The arrow of time and quantum physics: difficulties and resolutions

Detlev Buchholz

Quantum physics meets mathematics
Syposium on the occasion of Klaus Fredenhagen's 70th birthday
Universität Hamburg, December 8th 2017

Arrow of time

Only parts of Minkowski space (forward lightcones) are accessible

Arrow of time

Physical time evolution (inertial observer) acts as a semi-group

Quantum physics

Basic conepts

Observables: \mathcal{A} unital algebra of bounded operators in some cone Arrow of time: time evolution (inertial observer) acts by morphisms

$$
\alpha_{t}(\mathcal{A}) \subset \mathcal{A}, \quad t \in \mathbb{R}_{+}
$$

States: expectation functionals in \mathcal{A}^{*}. Preceeding structure suffices to characterize ground states ω (invariance, analyticity, mixing)

Facts

Let ω be a ground state on (\mathcal{A}, α) with GNS representation $(\pi, \mathcal{H}, \Omega)$.
(1) There is a continuous unitary representation U of \mathbb{R} with positive generator s.t. $\operatorname{Ad} U(t) \circ \pi=\pi \circ \alpha_{t}, t \in \mathbb{R}_{+}$, and $U(t) \Omega=\Omega, t \in \mathbb{R}$.
(2) There are the alternatives: (i) $\pi(\mathcal{A})^{\prime \prime}=\mathcal{B}(\mathcal{H})$ (massive theories) (ii) $\pi(\mathcal{A})^{\prime \prime}$ type $I I I_{1}$ (presence of massless particles)

Quantum physics

Interpretation

Let ω be a ground state on \mathcal{A} with $G N S$ representation $(\pi, \mathcal{H}, \Omega)$.
(1) The unitary representation U (fixed by theory) allows to extend the state ω to the past, from the data taken in any given future directed lightcone. (Justification of treatment of time as \mathbb{R}).
(2) In massive theories these date uniquely determine this extension. In presence of massless particles the extension is not unique, leading to conceptual problems.

Quantum physics

Incomplete information about the past (outgoing radiation)

Quantum physics

Fiat lux!
Implications: Standard theoretical concepts of quantum physics become operationally irrelevant

- pure states? : incomplete information!
- superposition principle? : no lifts to rays in a Hilbert space!
- transition probabilities? : no minimal projections!

Are there other theoretical concepts describing the same physics?
Proposal (DB, Erling Størmer):

- funnels of algebras: provide locally complete information
- generic states: can be superimposed
- primitive observables: replace minimal projections

Funnels

Observations and operations are made in (fuzzy) spacetime regions

Algebra of observables generated by

- $\mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{n} \cdots$ factors of type $\mathrm{I}_{\infty} \simeq \mathcal{B}(\mathcal{H})$
- $\mathcal{A}_{n}^{\prime} \bigcap \mathcal{A}_{n+1}$ infinite dimensional (hence type $\left.\mathrm{I}_{\infty}\right), n \in \mathbb{N}$
- $\mathcal{A}=\bigcup_{n} \mathcal{A}_{n}$ proper sequential type I_{∞} funnel (Takesaki)

Examples: relativistic QFTs (split property), lattice theories, ...

Generic states

States $\omega: \mathcal{A} \rightarrow \mathbb{C}$, GNS-representation $(\pi, \mathcal{H}, \Omega)$

- locally normal, i.e. weakly continuous on unit balls of $\mathcal{A}_{n}, n \in \mathbb{N}$,
- faithful, i.e. $\omega\left(A^{*} A\right)=0$ for $A \in \mathcal{A}$ implies $A=0$
- generic, i.e. representing vector Ω cyclic for $\mathcal{A}_{n}^{\prime} \bigcap \mathcal{A}_{n+1}, n \in \mathbb{N}$

Remark: Generic vector states " G_{δ} dense" in \mathcal{H}_{1} (Dixmier, Marechal)

Definition

Let ω be generic. Its orbit under non-mixing operations is given by

$$
\omega_{\mathcal{A}} \doteq\left\{\omega_{A}=\omega \circ \operatorname{Ad} A: A \in \mathcal{A}, \omega_{A}(1)=1\right\}
$$

where $\operatorname{Ad} A(B)=A^{*} B A, \quad B \in \mathcal{A}$.

