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Arrow of time

Only parts of Minkowski space (forward lightcones) are accessible
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Arrow of time

Physical time evolution (inertial observer) acts as a semi-group
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Quantum physics

Basic conepts
Observables: A unital algebra of bounded operators in some cone
Arrow of time: time evolution (inertial observer) acts by morphisms

αt (A) ⊂ A , t ∈ R+

States: expectation functionals in A∗. Preceeding structure suffices
to characterize ground states ω (invariance, analyticity, mixing)

Facts
Let ω be a ground state on (A, α) with GNS representation (π,H,Ω).

1 There is a continuous unitary representation U of R with positive
generator s.t. Ad U(t) ◦π = π ◦αt , t ∈ R+, and U(t)Ω = Ω, t ∈ R.

2 There are the alternatives: (i) π(A)
′′

= B(H) (massive theories)
(ii) π(A)

′′
type III1 (presence of massless particles)

11 / 24



Quantum physics

Interpretation
Let ω be a ground state on A with GNS representation (π,H,Ω).

1 The unitary representation U (fixed by theory) allows to extend
the state ω to the past, from the data taken in any given future
directed lightcone. (Justification of treatment of time as R).

2 In massive theories these date uniquely determine this extension.
In presence of massless particles the extension is not unique,
leading to conceptual problems.
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Quantum physics

Incomplete information about the past (outgoing radiation)
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Quantum physics

Fiat lux!

Implications: Standard theoretical concepts of quantum physics
become operationally irrelevant

pure states? : incomplete information!
superposition principle? : no lifts to rays in a Hilbert space!
transition probabilities? : no minimal projections!

Are there other theoretical concepts describing the same physics?
Proposal (DB, Erling Størmer):

funnels of algebras: provide locally complete information
generic states: can be superimposed
primitive observables: replace minimal projections
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Funnels

Observations and operations are made in (fuzzy) spacetime regions

Algebra of observables generated by
A1 ⊂ A2 ⊂ · · · ⊂ An · · · factors of type I∞ ' B(H)

A′n
⋂
An+1 infinite dimensional (hence type I∞), n ∈ N

A =
⋃

n An proper sequential type I∞ funnel (Takesaki)

Examples: relativistic QFTs (split property), lattice theories, . . .
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Generic states

States ω : A→ C, GNS–representation (π,H,Ω)

locally normal, i.e. weakly continuous on unit balls of An, n ∈ N,
faithful, i.e. ω(A∗A) = 0 for A ∈ A implies A = 0
generic, i.e. representing vector Ω cyclic for A′n

⋂
An+1, n ∈ N

Remark: Generic vector states “Gδ dense” in H1 (Dixmier, Marechal)

Definition
Let ω be generic. Its orbit under non-mixing operations is given by

ωA
.

= {ωA = ω ◦Ad A : A ∈ A , ωA(1) = 1} ,

where Ad A (B) = A∗B A, B ∈ A.
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Generic states

Physical interpretation:
Generic states ω describe a “global background” in which physical
operations are performed (“state of the world”). Given such a state,
these operations produce the corresponding orbit ωA.

Examples:

vacuum states in relativistic QFT
thermal equilibrium states in relativistic and non-relativistic QFT
Hadamard states in curved spacetimes
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Superpositions

Fix a generic state ω with orbit ωA. Norm distance of states

‖ωA − ωB‖
.

= sup
C∈A1

|ωA(C)− ωB(C)| , ωA, ωB ∈ ωA .

Proposition
There exists a canonical lift from ωA to rays in A which is

1 bijective: ωA = ωB iff B = t A for t ∈ T
2 locally continuous: if ‖ωAm − ωA‖ → 0 for (bounded) Am,A ∈ An,

then tm Am → A in the strong operator topology
3 locally complete: if ‖ωAl − ωAm‖ → 0 for (bounded) Al ,Am ∈ An,

there is A ∈ An such that tm Am → A and ‖ωAm − ωA‖ → 0.
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Superpostions

Physical interpretation:

1 superposition of states in ωA is a meaningful operation,
ωA, ωB ↔ T A, T B → T (cA A + cB B)↔ ω(cA A+cB B)

relative phase between cA, cB ∈ C matters
3 ωA maximal set reached by localized non-mixing operations

Mixtures:

Conv ωA
.

