N-Particle Scattering and Asymptotic Completeness in Interacting Wedge-local QFT Models

Maximilian Duell (PhD Project, supervisor: Wojciech Dybalski)

Zentrum Mathematik Technische Universität München

Mathematics of interacting QFT models, York, July 1-5, 2019

Quantum Field Theory (QFT) used to formulate dynamical laws governing scattering reactions, particle structure, -creation and -decay processes.

 Quantum Field Theory (QFT) used to formulate dynamical laws governing scattering reactions, particle structure, -creation and -decay processes.

 Scattering Theory of massive QFT is mathematically well understood. [Haag'58] [Ruelle'62]

 Quantum Field Theory (QFT) used to formulate dynamical laws governing scattering reactions, particle structure, -creation and -decay processes.

 Scattering Theory of massive QFT is mathematically well understood. [Haag'58] [Ruelle'62]

Yet, so far only very few interacting QFT models have been constructed with mathematical control.

 Quantum Field Theory (QFT) used to formulate dynamical laws governing scattering reactions, particle structure, -creation and -decay processes.

 Scattering Theory of massive QFT is mathematically well understood. [Haag'58] [Ruelle'62]

Yet, so far only very few interacting QFT models have been constructed with mathematical control.

More recent progress: Rigorous constructions of "almost" QFTs ("wedge-local") exhibiting non-trivial 2-particle interactions. [Grosse, Lechner'07] [Buchholz, Lechner, Summers'11]

What is the physical interpretation of these models?

Scattering Amplitudes

 $S_{fi}=\left. {}^{
m out}\langle 1\,2\,3|1^{\prime}\,2^{\prime}
ight
angle {}^{
m in}$

- Scattering Amplitudes $S_{fi} = {}^{\text{out}} \langle 1 2 3 | 1' 2' \rangle^{\text{in}}$

 - Large-time limit $\tau \to \infty$:
 - $|1\,2\,3
 angle^{\mathsf{out}}:=\lim_{ au o\infty}B_{1 au}B_{2 au}B_{3 au}|\Omega
 angle$
 - $B_{k au}|\Omega
 angle \stackrel{}{ o}_{ au
 ightarrow\infty} |k
 angle$
 - "Haag-Ruelle Theory"

- Scattering Amplitudes $S_{fi} = {}^{\text{out}} \langle 1 2 3 | 1' 2' \rangle^{\text{in}}$
- Large-time limit $\tau \to \infty$:

 $|1\,2\,3
angle^{ ext{out}}:=\lim_{ au o\infty}B_{1 au}B_{2 au}B_{3 au}|\Omega
angle$

 $B_{k au}|\Omega
angle \stackrel{}{ o}_{ au
ightarrow\infty} |k
angle$

"Haag-Ruelle Theory"

 Existence of Limit proven using Separation of Localizations

 $\lim_{\tau\to\infty}\|[B_{1\tau},B_{2\tau}]\|\to 0$

Scattering Amplitudes

$$S_{\it fi}=~^{
m out}\langle 1\,2\,3|1^\prime\,2^\prime
angle^{
m in}$$

• Large-time limit $\tau \to \infty$:

 $|123
angle^{
m out}:=\lim_{ au
ightarrow\infty}B_{1 au}B_{2 au}B_{3 au}|\Omega
angle$

 $B_{k au}|\Omega
angle \stackrel{}{_{_{_{_{_{}}}}\to\infty}}|k
angle$

"Haag-Ruelle Theory"

 Existence of Limit proven using Separation of Localizations

 $\lim_{\tau\to\infty}\|[B_{1\tau},B_{2\tau}]\|\to 0$

Wedges W₁, W₂, W₃ cannot pairwise space-like separate!

Overview

Introduction: Framework and Assumptions

Wedge-local N-Particle Scattering Theory

Importance of Velocity Ordering Wedge-Swapping Symmetry of 1-Particle States Wedge-local Haag-Ruelle Theorem

Applications of wedge-local *N*-particle scattering theory Asymptotic Completeness of Grosse-Lechner models Example: Failure of Asymptotic Completeness

Outlook and Summary

Field Theory: φ(x) measurable quantity associated to space-time point x ∈ ℝ^{s+1} (e.g. electromagn. fields)

Field Theory: φ(x) measurable quantity associated to space-time point x ∈ ℝ^{s+1} (e.g. electromagn. fields)

▶ Quantum Field Theory (QFT): $\phi(x)$ "operator" on \mathscr{H}

Field Theory: $\phi(x)$ measurable quantity associated to space-time point $x \in \mathbb{R}^{s+1}$ (e.g. electromagn. fields) • Quantum Field Theory (QFT): $\phi(x)$ "operator" on \mathcal{H} ▶ Local QFT: $\phi(x)$ localized in $\mathscr{C}_R + x$, $x = (t, \mathbf{x}) \in \mathbb{R}^{s+1}$: $\mathscr{C}_R + x_1, \ \mathscr{C}_R + x_2 \text{ space-like} \implies [\phi(x_1), \phi(x_2)] = 0$ $\mathcal{C}_{P} + x$