Generic states

Physical interpretation:

Generic states ω describe a "global background" in which physical operations are performed ("state of the world"). Given such a state, these operations produce the corresponding orbit $\omega_{\mathcal{A}}$.

Examples:

- vacuum states in relativistic QFT
- thermal equilibrium states in relativistic and non-relativistic QFT
- Hadamard states in curved spacetimes

Superpositions

Fix a generic state ω with orbit $\omega_{\mathcal{A}}$. Norm distance of states

$$
\left\|\omega_{A}-\omega_{B}\right\| \doteq \sup _{C \in \mathcal{A}_{1}}\left|\omega_{A}(C)-\omega_{B}(C)\right|, \quad \omega_{A}, \omega_{B} \in \omega_{\mathcal{A}}
$$

Proposition

There exists a canonical lift from $\omega_{\mathcal{A}}$ to rays in \mathcal{A} which is
(1) bijective: $\omega_{A}=\omega_{B}$ iff $B=t A$ for $t \in \mathbb{T}$
(2) locally continuous: if $\left\|\omega_{A_{m}}-\omega_{A}\right\| \rightarrow 0$ for (bounded) $A_{m}, A \in \mathcal{A}_{\boldsymbol{n}}$, then $t_{m} A_{m} \rightarrow A$ in the strong operator topology
(3) locally complete: if $\left\|\omega_{A_{l}}-\omega_{A_{m}}\right\| \rightarrow 0$ for (bounded) $A_{l}, A_{m} \in \mathcal{A}_{n}$, there is $A \in \mathcal{A}_{\boldsymbol{n}}$ such that $t_{m} A_{m} \rightarrow A$ and $\left\|\omega_{A_{m}}-\omega_{A}\right\| \rightarrow 0$.

Superpostions

Physical interpretation:

(1) superposition of states in $\omega_{\mathcal{A}}$ is a meaningful operation,

$$
\omega_{A}, \omega_{B} \leftrightarrow \mathbb{T} A, \mathbb{T} B \rightarrow \mathbb{T}\left(c_{A} A+c_{B} B\right) \leftrightarrow \omega_{\left(c_{A} A+c_{B} B\right)}
$$

relative phase between $c_{A}, c_{B} \in \mathbb{C}$ matters
(3) $\omega_{\mathcal{A}}$ maximal set reached by localized non-mixing operations

Mixtures:
$\operatorname{Conv} \omega_{\mathcal{A}} \doteq\left\{\sum_{m} p_{m} \omega_{A_{m}}: \omega_{A_{m}} \in \omega_{\mathcal{A}}, p_{m}>0, \sum_{m} p_{m}=1\right\}$

Proposition

Let $\omega_{A} \in \omega_{\mathcal{A}}$ s.t. $\omega_{A}=\sum_{m=1}^{M} p_{m} \omega_{A_{m}}$; then $\omega_{A_{1}}=\cdots=\omega_{A_{M}}=\omega_{A}$.
$\omega_{\mathcal{A}}$ extreme points of Conv $\omega_{\mathcal{A}}$; analogue of pure states.

Transition probabilities

Definition

Let $\omega_{\mathcal{A}}, \omega_{B} \in \omega_{\mathcal{A}}$. Transition probability given by: $\omega_{A} \cdot \omega_{B} \doteq\left|\omega\left(A^{*} B\right)\right|^{2}$ (Defintion meaningtul in view of the bijective relations $\omega_{A} \leftrightarrow \mathbb{T} A, \omega_{B} \leftrightarrow \mathbb{T} B$)

Remark: comparison with Uhlmann transition probability

$$
\omega_{A} \cdot \omega_{B} \leq \omega_{A} \cdot \omega_{B}=\sup _{\Omega_{A}, \Omega_{B}}\left|\left\langle\Omega_{A}, \Omega_{B}\right\rangle\right|^{2} .
$$

Proposition

Let $\omega_{A}, \omega_{B} \in \omega_{\mathcal{A}}$.
(1) $0 \leq \omega_{A} \cdot \omega_{B} \leq 1$ (notion of orthogonality),
(2) $\omega_{A} \cdot \omega_{B}=\omega_{B} \cdot \omega_{A}$
(3) $\omega_{A} \cdot \omega_{B} \leq 1-\frac{1}{4}\left\|\omega_{A}-\omega_{B}\right\|^{2}$; equality holds iff ω is pure (usual sense)
(4) $\omega_{A}, \omega_{B} \mapsto \omega_{A} \cdot \omega_{B}$ is locally continuous
(5) there are complete families of orthogonal states $\left\{\omega_{A_{m}} \in \omega_{\mathcal{A}}\right\}_{m \in \mathbb{N}}$, i.e. $\sum_{m} \omega_{B} \cdot \omega_{A_{m}}=1$ for any $\omega_{B} \in \omega_{\mathcal{A}}$.