=
{∑

m pm ωAm : ωAm ∈ ωA , pm > 0 ,
∑

m pm = 1
}

Proposition

Let ωA ∈ ωA s.t. ωA =
∑M

m=1 pm ωAm ; then ωA1 = · · · = ωAM = ωA.

ωA extreme points of Conv ωA ; analogue of pure states.
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Transition probabilities

Definition
Let ωA, ωB ∈ ωA. Transition probability given by: ωA · ωB

.
= |ω(A∗B)|2

(Defintion meaningful in view of the bijective relations ωA ↔ TA, ωB ↔ TB)

Remark: comparison with Uhlmann transition probability

ωA · ωB ≤ ωA
U· ωB = supΩA,ΩB

|〈ΩA,ΩB〉|2.

Proposition
Let ωA, ωB ∈ ωA.

1 0 ≤ ωA · ωB ≤ 1 (notion of orthogonality),
2 ωA · ωB = ωB · ωA

3 ωA ·ωB ≤ 1− 1
4 ‖ωA−ωB‖2; equality holds iff ω is pure (usual sense)

4 ωA, ωB 7→ ωA · ωB is locally continuous
5 there are complete families of orthogonal states {ωAm ∈ ωA}m∈N,

i.e.
∑

m ωB · ωAm = 1 for any ωB ∈ ωA.
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Primitive observables

Question: How can one relate these transition probabilities to
observations?

Recall: ωA ∈ ωA, non-mixing operations B ∈ A,

ωA 7→ (1/ωA(B∗B)) ωA ◦Ad B .

Restrict operations B to unitary operators U (observable); result

ωA 7→ ωA ◦Ad U = ωUA , ωA ∈ ωA .

Examples: effects of temporary perturbation of dynamics

Transition probability (fidelity of operation):

ωA · (ωA ◦Ad U) = ωA · ωUA = |ωA(U)|2 .

Can be observed by measurements of U in state ωA.
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Primitive observables

Definition
Primitive observables are fixed by unitaries U ∈ A. For given ωA ∈ ωA

ωA 7→ ωUA describes the effect of the corresponding operation
ωA · ωUA = |ωA(U)|2 is the fidelity of this operation

Example: U = E + t(1− E) with E projection, t ∈ T. Fidelity
ωA · ωUA = ωA(E)2 + ωA(1− E)2 + 2 Re(t)ωA(E)ωA(1− E)

Standard expectation values of observables can be recovered:

Proposition
Given projection E ∈ A, (finite number of) states ωA ∈ ωA, and ε > 0.
There exists a unitary U ∈ A

1 |ωA · ωUA − ωA(E)2| < ε, i.e. “usual probatilities ≈
√

fidelities”
2 ωUA(1− E) < ε (compare von Neumann projection postulate)
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Primitive observables

Question: Is ωA · ωB operationally defined for any ωA, ωB ∈ ωA ?
(This requires that there are unitaries U ∈ A such that ‖ωB − ωUA‖ < ε.)

Theorem (Connes, Haagerup, Størmer)
Let ω be of type IIIλ and let

1 0 ≤ λ < 1. There are ωA, ωB ∈ ωA s.t. infU ‖ωB − ωUA‖ > ε(λ).
2 λ = 1. Then infU ‖ωB − ωUA‖ = 0 for any ωA, ωB ∈ ωA.

Concept of transition probabilities (operationally) meaningful for
pure states ω on A
generic states ω on A of type III1.

These are exactly the two cases of interest in quantum field theory!
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Conclusions

Features of time:

arrow of time is a fundamental fact (can be encoded in theory)
statements about the past require some theory (are ambiguous)
conflicts with quantum physics (modification of concepts needed)

New look at quantum physics:

fixed algebra replaced by funnel of algebras
generic states and their excitations replace concept of pure states
superpositions defined, based on bijective lifts to funnel
transition probabilities can be defined
primitive (unitary) observables determine transition probabilities
meaningful framework for states in QFT (type I∞ and III1)
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