3/17

► Wedge-Local QFT: $\phi_{\mathcal{W}}(t, \mathbf{x})$ localized in $\mathcal{W} + (t, \mathbf{x})$: $x_1 + \mathcal{W}_1, x_2 + \mathcal{W}_2$ space-like $\implies [\phi_{\mathcal{W}_1}(x_1), \phi_{\mathcal{W}_2}(x_2)] = 0$ MATHEMATICALLY/PHYSICALLY WEAKER! Family of Rindler-Wedge-Regions in Space-Time

$$\mathcal{W}_{\mathsf{r}} := \{(t, \mathsf{x}) \in \mathbb{R}^{\mathsf{s}+1} : |t| < x_1\}$$

Definition: General Wedge regions \mathcal{W} are generated by Poincaré transformations $\lambda \in \mathcal{P} = \mathcal{L} \ltimes \mathbb{R}^{s+1}$

$$\mathcal{W} = \lambda \mathcal{W}_{\mathsf{r}} = \Lambda \mathcal{W}_{\mathsf{r}} + x$$

Elementary advantages: Highly symmetric, causally closed, ... 4/17

Axiomatic framework for Wedge-local QFT

Wedge-local model defined by specifying the following mathematical objects $(\mathfrak{A}, \alpha, \Omega, \mathcal{H})$.

- ▶ Hilbert space *ℋ* of vector states
- ▶ Distinguished *vacuum* state $\Omega \in \mathscr{H}$
- "Net" of von Neumann algebras $\mathcal{W} \mapsto \mathfrak{A}(\mathcal{W}) \subset B(\mathscr{H})$, $\mathcal{W} \subset \mathbb{R}^{s+1}$ wedge region in space-time
- ▶ Space-time translations of states $(t, \mathbf{x}) \mapsto U(t, \mathbf{x}) = e^{itH i\mathbf{x} \cdot \mathbf{P}}$
- ▶ Translations of observables $\alpha_x A := A(x) := U(x) A U(x)^*$

These objects $(\mathfrak{A}, \alpha, \Omega, \mathscr{H})$ further have to satisfy the wedge-local **Haag-Kastler postulates**.

Firstly, minimal assumptions required for a sensible interpretation of $A \in \mathfrak{A}(W) \subset B(\mathscr{H})$ "being **localizable**" in wedge $W \subset \mathbb{R}^{s+1}$,

(HK1) Isotony: $\mathcal{W}_1 \subset \mathcal{W}_2 \Longrightarrow \mathfrak{A}(\mathcal{W}_1) \subset \mathfrak{A}(\mathcal{W}_2)$

(HK2) Wedge-Locality: $\mathcal{W}_1 \subset \mathcal{W}_2' \Longrightarrow \mathfrak{A}(\mathcal{W}_1) \subset \mathfrak{A}(\mathcal{W}_2)'$

(HK3) Translation-Covariance: $\alpha_x \mathfrak{A}(W) = \mathfrak{A}(W + x)$

These objects $(\mathfrak{A}, \alpha, \Omega, \mathscr{H})$ further have to satisfy the wedge-local **Haag-Kastler postulates**.

Firstly, minimal assumptions required for a sensible interpretation of $A \in \mathfrak{A}(\mathcal{W}) \subset B(\mathscr{H})$ "being **localizable**" in wedge $\mathcal{W} \subset \mathbb{R}^{s+1}$,

(HK1) Isotony: $\mathcal{W}_1 \subset \mathcal{W}_2 \Longrightarrow \mathfrak{A}(\mathcal{W}_1) \subset \mathfrak{A}(\mathcal{W}_2)$

(HK2) Wedge-Locality: $\mathcal{W}_1 \subset \mathcal{W}_2' \Longrightarrow \mathfrak{A}(\mathcal{W}_1) \subset \mathfrak{A}(\mathcal{W}_2)'$

(HK3) Translation-Covariance: $\alpha_x \mathfrak{A}(W) = \mathfrak{A}(W + x)$

Secondly, need assumptions on structure of Hilbert space of states:
(HK4) Uniqueness of the vacuum Ω
(HK5) Haag-Ruelle Spectrum Condition:
Positivity of Energy
Existence of Isolated Mass Shell (Stable 1-particle states, purely massive theory)

(HK6) Cyclicity of Ω

Space-time translations α unitarily implemented: $(A \in \mathfrak{A}, x = (t, \mathbf{x}))$ $A(x) := \alpha_x(A) = U(x)AU(x)^*$

Generators of space-time translations:

$$U(t, \mathbf{x}) = e^{iHt - i\mathbf{P}\cdot\mathbf{x}}$$

Shape of joint spectrum of (H, P) specified by spectrum condition:

$$\sigma_{(H,P)} = \{0\} \cup H_m \cup \bar{H}_{2m}$$

Space-time translations α unitarily implemented: $(A \in \mathfrak{A}, x = (t, \mathbf{x}))$ $A(x) := \alpha_x(A) = U(x)AU(x)^*$

Generators of space-time translations:

$$U(t, \mathbf{x}) = e^{iHt - i\mathbf{P}\cdot\mathbf{x}}$$

Shape of joint spectrum of (H, P) specified by spectrum condition:

$$\sigma_{(H,P)} = \{0\} \cup H_m \cup \bar{H}_{2m}$$

Space-time translations α unitarily implemented: $(A \in \mathfrak{A}, x = (t, \mathbf{x}))$ $A(x) := \alpha_x(A) = U(x)AU(x)^*$

Generators of space-time translations:

$$U(t,\mathbf{x}) = e^{iHt-i\mathbf{P}\cdot\mathbf{x}}$$

Shape of joint spectrum of (H, P) specified by spectrum condition:

$$\sigma_{(H,P)} = \{0\} \cup H_m \cup \bar{H}_{2m}$$

Def. (Wigner particle) Single-particle states are eigenvectors $\Psi_1 \in \mathscr{H}$ of the mass operator $M^2 := H^2 - \mathbf{P}^2$.

