Curing the infrared problem in nonrelativistic QED

Daniela Cadamuro

Leipzig

joint work with Wojciech Dybalski

York 1 July 2019

Problem:

System of nonrelativistic QED:

one "slow" spinless electron interacting with a cloud of photons

- Algebra of observables of the system electron + photons
- Coherent states ω_P (ground states of an Hamiltonian H_P, P a total momentum of the system)

 \Rightarrow they induce inequivalent representations of the algebra

problem of velocity superselection

Consequences:

- states of single electrons with different momenta P cannot be coherently superimposed
- electron is an infraparticle (no definite mass)
- scattering theory of many electrons seems problematic

The model

Hamiltonian:

$$H = \frac{1}{2}(-i\nabla_{\boldsymbol{x}} + \tilde{\alpha}^{1/2}\boldsymbol{A}(\boldsymbol{x}))^2 + H_{\text{photon}}$$

selfadjoint on dense domain in $\mathcal{H}=\mathcal{H}_{\mathsf{electron}}\otimes\mathcal{F}_{\mathsf{photon}},$ A in Coulomb gauge with UV cutoff.

▶ total momentum $m{P} := -i m{
abla}_{m{x}} + m{P}_{\mathsf{photon}}$, $[H, m{P}] = 0$

$$\Rightarrow \quad H = \Pi^* \big(\int^{\oplus} H_{\boldsymbol{P}} \ d^3 \boldsymbol{P} \big) \Pi, \quad \Pi \text{ a unitary identification}$$

Ground states of the Hamiltonians H_P

- Absence of ground states:
 - ▶ $H_{\mathbf{P}}$ do not have ground states (eigenvectors) for $\mathbf{P} \neq 0$ at least for small $\tilde{\alpha}$ and for $\mathbf{P} \in S = \{\mathbf{P} \in \mathbb{R}^3 : |\mathbf{P}| < \frac{1}{3}\}.$
 - This is a feature of the infraparticle problem
- Introduce an infrared cutoff:

$$H_{\boldsymbol{P},\sigma} := \frac{1}{2} (\boldsymbol{P} - \boldsymbol{P}_{\mathsf{photon}} + \tilde{\alpha}^{1/2} \boldsymbol{A}_{[\sigma,\kappa]}(0))^2 + H_{\mathsf{photon}}$$

selfadjoint on dense domain in Fock space \mathcal{F} over $L^2_{tr}(\mathbb{R}^3; \mathbb{C}^3)$; denote creators/annihilators as $a^*_{\lambda}(\mathbf{k})$, $a_{\lambda}(\mathbf{k})$.

$$A_{[\sigma,\kappa]}(\boldsymbol{x}) = \sum_{\lambda=\pm} \int \frac{d^3 \boldsymbol{k}}{\sqrt{|\boldsymbol{k}|}} \chi_{[\sigma,\kappa]}(|\boldsymbol{k}|) \boldsymbol{\epsilon}_{\lambda}(\boldsymbol{k}) \left(e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} a_{\lambda}^*(\boldsymbol{k}) + e^{i\boldsymbol{k}\cdot\boldsymbol{x}} a_{\lambda}(\boldsymbol{k}) \right)$$

(κ : UV cutoff, σ : IR cutoff)

Ground states with IR cutoff

- ► Fact: For any $\sigma > 0$, the operator $H_{P,\sigma}$ has a ground states (eigenvector) $\Psi_{P,\sigma} \in \mathcal{F}$ with isolated eigenvalues $E_{P,\sigma}$.
 - $\Psi_{\boldsymbol{P},\sigma}$ tend weakly to zero as $\sigma \to 0$.
- Hence ground states exist at fixed cutoff.
- However, we will need to remove the cutoff to describe the physical system.
- This will be done by considering suitable states on a CCR algebra.

