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Some features of rational conformal field theories

• Space of states is a module over 2 commuting copies of a rational
vertex operator algebra.

• Singularities of correlation functions are at worst rational poles.
E.g.

1

|z−w| 14

• Character of space of states is a modular invariant.
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Rational vertex operator algebras

• Module theory is semisimple.
→ Virasoro L0 operator is diagonalisable.

• Finitely many inequivalent simple modules.
• Span of module characters carries a representation of the

modular group SL(2,Z). [Zhu]

• Module category is a modular tensor category. [Verlinde,
Moore-Seiberg, Huang]

Fusion product derived
from correlation functions

=
Verlinde product derived
from SL(2,Z) action on
characters
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Features of logarithmic conformal field theories

• Space of states is a module over 2 commuting copies of a
logarithmic vertex operator algebra.

• Singularities of correlation functions can be logarithmic. E.g.

log |z−w|

• Character of space of states is still a modular invariant.
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Logarithmic vertex operator algebras

• Module theory is not semisimple.
→ Virasoro L0 operator can have Jordan blocks.

• Finitely many inequivalent simple modules. May or may not fail.
• Span of torus 1-point functions carries a representation of the

modular group SL(2,Z). [Miyamoto]

• Module category is not a modular tensor category.
Verlinde formula must fail as characters can’t distinguish all
modules and modular action does not close on characters.
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Examples of logarithmic conformal field theories

The symplectic fermions are generated by two field ξ1,ξ2:

ξ1(z)ξ2(w)∼
1

(z−w)2 ∼−ξ2(z)ξ1(w), ξ1(z)ξ1(w)∼ 0∼ ξ2(z)ξ2(w).

The even subalgebra is called “the c =−2 triplet”.

Defines a logarithmic vertex operator algebra/conformal field theory.
[Gaberdiel-Kausch]
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c =−2 triplet module theory

4 simple modules:
S0, S1, S−1

8
, S 3

8
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c =−2 triplet module theory

4 simple modules:
S0, S1, S−1

8
, S 3

8

Indices denote conformal highest weight.
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c =−2 triplet module theory

4 simple modules:
S0, S1, S−1

8
, S 3

8

Vertex operator algebra/vacuum module.
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c =−2 triplet module theory

4 simple modules:
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Cannot be extended to form reducible yet indecomposable modules.
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Simple modules are not closed under fusion

S0 fusion unit

S1: S0↔ S1, S−1
8
↔ S 3

8

S−1
8
×S−1

8
= S 3

8
×S 3

8
= P0, S−1

8
×S 3

8

S1: P0↔ P1

Si×Pj = 2S−1
8
⊕2S 3

8
, i = −1

8 , 3
8 , j = 0,1

Fusion closes on S0, S1, S−1
8
,S 3

8
, P0, P1.

The new modules P0, P1 are indecomposable yet reducible, but cannot
be further extended.
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Submodule structure of P0 and P1

S1 P0 S1

S0

S0

S0 P1 S0

S1

S1

Module characters: ch [M] (q) = trM qL0− c
24 , q = e2π iτ , here c =−2.

Characters cannot distinguish indecomposables from the sum of their
composition factors: ch [P0] = ch [P1] = 2ch [S0]+2ch [S1]
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Action of the modular group on characters

Modular group: SL(2,Z) = 〈S,T |S2 = (ST)3, S4 = 1〉
T : τ 7→ τ +1, S : τ 7→ −1

τ

S action:

ch [S0] 7→
1
4

ch
[
S−1

8

]
− 1

4
ch
[
S 3

8

]
− iτ

2
(ch [S0]− ch [S1])

ch [S1] 7→
1
4

ch
[
S−1

8

]
− 1

4
ch
[
S 3

8

]
+

iτ
2
(ch [S0]− ch [S1])

ch
[
S−1

8

]
7→ ch [S0]+ ch [S1]+

1
2

ch
[
S−1

8

]
+

1
2

ch
[
S 3

8

]
ch
[
S 3

8

]
7→ −ch [S0]− ch [S1]+

1
2

ch
[
S−1

8

]
+

1
2

ch
[
S 3

8

]
iτ
2
(ch [S0]− ch [S1]) 7→

1
2

ch [S0]−
1
2

ch [S1]
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The full ‘bulk’ conformal field theory

Space of states: H = S−1
8
⊗S−1

8
⊕S 3

8
⊗S 3

8
⊕H0, where

S0⊗S0

S0⊗S1S0⊗S1 S1⊗S0 S1⊗S0

S1⊗S1

S0⊗S0 S1⊗S1

H0

ch [H ] =
∣∣∣ch
[
S−1

8

]∣∣∣2 + ∣∣∣ch
[
S 3

8

]∣∣∣2 + ch [H0]
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A logarithmic Verlinde formula?

• Verlinde formula is derived from characters. At best it could
predict fusion at the level of characters.

• To salvage a Verlinde formula for logarithmic conformal field
theory we need to deal with τ-dependent S transformations.