Space-time translations α unitarily implemented: $(A \in \mathfrak{A}, x = (t, \mathbf{x}))$ $A(x) := \alpha_x(A) = U(x)AU(x)^*$

Generators of space-time translations:

$$U(t, \mathbf{x}) = e^{iHt - i\mathbf{P}\cdot\mathbf{x}}$$

Shape of joint spectrum of (H, P) specified by spectrum condition:

$$\sigma_{(H,P)} = \{0\} \cup H_m \cup \bar{H}_{2m}$$

Def. (Wigner particle) Single-particle states are eigenvectors $\Psi_1 \in \mathscr{H}$ of the mass operator $M^2 := H^2 - \mathbf{P}^2$.

 $_{/17}$ Mass Gaps \Rightarrow Separation of H_m and $\sigma_{(H,P)} \setminus H_m$ via $\hat{\chi} \in \mathscr{S}(\mathbb{R}^{s+1})$

Definition of Haag-Ruelle Creation-Op. Approximants

From a given wedge-local operator $A \in \mathfrak{A}(W)$ can construct new operators by space-time translations $\alpha_x(A)$ and via superpositions.

Combined: **Space-time Smearing** of *A* with $\chi : \mathbb{R}^{s+1} \longrightarrow \mathbb{C}$,

$$B := A(\chi) := \int \mathrm{d}^{s+1} x \, \chi(x) \alpha_x(A)$$

Definition of Haag-Ruelle Creation-Op. Approximants

From a given wedge-local operator $A \in \mathfrak{A}(W)$ can construct new operators by space-time translations $\alpha_x(A)$ and via superpositions.

Combined: **Space-time Smearing** of A with $\chi : \mathbb{R}^{s+1} \longrightarrow \mathbb{C}$,

$$B := A(\chi) := \int \mathrm{d}^{s+1} x \, \chi(x) lpha_x(A)$$

Apply: Construct Solution of 1-Particle Problem [Haag, Ruelle'60s]

(Step 1) Construction of 1-Particle States

If $\hat{\chi}$ separates mass shell from remaining spectrum, $B = A(\chi)$ creates 1-particle states from vacuum:

$$B\Omega \in \mathscr{H}_1 = E(H_m)\mathscr{H}$$

(Step 2) Introduce Comparison Dynamics Adding spatial smearing with Klein-Gordon solution $f \implies \tau$ -independent one-particle vector $B_{\tau}(f)\Omega$, created at time τ .

^{8/17} But: Wedge-Localization is obstacle for multi-particle problem!

Important: Localization and Ordering of Wave Packets and B_{τ} 's

$$egin{aligned} &f(t,\mathbf{x}) := \int \mathrm{d}^{\mathbf{s}} k \, \mathrm{e}^{-\mathrm{i}\omega_m(\mathbf{k})t + \mathrm{i}\mathbf{k}\cdot\mathbf{x}} \, ilde{f}(\mathbf{k}), & \omega_m(\mathbf{k}) := \sqrt{\mathbf{k}^2 + m^2}, \ & B_{ au}(f) := \int \mathrm{d}^{\mathbf{s}} x \, f(au,\mathbf{x}) \, B(au,\mathbf{x}), & ilde{f} \in \mathscr{C}^\infty_c(\mathbb{R}^s), & au \in \mathbb{R}. \end{aligned}$$

Important: Localization and Ordering of Wave Packets and B_{τ} 's

$$egin{aligned} &f(t,\mathbf{x}) := \int \mathrm{d}^{s} k \; \mathrm{e}^{-\mathrm{i}\omega_{m}(\mathbf{k})t + \mathrm{i}\mathbf{k}\cdot\mathbf{x}} \; ilde{f}(\mathbf{k}), & \omega_{m}(\mathbf{k}) := \sqrt{\mathbf{k}^{2} + m^{2}}, \ & B_{ au}(f) := \int \mathrm{d}^{s} x \; f(au,\mathbf{x}) \; B(au,\mathbf{x}), & ilde{f} \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{s}), & au \in \mathbb{R}. \end{aligned}$$

Important: Localization and Ordering of Wave Packets and B_{τ} 's

$$\begin{split} f(t,\mathbf{x}) &:= \int \mathrm{d}^{s} k \, \mathrm{e}^{-\mathrm{i}\omega_{m}(\mathbf{k})t + \mathrm{i}\mathbf{k}\cdot\mathbf{x}} \, \tilde{f}(\mathbf{k}), \quad \omega_{m}(\mathbf{k}) := \sqrt{\mathbf{k}^{2} + m^{2}}, \\ B_{\tau}(f) &:= \int \mathrm{d}^{s} x \, f(\tau,\mathbf{x}) \, B(\tau,\mathbf{x}), \quad \tilde{f} \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{s}), \quad \tau \in \mathbb{R}. \end{split}$$

