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Problem:
System of nonrelativistic QED:
one “slow” spinless electron interacting with a cloud of photons

» Algebra of observables of the system electron + photons

» Coherent states wp (ground states of an Hamiltonian Hp,
P a total momentum of the system)

= they induce inequivalent representations of the algebra

problem of velocity superselection

Consequences:

» states of single electrons with different momenta P cannot be
coherently superimposed

» electron is an infraparticle (no definite mass)

» scattering theory of many electrons seems problematic
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The model
» Hamiltonian:
1, . -
H = §<_sz + al/QA(x»Q + thoton

selfadjoint on dense domain in % = Helectron @ Fphoton:
A in Coulomb gauge with UV cutoff.

» total momentum P := —iVy + Pphoton, [H,P] =0

b
= H= H*(/ Hp d3P)H, IT a unitary identification
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Ground states of the Hamiltonians Hp
» Absence of ground states:
» Hp do not have ground states (eigenvectors) for P = 0

at least for small & and for P€ S ={P € R® : |P| < 1}.
» This is a feature of the infraparticle problem

» Introduce an infrared cutoff:

)

1 ~
Hp, = i(P - Pphoton + al/QA[Ua’i] (0>)2 + Hphoton

selfadjoint on dense domain in Fock space F over L2 (R3; C?);
denote creators/annihilators as a3 (k), ax(k).

3k . A
Al (€) = /X o] ([k]ex(k) (e~ *a} (k) +e*ax (k)
o] A; N (e*%a3 )
(k: UV cutoff, o: IR cutoff)
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Ground states with IR cutoff

» Fact: For any o > 0, the operator Hp , has a ground states
(eigenvector) ¥p , € F with isolated eigenvalues Ep .

» Up , tend weakly to zero as 0 — 0.
» Hence ground states exist at fixed cutoff.
» However, we will need to remove the cutoff to describe the
physical system.
» This will be done by considering suitable states on a CCR
algebra.
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Velocity superselection

Algebra of observables of the system “electron + photon cloud":

» Weyl (CCR) algebra 2 generated (up to closure in C*-norm) by
W), f € L= Lir (R C),
symplectic form o(-,-) := Im(-, -).

» Vacuum representation: m.c(W (f)) = e (f)=a(f)
State: Given any A € 2, define
wP(A> = lim <\I/P,av7rvac(A)\I]P,a>

o—0

» state on 2, describes plane-wave configurations of the electron
with velocity P

Representations: States wp have irreducible GNS representations 7p.

» Fact: mp %2 7p: for any P # P’ “velocity superselection”
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Cause of the superselection problem

Analyze the phenomenon closely:

» introduce auxiliary vectors ®p , = W(vp,)Vp ,, where

X[a,n](|k|) VE1P,o
K[32 1 k. VEP,U.

VP (k) = dl/zf)tr

Fact: ®p := lim,_,0 Pp, exists in norm for suitable choice of
the phases of Up .

wp(W(f)) = lim (¢p,, Tvac(W (p o)W (f)W (vp,)* )®p,o)

o—
=awp (W(F))

avp, (W(f)) = e 2P LI (f)

» For o > 0, we have mp , ™~ Tyac, but mp % Tyac

A possible solution: regularize the map oy, . = Infravacuum state
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Infravacuum state

Walter Kunhardt: DHR theory for the free massless scalar field

» automorphisms v of the algebra of the free massless scalar field:
similar structure to ),

» ~ have poor localization property in front of the vacuum:
Tvac © 7‘91(01) Qé anc‘%((r)/)a Trvac © V‘Ql(c’) ¢ anc{m(cz)

(O a double cone, C a spacelike cone)

» improve the localization property: infravacuum state
=3I 12
wr(W(f)) =e"1

» Fact: WTo’y‘Q[ o = TFT‘Q[C,
» automorphism of the algebra ap: ar(W(f)) = W(Tf)
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The symplectic map T

> Recall £:=J.., L% (R%C?)
»T: L= L, T=T1"%+D5L

n n 1

Tii=14s lim Y- (hi-1)Qi Tp:=1lts lim >~ (- -1)Q;

i=1 i1

» Q; orthogonal projectors on LZ(R3;C?), 3. Q; =1
> i large means “low energy”
» b; decay with 7 large
» T modify the low energy behaviour of wave functions in £, and
in particular of vp ,, in such a way that
lim,_0 Twp,, € LL(R3;C3).
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Infravacuum state

» ldea: Instead of wp, consider a modified state wp  defined by

WP,T(A) = ;%<<I)P,m Tlvac (aT(avp_y(, (A)))q)P,a>
- ;%<(I)P,m Tvac (CVT(W(UP,U)AW(UP,J)*)) (I)P,O'>

= m(®p o, Tac (W(Twpq)ar(A)W(Tvp,)*)®p,y)

» Fact: lim, 9 Tvp, :=Tvp € L2(R3;C3)

» Result: mp p ~ wp/ 1 for any P # P’
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Restriction to the light cone

Alternative approach:

» Arbitrariness in the choice of the algebra 2( as long as it acts
irreducibly on F and the states wp are well-defined.

» choose 2 to be the algebra of observables of the free
electromagnetic field — local and relativistic

A(0) =
C*{BUFIFBU) | supp £, supp fi, C O, fe, € DR, R?)}

> Result: if 2 := (Jpcpa A(O) (quasi-local algebra),
then mp 2 mp/, but with (V) := Up ey, A(O),

for any P,P' € S

T lagv,) = TP )
(V4 forward light cone)
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Restriction to the light cone

Recall that
wp(A) = ;igb@P,m Tvac (W (vp o) AW (vp , )" ) Pp o)

Idea of proof:
» Use Huygens principle: 20(V_) C (V)
» Approximate vp , with functions in the symplectic space of the
backward light cone V_.

» Then W(vp,) and A € A(V,) approximately commute, hence
wp lives in the vacuum representation.

forany PP’ € S.

» Hence Wp‘m(v+) = Tvac = TP gy,
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Restriction to the light cone

Local approximation of vp:
» The symplectic space for a double cone O, + Teg is:

e*Lpr(0,) =

eRIT(14.7) k| =1/2(ik x D(O,; R3))+(1—J)|k|\/2 P, D(O,; R3)
» Local approximant: Let g : R? — R be smooth and compactly
supported, g(0) = 1, consider
&/2p g(k)e "k Ep

vp(k) = . -
p(k) kP21 - VEp k)

» Hence, local approximant for W(—ivp) is

W(—ivpr) =

T T
. 1
exp< al/z/o dt/t d7(27r)3/2VEp E(g)(— u—T,—VEpt))
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Conclusions and Outlook

» We have investigated the problem of velocity superselection in a
non-relativistic QED model.

v

Our resolution of this problem rely on two possible methods:

» infravacuum state
» restriction of the algebra to the forward light-cone

v

It would be interesting to investigate the problem of scattering
theory of many electrons in these two approaches.
A method like Haag-Ruelle scattering theory could be applied:
» In the first approach one needs to make sense of Haag-Ruelle
scattering theory with respect to the infravacuum background
state
» In the second approach only either an outgoing or an incoming
particle is available at the same time

v
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