• We do this by giving up on having only finitely many simple
modules.

• If done properly the τ-dependence will be restricted to a ‘subset of
modules of measure 0’.
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The βγ ghost logarithmic conformal field theory

Two generating fields β and γ.

γ(z)β (w)∼ 1
z−w

∼−β (z)γ(w), β (z)β (w)∼ 0∼ γ(z)γ(w)

T(z) =− : β (z)∂γ(z) :, J(z) = : β (z)γ(z) :.

Let β (z) = ∑n βnz−n−1 and γ(z) = ∑n γnz−n then

[γm,βn] = δm+n,01, [βm,βn] = 0 = [γm,γn]

Triangular decomposition:

G=

(⊕
n≥1

Cβ−n⊕Cγ−n

)
⊕Cγ0︸ ︷︷ ︸

n−

⊕ C1︸︷︷︸
h

⊕Cβ0⊕

(⊕
n≥1

Cβn⊕Cγn

)
︸ ︷︷ ︸

n+
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Highest weight modules (category O)

Since 1 must act as the identity, there exists only 1 Verma module V
and it is simple.

Ω γ0Ω γ2
0 Ω γ3

0 Ω · · ·

β−1Ω

β 2
−1Ω

Closed under fusion, V ×V = V , but not under action of SL(2,Z).
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Going beyond highest weight modules

Enlarge module category by going from triangular decomposition to
parabolic decomposition:

G=

(⊕
n≥1

Cβ−n⊕Cγ−n

)
︸ ︷︷ ︸

np
−

⊕Cγ0⊕C1⊕Cβ0︸ ︷︷ ︸
hp

⊕

(⊕
n≥1

Cβn⊕Cγn

)
︸ ︷︷ ︸

np
+

Parabolic Verma modules are modules induced from hp modules, on
which np

+ acts trivially, by letting np
− act freely.

hp is the Weyl algebra A1. Its simple modules were classified by Block.
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hp weight module classification
Define the eigenvalues of J = γ0β0 to be weights.
Weights shifted by +1 by γ0 and by −1 by β0.

Theorem [Block]

Any simple hp weight module is equivalent to one of the following.
1 Unique highest weight module: V = C[γ0]Ω, β0Ω = 0. → JΩ = 0.
2 Unique lowest weight module: V

∗
= C[β0]ω, γ0ω. → Jω = ω.

3 Dense module: For [λ ] ∈ C/Z, [λ ] 6= [0], let

Wλ = C[β0]β0uλ ⊕uλ ⊕C[γ0]γ0uλ

be the module generated by a weight vector uλ , Juλ = λuλ .
Wλ
∼= Wµ iff λ −µ ∈ Z.

For [λ ] = 0, exist two indecomposables characterised by the non-split
exact sequences

0−→ V −→W
+
0 −→ V

∗ −→ 0, 0−→ V
∗ −→W

−
0 −→ V −→ 0.
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Going beyond highest weight modules

Let V , V ∗, Wλ , W ±
0 be inductions of previous hp modules.

This list is not closed under fusion or action of modular group. One
final enlargement needed.

Construct more modules using an algebra automorphism σ called
spectral flow: σ(γn) = γn+1, σ(βn) = βn−1.

→ σ(J0) = J0 +1, σ(L0) = L0− J0

Let M be a module. Define spectral flow twist by σM ∼= M as vector
space. Twisted action x ·σ m = σ−1(x) ·m, x ∈G, m ∈M.
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Spectral flow twists

Spectral flow ‘tilts’ the energy grading:

σ σσ

VV ∗ ∼= σ−1V σVσ−2V

σ σ σ σ

Wλ σWλ σ2Wλσ−1Wλσ−2Wλ

The action of the modular group closes on the span of the characters
of σ `Wλ , ` ∈ Z, λ ∈ C/Z.
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The rational Verlinde formula

Rational vertex operator algebras admit only a finite number of
inequivalent simple modules Mi, i = 0, . . . ,n, where M0 is the vacuum
module.

Fusion: Mi×Mj =
⊕

k Nk
i,jMk, Nk

i,j ∈ N0.

Action of modular group closes on span of module characters:

T : ch [Mi] 7→ Ti ch [Mi]

S : ch [Mi] 7→ Si,j ch [Mj]

The Verlinde formula relates the fusion structure constants and the
S-matrix coefficients.

Nk
i,j = ∑

n

Si,nSj,nSk,n

S0,n

(Simon Wood, Cardiff) Log CFT 20 / 28



Towards a logarithmic Verlinde formula

The action of the modular group closes on the span of σ `Wλ

characters.

S : ch
[
σ
`Wλ

]
7→ ∑

m∈Z

∫
R/Z

S
[
σ
`Wλ → σ

mWµ

]
ch
[
σ

mWµ

]
d µ

S
[
σ
`Wλ → σ

mWµ

]
= (−1)`+me−2π i(`µ+mλ )

No τ dependence!