Defs.: Velocity support: $\mathcal{V}(f) := \{(1, \frac{\mathbf{k}}{\omega_m(\mathbf{k})}) : \mathbf{k} \in \operatorname{supp} \tilde{f}\}$

Important: Localization and Ordering of Wave Packets and B_{τ} 's

$$\begin{split} f(t,\mathbf{x}) &:= \int \mathrm{d}^{s} k \, \mathrm{e}^{-\mathrm{i}\omega_{m}(\mathbf{k})t + \mathrm{i}\mathbf{k}\cdot\mathbf{x}} \, \tilde{f}(\mathbf{k}), \quad \omega_{m}(\mathbf{k}) := \sqrt{\mathbf{k}^{2} + m^{2}}, \\ B_{\tau}(f) &:= \int \mathrm{d}^{s} x \, f(\tau,\mathbf{x}) \, B(\tau,\mathbf{x}), \quad \tilde{f} \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{s}), \quad \tau \in \mathbb{R}. \end{split}$$

Defs.: Velocity support: $\mathcal{V}(f) := \{(1, \frac{\mathbf{k}}{\omega_m(\mathbf{k})}) : \mathbf{k} \in \operatorname{supp} \tilde{f}\}$

Important: Localization and Ordering of Wave Packets and B_{τ} 's

$$\begin{split} f(t,\mathbf{x}) &:= \int \mathrm{d}^{s} k \, \mathrm{e}^{-\mathrm{i}\omega_{m}(\mathbf{k})t + \mathrm{i}\mathbf{k}\cdot\mathbf{x}} \, \tilde{f}(\mathbf{k}), \quad \omega_{m}(\mathbf{k}) := \sqrt{\mathbf{k}^{2} + m^{2}}, \\ B_{\tau}(f) &:= \int \mathrm{d}^{s} x \, f(\tau,\mathbf{x}) \, B(\tau,\mathbf{x}), \quad \tilde{f} \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{s}), \quad \tau \in \mathbb{R}. \end{split}$$

Defs.: Velocity support: $\mathcal{V}(f) := \{(1, \frac{\mathbf{k}}{\omega_m(\mathbf{k})}) : \mathbf{k} \in \operatorname{supp} \tilde{f}\}$

Important: Localization and Ordering of Wave Packets and B_{τ} 's

$$\begin{split} f(t,\mathbf{x}) &:= \int \mathrm{d}^{s} k \, \mathrm{e}^{-\mathrm{i}\omega_{m}(\mathbf{k})t + \mathrm{i}\mathbf{k}\cdot\mathbf{x}} \, \tilde{f}(\mathbf{k}), \quad \omega_{m}(\mathbf{k}) := \sqrt{\mathbf{k}^{2} + m^{2}}, \\ B_{\tau}(f) &:= \int \mathrm{d}^{s} x \, f(\tau,\mathbf{x}) \, B(\tau,\mathbf{x}), \quad \tilde{f} \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{s}), \quad \tau \in \mathbb{R}. \end{split}$$

Defs.: Velocity support: $\mathcal{V}(f) := \{(1, \frac{\mathbf{k}}{\omega_m(\mathbf{k})}) : \mathbf{k} \in \operatorname{supp} \tilde{f}\}$

Precursor Order Relation:

 $\mathcal{V}_1 \prec_{\mathcal{W}} \mathcal{V}_2 :\Leftrightarrow \mathcal{V}_2 - \mathcal{V}_1 \subset \mathcal{W}.$ $(\mathcal{V}_k \subset \mathbb{R}^{s+1}, \mathcal{W} \text{ centered})$

Important: Localization and Ordering of Wave Packets and B_{τ} 's

$$\begin{split} f(t,\mathbf{x}) &:= \int \mathrm{d}^{s} k \, \mathrm{e}^{-\mathrm{i}\omega_{m}(\mathbf{k})t + \mathrm{i}\mathbf{k}\cdot\mathbf{x}} \, \tilde{f}(\mathbf{k}), \quad \omega_{m}(\mathbf{k}) := \sqrt{\mathbf{k}^{2} + m^{2}}, \\ B_{\tau}(f) &:= \int \mathrm{d}^{s} x \, f(\tau,\mathbf{x}) \, B(\tau,\mathbf{x}), \quad \tilde{f} \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{s}), \quad \tau \in \mathbb{R}. \end{split}$$

Defs.: Velocity support: $\mathcal{V}(f) := \{(1, \frac{\mathsf{k}}{\omega_m(\mathsf{k})}) : \mathsf{k} \in \operatorname{supp} \tilde{f}\}$

Precursor Order Relation:

$$\begin{split} \mathcal{V}_1 \prec_{\mathcal{W}} \mathcal{V}_2 & : \Leftrightarrow \mathcal{V}_2 - \mathcal{V}_1 \subset \mathcal{W}. \\ (\mathcal{V}_k \subset \mathbb{R}^{s+1}, \ \mathcal{W} \ \text{centered}) \end{split}$$

Proposition: Correct Ordering leads to Commutator Decay.

Ingredient (1): **Correct Ordering** Let $A_k \in \mathfrak{A}(\mathcal{W})$, $(1 \le k \le n)$, $B_k := A_k(\chi)$, and f_k s.t. $\mathcal{V}(f_n) \prec_{\mathcal{W}} \mathcal{V}(f_{n-1}) \prec_{\mathcal{W}} \ldots \prec_{\mathcal{W}} \mathcal{V}(f_1)$.