Velocity superselection

Algebra of observables of the system "electron + photon cloud":

▶ Weyl (CCR) algebra \mathfrak{A} generated (up to closure in C^* -norm) by $W(\mathbf{f}), \mathbf{f} \in \mathcal{L} := \bigcup_{\epsilon > 0} L^2_{\mathsf{tr},\epsilon}(\mathbb{R}^3; \mathbb{C}^3),$ symplectic form $\sigma(\cdot, \cdot) := \mathrm{Im}\langle \cdot, \cdot \rangle.$

▶ Vacuum representation: $\pi_{vac}(W(f)) = e^{a^*(f) - a(f)}$

State: Given any $A \in \mathfrak{A}$, define

$$\omega_{\mathbf{P}}(A) := \lim_{\sigma \to 0} \langle \Psi_{\mathbf{P},\sigma}, \pi_{\mathsf{vac}}(A) \Psi_{\mathbf{P},\sigma} \rangle$$

► state on 𝔅, describes plane-wave configurations of the electron with velocity P

Representations: States $\omega_{\mathbf{P}}$ have irreducible GNS representations $\pi_{\mathbf{P}}$.

► Fact:
$$\pi_{P} \not\simeq \pi_{P'}$$
 for any $P \neq P'$ "velocity superselection"

Cause of the superselection problem

Analyze the phenomenon closely:

▶ introduce auxiliary vectors $\Phi_{{m P},\sigma} = W({m v}_{{m P},\sigma}) \Psi_{{m P},\sigma}$, where

$$\boldsymbol{v}_{\boldsymbol{P},\sigma}(\boldsymbol{k}) := \tilde{\alpha}^{1/2} P_{\mathsf{tr}} \frac{\chi_{[\sigma,\kappa]}(|\boldsymbol{k}|)}{|\boldsymbol{k}|^{3/2}} \frac{\nabla E_{\boldsymbol{P},\sigma}}{1 - \hat{\boldsymbol{k}} \cdot \nabla E_{\boldsymbol{P},\sigma}}$$

Fact: $\Phi_{\boldsymbol{P}} := \lim_{\sigma \to 0} \Phi_{\boldsymbol{P},\sigma}$ exists in norm for suitable choice of the phases of $\Psi_{\boldsymbol{P},\sigma}$.

$$\omega_{\mathbf{P}}(W(\mathbf{f})) = \lim_{\sigma \to 0} \langle \Phi_{\mathbf{P},\sigma}, \pi_{\mathsf{vac}} \Big(\underbrace{W(\mathbf{v}_{\mathbf{P},\sigma})W(\mathbf{f})W(\mathbf{v}_{\mathbf{P},\sigma})^*}_{:=\alpha_{\mathbf{v}_{\mathbf{P},\sigma}}(W(\mathbf{f}))} \Big) \Phi_{\mathbf{P},\sigma} \rangle$$

$$\alpha_{\pmb{v}_{\pmb{P},\sigma}}(W(\pmb{f})) = e^{-2i\operatorname{Im}\langle\pmb{v}_{\pmb{P},\sigma},\pmb{f}\rangle}W(\pmb{f})$$

For $\sigma > 0$, we have $\pi_{P,\sigma} \simeq \pi_{vac}$, but $\pi_P \not\simeq \pi_{vac}$

A possible solution: regularize the map $\alpha_{\pmb{v}_{\pmb{P},\sigma}} \Rightarrow \mathsf{Infravacuum\ state}$

Infravacuum state

Walter Kunhardt: DHR theory for the free massless scalar field

- \blacktriangleright automorphisms γ of the algebra of the free massless scalar field: similar structure to $\alpha_{v_{I\!\!P}}$
- \blacktriangleright γ have poor localization property in front of the vacuum:

$$\pi_{\mathsf{vac}} \circ \gamma \big|_{\mathfrak{A}(\mathcal{O}')} \not\simeq \pi_{\mathsf{vac}} \big|_{\mathfrak{A}(\mathcal{O}')}, \quad \pi_{\mathsf{vac}} \circ \gamma \big|_{\mathfrak{A}(\mathcal{C}')} \not\simeq \pi_{\mathsf{vac}} \big|_{\mathfrak{A}(\mathcal{C}')}$$

(\mathcal{O} a double cone, \mathcal{C} a spacelike cone)

improve the localization property: infravacuum state

$$\omega_T(W(f)) = e^{-\frac{1}{4}||Tf||^2}$$

Fact:
$$\pi_T \circ \gamma |_{\mathfrak{A}(\mathcal{C}')} \simeq \pi_T |_{\mathfrak{A}(\mathcal{C}')}$$