What about σ `V ?
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Towards a logarithmic Verlinde formula

Recall, 0−→ σ−1V −→W −
0 −→ V −→ 0.

We can resolve V in terms of the σ `W −
0 by splicing exact sequences.

· · · −→ σ
−2W −

0 −→ σ
−1W −

0 −→W −
0 −→ V −→ 0

The character of V can then be computed using the Euler-Poincaré
principle.

ch
[
σ
`V
]
=

∞

∑
m=0

(−1)m ch
[
σ
`−mW0

]
.

S-transformation:

S
[
σ
`V → σ

mWµ

]
= (−1)`+m+1 e−2π i(`+1/2)µ

eπ iµ −e−π iµ

(Simon Wood, Cardiff) Log CFT 22 / 28



Towards a logarithmic Verlinde formula

We can now conjecture a Verlinde formula for the characters of fusion
products.

ch [M×N] = ∑
m∈Z

∫
R/Z

Nm,µ
M,N ch

[
σ

mWµ

]
d µ.

The natural generalisation of the rational Verlinde formula is:

Nm,µ
M,N = ∑

n∈Z

∫
R/Z

S [M→ σnWν ]S [N→ σnWν ]S
[
σmWµ → σnWν

]
S [V → σnWν ]

dν

(Simon Wood, Cardiff) Log CFT 23 / 28



Towards a logarithmic Verlinde formula

Fusion predicted by Verlinde formula:

ch
[
σ
`V ×σ

mV
]
= ch

[
σ
`+mV

]
,

ch
[
σ
`V ×σ

mWµ

]
= ch

[
σ
`+mWµ

]
,

ch
[
σ
`Wλ ×σ

mWµ

]
= ch

[
σ
`+mWλ+µ

]
+ ch

[
σ
`+m−1Wλ+µ

]
.

Fusion products uniquely determined by characters unless λ +µ ∈ Z.

Spot checks by direct computation match Verlinde prediction.

(Simon Wood, Cardiff) Log CFT 24 / 28



Towards a logarithmic Verlinde formula

Fusion predicted by Verlinde formula:

ch
[
σ
`V ×σ

mV
]
= ch

[
σ
`+mV

]
,

ch
[
σ
`V ×σ

mWµ

]
= ch

[
σ
`+mWµ

]
,

ch
[
σ
`Wλ ×σ

mWµ

]
= ch

[
σ
`+mWλ+µ

]
+ ch

[
σ
`+m−1Wλ+µ

]
.

Fusion products uniquely determined by characters unless λ +µ ∈ Z.

Spot checks by direct computation match Verlinde prediction.

(Simon Wood, Cardiff) Log CFT 24 / 28



Towards a logarithmic Verlinde formula

Fusion predicted by Verlinde formula:

ch
[
σ
`V ×σ

mV
]
= ch

[
σ
`+mV

]
,

ch
[
σ
`V ×σ

mWµ

]
= ch

[
σ
`+mWµ

]
,

ch
[
σ
`Wλ ×σ

mWµ

]
= ch

[
σ
`+mWλ+µ

]
+ ch

[
σ
`+m−1Wλ+µ

]
.

Fusion products uniquely determined by characters unless λ +µ ∈ Z.

Spot checks by direct computation match Verlinde prediction.

(Simon Wood, Cardiff) Log CFT 24 / 28



Indecomposable fusion products

By direct computation: Wλ ×W−λ = σ−1P, where

σ−1V P σV

V

V
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Conjecture [Ridout-SW]

Let C be the abelian category of βγ vertex operator algebra modules
generated by the closure under extensions of the σ `V and σ `Wλ ,
` ∈ Z, λ ∈ (0,1). Then,
• the σ `Wλ are simple and projective,
• the σ `P are indecomposable projective covers of σ `V ,
• the logarithmic Verlinde formula holds.
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Modular invariants [Ridout-SW]

As a final exercise we can write down a modular invariant candidate for
the space of states.

H = H0⊕
⊕
`∈Z
	
∫
R/Z

σ
`Wλ ⊗σ

`Wλ dλ .

· · · H0 · · ·

σ−2⊗σ−2 σ−1⊗σ−1 1⊗1 σ ⊗σ σ2⊗σ2

σ−2⊗σ−1σ−1⊗σ−2 σ−1⊗1 1⊗σ−1 1⊗σ σ ⊗1 σ ⊗σ2 σ2⊗σ

σ−2⊗σ−2 σ−1⊗σ−1 1⊗1 σ ⊗σ σ2⊗σ2

ch [H0] = ∑
`∈Z

ch
[
σ
`V
]

ch [σ `P] = ∑
`∈Z

ch
[
σ
`P
]

ch [σ `V ]
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Conclusion

• Logarithmic conformal field theories/vertex operator algebras
admit reducible yet indecomposable modules.

• Having finitely many simple modules seems to break the Verlinde
formula.

• Verlinde formula can be fixed by allowing infinitely many simple
modules.
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