Then corresponding outgoing scattering state defined by

$$\Psi^+ := \lim_{\tau \to \infty} B_{1\tau}(f_1) B_{2\tau}(f_2) \dots B_{n\tau}(f_n) \Omega,$$

Ingredient (1): **Correct Ordering** Let $A_k \in \mathfrak{A}(\mathcal{W})$, $(1 \le k \le n)$, $B_k := A_k(\chi)$, and f_k s.t. $\mathcal{V}(f_n) \prec_{\mathcal{W}} \mathcal{V}(f_{n-1}) \prec_{\mathcal{W}} \ldots \prec_{\mathcal{W}} \mathcal{V}(f_1)$.

Then corresponding outgoing scattering state defined by

$$\Psi^+ := \lim_{\tau \to \infty} B_{1\tau}(f_1) B_{2\tau}(f_2) \dots B_{n\tau}(f_n) \Omega,$$

Ingredient (1): **Correct Ordering** Let $A_k \in \mathfrak{A}(\mathcal{W})$, $(1 \le k \le n)$, $B_k := A_k(\chi)$, and f_k s.t. $\mathcal{V}(f_n) \prec_{\mathcal{W}} \mathcal{V}(f_{n-1}) \prec_{\mathcal{W}} \ldots \prec_{\mathcal{W}} \mathcal{V}(f_1)$.

Then corresponding outgoing scattering state defined by

$$\Psi^+ := \lim_{\tau \to \infty} B_{1\tau}(f_1) B_{2\tau}(f_2) \dots B_{n\tau}(f_n) \Omega,$$

Ingredient (1): **Correct Ordering** Let $A_k \in \mathfrak{A}(\mathcal{W})$, $(1 \le k \le n)$, $B_k := A_k(\chi)$, and f_k s.t. $\mathcal{V}(f_n) \prec_{\mathcal{W}} \mathcal{V}(f_{n-1}) \prec_{\mathcal{W}} \ldots \prec_{\mathcal{W}} \mathcal{V}(f_1)$.

Then corresponding outgoing scattering state defined by

$$\Psi^+ := \lim_{\tau \to \infty} B_{1\tau}(f_1) B_{2\tau}(f_2) \dots B_{n\tau}(f_n) \Omega,$$

(2) Wedge-Swapping Symmetry of 1-Particle States

(2) Wedge-Swapping Symmetry of 1-Particle States

Def.: A one-particle state $\Psi_1 \in \mathscr{H}_1$ is swappable w.r.t. \mathcal{W} if $\Psi_1 = E(H_m)A\Omega = E(H_m)A^{\perp}\Omega$, for $A \in \mathfrak{A}(\mathcal{W}), A^{\perp} \in \mathfrak{A}(\mathcal{W}^{\perp})$.

(2) Wedge-Swapping Symmetry of 1-Particle States

Def.: A one-particle state $\Psi_1 \in \mathscr{H}_1$ is swappable w.r.t. \mathcal{W} if $\Psi_1 = E(H_m)A\Omega = E(H_m)A^{\perp}\Omega$, for $A \in \mathfrak{A}(\mathcal{W}), A^{\perp} \in \mathfrak{A}(\mathcal{W}^{\perp})$.

Remark: Swappable Ψ_1 can be constructed from **Wedge duality** $11/17\mathfrak{A}(\mathcal{W})' = \mathfrak{A}(\mathcal{W}')$ using Tomita-Takesaki Theory, dense in \mathscr{H}_1 .

Main Result: Wedge-local Haag-Ruelle Theorem

Fix a wedge \mathcal{W} , let $\Psi_k = E(H_m)A_k\Omega = E(H_m)A_k^{\perp}\Omega$ swappable, i.e. $A_k \in \mathfrak{A}(\mathcal{W})$, $A_k^{\perp} \in \mathfrak{A}(\mathcal{W}^{\perp})$, and assume isolated mass shells. Let f_1, \ldots, f_n regular Klein-Gordon solutions with velocities $\mathcal{V}(f_k)$ ordered s.t.

$$\mathcal{V}(f_n) \prec_{\mathcal{W}} \ldots \prec_{\mathcal{W}} \mathcal{V}(f_1)$$

let $\Psi_k := \lim_{\tau \to \infty} B_{k\tau}(f_k)\Omega$ and consider scattering-state approximants $\Psi(\tau) := B_{1\tau}(f_1)B_{2\tau}(f_2)\dots B_{n\tau}(f_n)\Omega.$

Main Result: Wedge-local Haag-Ruelle Theorem

Fix a wedge \mathcal{W} , let $\Psi_k = E(H_m)A_k\Omega = E(H_m)A_k^{\perp}\Omega$ swappable, i.e. $A_k \in \mathfrak{A}(\mathcal{W})$, $A_k^{\perp} \in \mathfrak{A}(\mathcal{W}^{\perp})$, and assume isolated mass shells. Let f_1, \ldots, f_n regular Klein-Gordon solutions with velocities $\mathcal{V}(f_k)$ ordered s.t.