Primitive observables

Question: How can one relate these transition probabilities to observations?

Recall: $\omega_{A} \in \omega_{\mathcal{A}}$, non-mixing operations $B \in \mathcal{A}$,

$$
\omega_{A} \mapsto\left(1 / \omega_{A}\left(B^{*} B\right)\right) \omega_{A} \circ \operatorname{Ad} B .
$$

Restrict operations B to unitary operators U (observable); result

$$
\omega_{A} \mapsto \omega_{A} \circ \operatorname{Ad} U=\omega_{U A}, \quad \omega_{A} \in \omega_{\mathcal{A}}
$$

Examples: effects of temporary perturbation of dynamics Transition probability (fidelity of operation):

$$
\omega_{A} \cdot\left(\omega_{A} \circ A d U\right)=\omega_{A} \cdot \omega_{U A}=\left|\omega_{A}(U)\right|^{2}
$$

Can be observed by measurements of U in state ω_{A}.

Primitive observables

Definition

Primitive observables are fixed by unitaries $U \in \mathcal{A}$. For given $\omega_{A} \in \omega_{\mathcal{A}}$

- $\omega_{A} \mapsto \omega_{U A}$ describes the effect of the corresponding operation
- $\omega_{A} \cdot \omega_{U A}=\left|\omega_{A}(U)\right|^{2}$ is the fidelity of this operation

Example: $U=E+t(1-E)$ with E projection, $t \in \mathbb{T}$. Fidelity

$$
\omega_{A} \cdot \omega_{U A}=\omega_{A}(E)^{2}+\omega_{A}(1-E)^{2}+2 \operatorname{Re}(t) \omega_{A}(E) \omega_{A}(1-E)
$$

Standard expectation values of observables can be recovered:

Proposition

Given projection $E \in \mathcal{A}$, (finite number of) states $\omega_{A} \in \omega_{\mathcal{A}}$, and $\varepsilon>0$. There exists a unitary $U \in \mathcal{A}$
(1) $\left|\omega_{A} \cdot \omega_{U A}-\omega_{A}(E)^{2}\right|<\varepsilon$, i.e. "usual probatilities $\approx \sqrt{\text { fidelities" }}$
(2) $\omega_{U A}(1-E)<\varepsilon$ (compare von Neumann projection postulate)

Primitive observables

Question: Is $\omega_{A} \cdot \omega_{B}$ operationally defined for any $\omega_{A}, \omega_{B} \in \omega_{\mathcal{A}}$?
(This requires that there are unitaries $U \in \mathcal{A}$ such that $\left\|\omega_{B}-\omega_{U A}\right\|<\varepsilon$.)

Theorem (Connes, Haagerup, Størmer)

Let ω be of type III ${ }_{\lambda}$ and let
(1) $0 \leq \lambda<1$. There are $\omega_{A}, \omega_{B} \in \omega_{\mathcal{A}}$ s.t. $\inf _{U}\left\|\omega_{B}-\omega_{U A}\right\|>\varepsilon(\lambda)$.
(2) $\lambda=1$. Then $\inf _{U}\left\|\omega_{B}-\omega_{U A}\right\|=0$ for any $\omega_{A}, \omega_{B} \in \omega_{\mathcal{A}}$.

Concept of transition probabilities (operationally) meaningful for

- pure states ω on \mathcal{A}
- generic states ω on \mathcal{A} of type III_{1}.

These are exactly the two cases of interest in quantum field theory!

Conclusions

Features of time:

- arrow of time is a fundamental fact (can be encoded in theory)
- statements about the past require some theory (are ambiguous)
- conflicts with quantum physics (modification of concepts needed)

New look at quantum physics:

- fixed algebra replaced by funnel of algebras
- generic states and their excitations replace concept of pure states
- superpositions defined, based on bijective lifts to funnel
- transition probabilities can be defined
- primitive (unitary) observables determine transition probabilities
- meaningful framework for states in QFT (type I_{∞} and II_{1})