• automorphism of the algebra α_T : $\alpha_T(W(f)) = W(Tf)$

The symplectic map T

• Recall
$$\mathcal{L} := \bigcup_{\epsilon > 0} L^2_{tr,\epsilon}(\mathbb{R}^3; \mathbb{C}^3)$$

• $T : \mathcal{L} \to \mathcal{L}, \quad T = T_1 \frac{1+J}{2} + T_2 \frac{1-J}{2}$

$$T_1 := \mathbf{1} + \mathbf{s} - \lim_{n \to \infty} \sum_{i=1}^n (b_i - 1) \mathbf{Q}_i, \quad T_2 := \mathbf{1} + \mathbf{s} - \lim_{n \to \infty} \sum_{i=1}^n (\frac{1}{b_i} - 1) \mathbf{Q}_i$$

- ▶ $m{Q}_i$ orthogonal projectors on $L^2_{
 m tr}(\mathbb{R}^3;\mathbb{C}^3)$, $\sum_i m{Q}_i = 1$
- ► *i* large means "low energy"
- b_i decay with i large
- T modify the low energy behaviour of wave functions in L, and in particular of v_{P,σ}, in such a way that lim_{σ→0} Tv_{P,σ} ∈ L²_{tr}(ℝ³; ℂ³).

Infravacuum state

▶ Idea: Instead of ω_{P} , consider a modified state $\omega_{P,T}$ defined by

$$\begin{split} \omega_{\boldsymbol{P},T}(A) &:= \lim_{\sigma \to 0} \langle \Phi_{\boldsymbol{P},\sigma}, \pi_{\mathsf{vac}} \big(\alpha_T(\alpha_{\boldsymbol{v}_{\boldsymbol{P},\sigma}}(A)) \big) \Phi_{\boldsymbol{P},\sigma} \rangle \\ &= \lim_{\sigma \to 0} \langle \Phi_{\boldsymbol{P},\sigma}, \pi_{\mathsf{vac}} \big(\alpha_T(W(\boldsymbol{v}_{\boldsymbol{P},\sigma})AW(\boldsymbol{v}_{\boldsymbol{P},\sigma})^*) \big) \Phi_{\boldsymbol{P},\sigma} \rangle \\ &= \lim_{\sigma \to 0} \langle \Phi_{\boldsymbol{P},\sigma}, \pi_{\mathsf{vac}} \big(W(T\boldsymbol{v}_{\boldsymbol{P},\sigma})\alpha_T(A)W(T\boldsymbol{v}_{\boldsymbol{P},\sigma})^* \big) \Phi_{\boldsymbol{P},\sigma} \rangle \end{split}$$

► Fact:
$$\lim_{\sigma \to 0} T \boldsymbol{v}_{\boldsymbol{P},\sigma} := T \boldsymbol{v}_{\boldsymbol{P}} \in L^2_{tr}(\mathbb{R}^3; \mathbb{C}^3)$$

• Result: $\pi_{\boldsymbol{P},T} \simeq \pi_{\boldsymbol{P}',T}$ for any $\boldsymbol{P} \neq \boldsymbol{P}'$.

Restriction to the light cone

Alternative approach:

- Arbitrariness in the choice of the algebra A as long as it acts irreducibly on F and the states ω_P are well-defined.
- ► choose \mathfrak{A} to be the algebra of observables of the free electromagnetic field \rightarrow local and relativistic

$$\mathfrak{A}(\mathcal{O}) := C^* \{ e^{i(\boldsymbol{E}(\boldsymbol{f}_e) + \boldsymbol{B}(\boldsymbol{f}_b))} \mid \operatorname{supp} \boldsymbol{f}_e, \operatorname{supp} \boldsymbol{f}_b \subset \mathcal{O}, \boldsymbol{f}_{e,b} \in \mathcal{D}(\mathbb{R}^4, \mathbb{R}^3) \}$$