$$\mathcal{V}(f_n) \prec_{\mathcal{W}} \ldots \prec_{\mathcal{W}} \mathcal{V}(f_1)$$

let $\Psi_k := \lim_{\tau \to \infty} B_{k\tau}(f_k) \Omega$ and consider scattering-state approximants $\Psi(\tau) := B_{1\tau}(f_1) B_{2\tau}(f_2) \dots B_{n\tau}(f_n) \Omega.$

Theorem. [MD'18] (1) $\Psi^+ := \lim_{\tau \to +\infty} \Psi(\tau)$ convergent. (2) For fixed \mathcal{W} with "upright geometry", scalar products of any

(2) For fixed \mathcal{W} with "upright geometry", scalar products of any two such Ψ^+ , Ψ'^+ are given by the Fock structure relation $\left\langle \Psi^+, \Psi'^+ \right\rangle = \delta_{nn'} \prod_{k=1}^n \left\langle \Psi_k, \Psi'_k \right\rangle.$

Interpretation: Ψ^+ outgoing scattering state 12/17 **Remark:** get also incoming Ψ^- , but need **opposite ordering**

 $A_k \in \mathfrak{A}(\mathcal{W}), A_k^{\perp} \in \mathfrak{A}(\mathcal{W}^{\perp}), \text{ s.t. } E_m A_k \Omega = E_m A_k^{\perp} \Omega, (1 \le k \le 3)$ Let f_k reg. positive-energy KG solutions, $\mathcal{V}_{f_3} \prec_{\mathcal{W}} \mathcal{V}_{f_2} \prec_{\mathcal{W}} \mathcal{V}_{f_1}$. $B_k^{(\perp)} := A_k^{(\perp)}(\chi), \text{ and consider}$

$$\Psi^{\mathsf{out}} := \lim_{\tau \to \infty} \Psi_{ au} := \lim_{\tau \to \infty} B_{1 au}(f_1) B_{2 au}(f_2) B_{3 au}(f_3) \Omega.$$

 $A_k \in \mathfrak{A}(\mathcal{W}), A_k^{\perp} \in \mathfrak{A}(\mathcal{W}^{\perp}), \text{ s.t. } E_m A_k \Omega = E_m A_k^{\perp} \Omega, (1 \le k \le 3)$ Let f_k reg. positive-energy KG solutions, $\mathcal{V}_{f_3} \prec_{\mathcal{W}} \mathcal{V}_{f_2} \prec_{\mathcal{W}} \mathcal{V}_{f_1}$. $B_k^{(\perp)} := A_k^{(\perp)}(\chi)$, and consider

$$\Psi^{\mathsf{out}} := \lim_{ au o \infty} \Psi_ au := \lim_{ au o \infty} B_{1 au}(f_1) B_{2 au}(f_2) B_{3 au}(f_3) \Omega.$$

Proof of Convergence via Cook's Method: For $\tau_2 > \tau_1 > 0$,

$$\Psi_{\tau_2} - \Psi_{\tau_1} = \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \ \partial_\tau \Psi_\tau \tag{1}$$

 $A_k \in \mathfrak{A}(\mathcal{W}), A_k^{\perp} \in \mathfrak{A}(\mathcal{W}^{\perp}), \text{ s.t. } E_m A_k \Omega = E_m A_k^{\perp} \Omega, (1 \le k \le 3)$ Let f_k reg. positive-energy KG solutions, $\mathcal{V}_{f_3} \prec_{\mathcal{W}} \mathcal{V}_{f_2} \prec_{\mathcal{W}} \mathcal{V}_{f_1}$. $B_k^{(\perp)} := A_k^{(\perp)}(\chi)$, and consider

$$\Psi^{\mathsf{out}} := \lim_{\tau \to \infty} \Psi_{ au} := \lim_{\tau \to \infty} B_{1 au}(f_1) B_{2 au}(f_2) B_{3 au}(f_3) \Omega.$$

Proof of Convergence via Cook's Method: For $\tau_2 > \tau_1 > 0$,

$$\Psi_{\tau_2} - \Psi_{\tau_1} = \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \; \partial_\tau \Psi_\tau \tag{1}$$

$$B_{1\tau}(f_1)B_{2\tau}(f_2)\partial_{\tau}B_{3\tau}(f_3)\Omega = 0$$

 $A_k \in \mathfrak{A}(\mathcal{W}), A_k^{\perp} \in \mathfrak{A}(\mathcal{W}^{\perp}), \text{ s.t. } E_m A_k \Omega = E_m A_k^{\perp} \Omega, (1 \le k \le 3)$ Let f_k reg. positive-energy KG solutions, $\mathcal{V}_{f_3} \prec_{\mathcal{W}} \mathcal{V}_{f_2} \prec_{\mathcal{W}} \mathcal{V}_{f_1}$. $B_k^{(\perp)} := A_k^{(\perp)}(\chi)$, and consider

$$\Psi^{\mathsf{out}} := \lim_{\tau \to \infty} \Psi_{ au} := \lim_{\tau \to \infty} B_{1 au}(f_1) B_{2 au}(f_2) B_{3 au}(f_3) \Omega.$$

Proof of Convergence via Cook's Method: For $\tau_2 > \tau_1 > 0$,

$$\Psi_{\tau_2} - \Psi_{\tau_1} = \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \; \partial_\tau \Psi_\tau \tag{1}$$

$$B_{1\tau}(f_1)B_{2\tau}(f_2)\partial_{\tau}B_{3\tau}(f_3)\Omega = 0$$

$$B_{1\tau}(f_1)(\partial_{\tau}B_{2\tau}(f_2))B_{3\tau}(f_3)\Omega \stackrel{(swap)}{=} B_{1\tau}(f_1)(\partial_{\tau}B_{2\tau}(f_2))B_{3\tau}^{\perp}(f_3)\Omega$$

