action equals
st =4 [
Rd

=1 /Rd dz (0, A, () — 0, Apu(2))(0" AY (z) — 9" A (2))

d ~ ~
L A, (0) A (—p) (—g" D2 + p'D").

This is put in fd[A]emflS[A] and out comes the propagator
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for gauge fixing parameter £. Together with the other Feynman rules of
QED, this leads to experimental predictions.



Hold on. Could

S[A] = / (OuA, — 8,A,) (D" A — 9" AP
R4

be the remnant of something operator algebraic? We vaguely recognize

the operators
A=~"A,, D = —iv"0,

that also appear in (D + A)y, e.g., [D, A] = —iv"y"9,A,.

What if the true action only depends on D + A?



What if the true action only depends on D + A?

Surely, it won't depend on the way D + A is represented on the Hilbert
space. So Connes and Chamseddine conjectured:
The action depends only on the class of D + A modulo
unitary invariance (i.e., on its spectrum).

If the action behaves nicely under direct sums, it follows that
S[A] = Te(f(D + A)) (the spectral action)

for some function f : R — R. Sanity check:

Te(f(U(D+ A)U*)) =Te(Uf(D+ A)U*) =Tre(f(D + A)).
Remarkably, in the weak-field limit, (truncated asymptotic expansion of
Tr(f(252)) as A — 00), one exactly recovers the Maxwell action.



Gauge invariance

Writing

D—DY=D
A= AY =UAU* + U[D,U"]

one sees that DV + AY = D+ U[D,U*| + UAU* = U(D + A)U*.
A subclass of unitaries is given by

Uip(a) = ().
One obtains
Ag = (" Ae™ "™ + "y O ae™ '), = A, + 10,0,

i.e., the spectral action is gauge invariant. But much more is true.



The real reason for believing in the spectral action is that it recovers
GR+the full standard model, including e.g. the Higgs as a gauge
field and U(1) x SU(2) x SU(3), from simple axioms that encode
geometry in operator algebra (Chamseddine, Connes, Mukhanov,
2014).

It uses the spectral action, where instead of

(Co(R?), L2(RY) ® C*, D = —iv"9,,) more general spectral triples
(A, H, D) are considered.

Examples are noncommutative planes, which led to great progress
towards construction of NCé* (Grosse, Wulkenhaar, Rivasseau, ...).
The spectral action is the obvious next step.

Quantization of the spectral action is hard.

A spectral action matrix-model was introduced in [vN& van
Suijlekom, 2022 & 2022], leading to one-loop Gomis—Weinberg
renormalizability. But the role of A was unclear.

So let us go back to Maxwell, which should emerge from

A= S(RY) C Cy(RY).



Part 2:
Towards quantization of the
apectral action



Step 1: subtract a constant term

The Feynman path integral (Wick-rotated to Euclidean signature) is

[d[A]e=" " TP+ G 4] B [d[Ale=h U DR+A (D) G[A]
[d[A]e=P " TUD+A) T [d[A]eh TG (D+A-F(D)

so we may as well consider S[A] = Tr(f(D + A) — f(D)), thus
answering the question from the audience.



Step 2: Taylor expand

How should you compute

[ d[A]e=h"! T(F(D+A)-F(D) G[A] B
[ d[A]e~n " T (D+A)~F(D)

Use the noncommutative Taylor expansion:

Tr(f(D+A) - f(D))

=1
_Z::n— @fD—i-tA o)
_ Z /dt f(n / ds eztsoDAeltle Aelts” )

E.g., the first term is Tr(f’(D)A), linear in A (a tadpole), the second
term is quadratic in A, et cetera. All terms are still nonlocal.



Step 3: Tricks of Feynman and Newton.

Feynman wrote numbers on top of operators to encode their ordering:

132
ABC := ACB.

In terms of this notation, abbreviate (Krein, Birman, Solomyak),

A A 1 3 5 2n+1 2 4 2n
T¢O’m’ "(Bl,...,Bn) = ¢(A0,A1,A27..., An )BlBQ Bn

Next, the Newton divided differences of f are

f'(x5)
Hi;ﬁj (zj — ;)

f’[”fl] (T1,...,2p) =

J
Combining Newton and Feynman,

n

d
T
I'( dtn

i i Y AR R R Y "
- / dp Ay, (p1) -+ Ay, (pa) / dk tr(y TP TR e L),

dn d

f(D+ tA)|t:O)



Result 1: Vanishing tadpole

With these techniques, one easily proves that

If f € S(R) is even, then for all odd n € N,

ar
(@f(D +tA4)],_,) =0.

In particular for n = 1: the tadpole term vanishes.

This extends [lochum/Levy(2011)].

So, S[A] = Te( &5 (D +tA)|,_y) + Te(&z f(D +tA)|,_) + ...



Result 2: The photon propagator of spectral QED

Suppose f(xz) = e~ then

1 d?
53z DD +tA)]

dp A
= [ L A,pA(- o — ),
/Rd @) u(P)Au( p)nf(p)( p —p'p
where 1y is a radial function whose only zero is at p = 0(!!!), namely
4 1
ng(p) = Wﬁ(@(p) -1+ %p%(P)),

in terms of

_ Vme ™ erfi(|p])
o) ="

v

This extends to more general f by Laplace transform, and recovers some
asymptotic formulas by van Suijlekom.
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Figure: The blue curve is ny. The blue curve is (k) — 1 + 2k%p(k). (Of
course the functions depicted are slices of radial functions.)
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As p — 0, ns(p) — 1, recovering the QED photon propagator.
As p — 00, n¢(p) — 0 polynomially, recovering [lochum, Levy,
Vassilevich, 2012].



The next challenge is therefore to explicitly compute the fourth order
derivative.

g

It seems that it is a linear combination of

©(p1), - 0(pa), o(p1 + p2), p(p1 + p3), whose coefficients are rational
functions in py, ..., ps, with a combinatorial interpretation.



Mathematical question

Let AQ = {(51, 52753) S [0, 1]5 81+ S2+ 83 = 1}
Let Eq(k) := 327 | s;k;, and let p; := k; — k;_; (so that
p1+p2+p3=0).

For all k1, ks, ks € R we have

/ oEs ()7 —Es (k%) gg — o(p1) + ¢(p2) + @(P3>.
Ay p2p3 p3p1 b1p2

The left-hand side makes sense for k; € R%, what is the right-hand side?



Outlook

If we have the quartic vertex, we can already calculate the 1-loop
quantum corrections to the spectral propagator:

e (O
+w§m+wgm+ [

> Ambitious, but in principle possible: calculate the magnetic moment
of the electron (constraining f: relevant beyond QED)

» Find a Ward—Takahashi identity

» Power counting. Joint work with Reimann and Hekkelman: spectral
action matrix model admits power counting.

» For spectral QED, again divided differences show up, but now more
convoluted ones. Free mathematical puzzles! :D

Thanks for listening!