► Result: if $\mathfrak{A} := \overline{\bigcup_{\mathcal{O} \subset \mathbb{R}^4} \mathfrak{A}(\mathcal{O})}$ (quasi-local algebra), then $\pi_{\mathbf{P}} \simeq \pi_{\mathbf{P}'}$, but with $\mathfrak{A}(V_+) := \overline{\bigcup_{\mathcal{O} \subset V_+} \mathfrak{A}(\mathcal{O})}$,

$$\pi_{\boldsymbol{P}}\big|_{\mathfrak{A}(V_+)}\simeq \pi_{\boldsymbol{P}'}\big|_{\mathfrak{A}(V_+)} \text{ for any } \boldsymbol{P}, \boldsymbol{P}'\in S$$

(V_+ : forward light cone)

Restriction to the light cone

Recall that

$$\omega_{\mathbf{P}}(A) = \lim_{\sigma \to 0} \langle \Phi_{\mathbf{P},\sigma}, \pi_{\mathsf{vac}} \big(W(\mathbf{v}_{\mathbf{P},\sigma}) A W(\mathbf{v}_{\mathbf{P},\sigma})^* \big) \Phi_{\mathbf{P},\sigma} \rangle$$

Idea of proof:

- Use Huygens principle: $\mathfrak{A}(V_{-}) \subset \mathfrak{A}(V_{+})'$
- Approximate v_{P,σ} with functions in the symplectic space of the backward light cone V₋.
- ► Then $W(\boldsymbol{v}_{\boldsymbol{P},\sigma})$ and $A \in \mathfrak{A}(V_+)$ approximately commute, hence $\omega_{\boldsymbol{P}}$ lives in the vacuum representation.

• Hence
$$\pi_{\boldsymbol{P}}|_{\mathfrak{A}(V_+)} \simeq \pi_{\mathsf{vac}} \simeq \pi_{\boldsymbol{P}'}|_{\mathfrak{A}(V_+)}$$
 for any $\boldsymbol{P}, \boldsymbol{P}' \in S$.

Restriction to the light cone

Local approximation of v_P :

• The symplectic space for a double cone $O_r + \tau e_0$ is:

$$e^{i|\boldsymbol{k}|\tau} \mathcal{L}_{BJ}(O_r) := e^{i|\boldsymbol{k}|\tau} (1+J) \overline{|\boldsymbol{k}|^{-1/2} (i\boldsymbol{k} \times \tilde{\mathcal{D}}(O_r; \mathbb{R}^3))} + (1-J) \overline{|\boldsymbol{k}|^{1/2} P_{\mathsf{tr}} \tilde{\mathcal{D}}(O_r; \mathbb{R}^3)}$$

▶ Local approximant: Let $g : \mathbb{R}^3 \to \mathbb{R}$ be smooth and compactly supported, $\tilde{g}(\mathbf{0}) = 1$, consider

$$\hat{\boldsymbol{v}}_{\boldsymbol{P}}(\boldsymbol{k}) := \tilde{\alpha}^{1/2} P_{\mathsf{tr}} \frac{\tilde{g}(\boldsymbol{k}) e^{-iu|\boldsymbol{k}|} \nabla E_{\boldsymbol{P}}}{|\boldsymbol{k}|^{3/2} (1 - \nabla E_{\boldsymbol{P}} \cdot \hat{\boldsymbol{k}})}$$

 \blacktriangleright Hence, local approximant for $W(-i \pmb{v_P})$ is

$$W(-i\hat{\boldsymbol{v}}_{\boldsymbol{P},T}) = \exp\left(-i\tilde{\alpha}^{1/2}\int_{0}^{T}dt\int_{t}^{T}d\tau\frac{1}{(2\pi)^{3/2}}\nabla E_{\boldsymbol{P}}\cdot\boldsymbol{E}(g)(-u-\tau,-\nabla E_{\boldsymbol{P}}t)\right)$$

Conclusions and Outlook

- We have investigated the problem of velocity superselection in a non-relativistic QED model.
- ► Our resolution of this problem rely on two possible methods:
 - infravacuum state
 - restriction of the algebra to the forward light-cone
- It would be interesting to investigate the problem of scattering theory of many electrons in these two approaches.
- A method like Haag-Ruelle scattering theory could be applied:
 - In the first approach one needs to make sense of Haag-Ruelle scattering theory with respect to the infravacuum background state
 - In the second approach only either an outgoing or an incoming particle is available at the same time