 $A_k \in \mathfrak{A}(\mathcal{W}), A_k^{\perp} \in \mathfrak{A}(\mathcal{W}^{\perp}), \text{ s.t. } E_m A_k \Omega = E_m A_k^{\perp} \Omega, (1 \le k \le 3)$ Let f_k reg. positive-energy KG solutions, $\mathcal{V}_{f_3} \prec_{\mathcal{W}} \mathcal{V}_{f_2} \prec_{\mathcal{W}} \mathcal{V}_{f_1}$. $B_k^{(\perp)} := A_k^{(\perp)}(\chi)$, and consider

$$\Psi^{\mathsf{out}} := \lim_{\tau \to \infty} \Psi_{ au} := \lim_{\tau \to \infty} B_{1 au}(f_1) B_{2 au}(f_2) B_{3 au}(f_3) \Omega.$$

Proof of Convergence via Cook's Method: For $\tau_2 > \tau_1 > 0$,

$$\Psi_{\tau_2} - \Psi_{\tau_1} = \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \; \partial_\tau \Psi_\tau \tag{1}$$

$$B_{1\tau}(f_1)B_{2\tau}(f_2)\partial_{\tau}B_{3\tau}(f_3)\Omega = 0$$

$$B_{1\tau}(f_1)(\partial_{\tau}B_{2\tau}(f_2))B_{3\tau}(f_3)\Omega \stackrel{(swap)}{=} B_{1\tau}(f_1)(\partial_{\tau}B_{2\tau}(f_2))B_{3\tau}^{\perp}(f_3)\Omega$$

$$= B_{1\tau}(f_1)\underbrace{[\partial_{\tau}B_{2\tau}(f_2)), B_{3\tau}^{\perp}(f_3)]}_{\|\cdot\| \le C_N \tau^{-N}}\Omega + 0$$

 $A_k \in \mathfrak{A}(\mathcal{W}), A_k^{\perp} \in \mathfrak{A}(\mathcal{W}^{\perp}), \text{ s.t. } E_m A_k \Omega = E_m A_k^{\perp} \Omega, (1 \le k \le 3)$ Let f_k reg. positive-energy KG solutions, $\mathcal{V}_{f_3} \prec_{\mathcal{W}} \mathcal{V}_{f_2} \prec_{\mathcal{W}} \mathcal{V}_{f_1}$. $B_k^{(\perp)} := A_k^{(\perp)}(\chi)$, and consider

$$\Psi^{\mathsf{out}} := \lim_{\tau \to \infty} \Psi_{ au} := \lim_{\tau \to \infty} B_{1 au}(f_1) B_{2 au}(f_2) B_{3 au}(f_3) \Omega.$$

Proof of Convergence via Cook's Method: For $\tau_2 > \tau_1 > 0$,

$$\Psi_{\tau_2} - \Psi_{\tau_1} = \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \; \partial_\tau \Psi_\tau \tag{1}$$

$$B_{1\tau}(f_1)B_{2\tau}(f_2)\partial_{\tau}B_{3\tau}(f_3)\Omega = 0$$

$$B_{1\tau}(f_1)(\partial_{\tau}B_{2\tau}(f_2))B_{3\tau}(f_3)\Omega \stackrel{(swap)}{=} B_{1\tau}(f_1)(\partial_{\tau}B_{2\tau}(f_2))B_{3\tau}^{\perp}(f_3)\Omega$$

$$= B_{1\tau}(f_1)\underbrace{[\partial_{\tau}B_{2\tau}(f_2)), B_{3\tau}^{\perp}(f_3)]}_{\|\cdot\| \le C_N \tau^{-N}}\Omega + 0$$

Recall:
$$\mathcal{V}_{f_3} \prec \mathcal{V}_{f_2} \prec \mathcal{V}_{f_1}$$

 $(\partial_{\tau}B_{1\tau}(f_1))B_{2\tau}(f_2)B_{3\tau}(f_3)\Omega = (\partial_{\tau}B_{1\tau}(f_1))B_{2\tau}(f_2)B_{3\tau}^{\perp}(f_3)\Omega$
 $= B_{3\tau}^{\perp}(f_3)(\partial_{\tau}B_{1\tau}(f_1))B_{2\tau}(f_2)\Omega + \text{commutators}$
 $= B_{3\tau}^{\perp}(f_3)(\partial_{\tau}B_{1\tau}(f_1))B_{2\tau}^{\perp}(f_2)\Omega + O(\tau^{-N})$
 $= B_{3\tau}^{\perp}(f_3)B_{2\tau}^{\perp}(f_2)(\partial_{\tau}B_{1\tau}(f_1))\Omega + \text{more comm.}$
 $= 0 + O(\tau^{-N}).$

Recall:
$$\mathcal{V}_{f_3} \prec \mathcal{V}_{f_2} \prec \mathcal{V}_{f_1}$$

 $(\partial_{\tau} B_{1\tau}(f_1)) B_{2\tau}(f_2) B_{3\tau}(f_3) \Omega = (\partial_{\tau} B_{1\tau}(f_1)) B_{2\tau}(f_2) B_{3\tau}^{\perp}(f_3) \Omega$
 $= B_{3\tau}^{\perp}(f_3) (\partial_{\tau} B_{1\tau}(f_1)) B_{2\tau}(f_2) \Omega + \text{commutators}$
 $= B_{3\tau}^{\perp}(f_3) (\partial_{\tau} B_{1\tau}(f_1)) B_{2\tau}^{\perp}(f_2) \Omega + O(\tau^{-N})$
 $= B_{3\tau}^{\perp}(f_3) B_{2\tau}^{\perp}(f_2) (\partial_{\tau} B_{1\tau}(f_1)) \Omega + \text{more comm.}$
 $= 0 + O(\tau^{-N}).$

Thus,

$$\|\Psi_{\tau_2} - \Psi_{\tau_1}\| \leq \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \ \|\partial_{\tau}\Psi_{\tau}\| \leq \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \ C_N \tau^{-N} \leq C'_N \tau^{-N+1}$$

is Cauchy for $\tau \to +\infty$.

Recall:
$$\mathcal{V}_{f_3} \prec \mathcal{V}_{f_2} \prec \mathcal{V}_{f_1}$$

 $(\partial_{\tau}B_{1\tau}(f_1))B_{2\tau}(f_2)B_{3\tau}(f_3)\Omega = (\partial_{\tau}B_{1\tau}(f_1))B_{2\tau}(f_2)B_{3\tau}^{\perp}(f_3)\Omega$
 $= B_{3\tau}^{\perp}(f_3)(\partial_{\tau}B_{1\tau}(f_1))B_{2\tau}(f_2)\Omega + \text{commutators}$
 $= B_{3\tau}^{\perp}(f_3)(\partial_{\tau}B_{1\tau}(f_1))B_{2\tau}^{\perp}(f_2)\Omega + O(\tau^{-N})$
 $= B_{3\tau}^{\perp}(f_3)B_{2\tau}^{\perp}(f_2)(\partial_{\tau}B_{1\tau}(f_1))\Omega + \text{more comm.}$
 $= 0 + O(\tau^{-N}).$

Thus,

$$\|\Psi_{\tau_2} - \Psi_{\tau_1}\| \leq \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \ \|\partial_{\tau}\Psi_{\tau}\| \leq \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \ C_N \tau^{-N} \leq C'_N \tau^{-N+1}$$

is Cauchy for $\tau \to +\infty$.

But: Perhaps $\Psi_{\tau} \rightarrow 0$?

Recall:
$$\mathcal{V}_{f_3} \prec \mathcal{V}_{f_2} \prec \mathcal{V}_{f_1}$$

 $(\partial_{\tau} B_{1\tau}(f_1)) B_{2\tau}(f_2) B_{3\tau}(f_3) \Omega = (\partial_{\tau} B_{1\tau}(f_1)) B_{2\tau}(f_2) B_{3\tau}^{\perp}(f_3) \Omega$
 $= B_{3\tau}^{\perp}(f_3) (\partial_{\tau} B_{1\tau}(f_1)) B_{2\tau}(f_2) \Omega + \text{commutators}$
 $= B_{3\tau}^{\perp}(f_3) (\partial_{\tau} B_{1\tau}(f_1)) B_{2\tau}^{\perp}(f_2) \Omega + O(\tau^{-N})$
 $= B_{3\tau}^{\perp}(f_3) B_{2\tau}^{\perp}(f_2) (\partial_{\tau} B_{1\tau}(f_1)) \Omega + \text{more comm.}$
 $= 0 + O(\tau^{-N}).$

Thus,

$$\|\Psi_{\tau_2} - \Psi_{\tau_1}\| \leq \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \ \|\partial_{\tau}\Psi_{\tau}\| \leq \int_{\tau_1}^{\tau_2} \mathrm{d}\tau \ C_N \tau^{-N} \leq C'_N \tau^{-N+1}$$

is Cauchy for $\tau \to +\infty$.

But: Perhaps $\Psi_{\tau} \rightarrow 0$?

14/17**Answer:** Excluded by (Fock structure) result [MD'18].

Ordered Asymptotic Completeness in Wedge-local QFT

 Wedge-local Møller-Operators W[±]_W can exhibit dependence on the preparation wedge W (ruled out in local QFT),

 $\mathbf{W}_{\mathcal{W}}^{\pm}\Psi_{1}\otimes\ldots\otimes\Psi_{N}:=\lim_{\tau\to\pm\infty}B_{1\tau}(f_{1})\ldots B_{N\tau}(f_{N})\Omega,$ where $B_{k\tau}(f_{k})\Omega=\Psi_{k}, B_{k}=A_{k}(\chi), A_{k}\in\mathfrak{A}(\mathcal{W}).$

Wedge-local Møller-Operators W[±]_W can exhibit dependence on the preparation wedge W (ruled out in local QFT),

 $\mathbf{W}_{\mathcal{W}}^{\pm}\Psi_{1}\otimes\ldots\otimes\Psi_{N}:=\lim_{\tau\to\pm\infty}B_{1\tau}(f_{1})\ldots B_{N\tau}(f_{N})\Omega,$ where $B_{k\tau}(f_{k})\Omega=\Psi_{k}, B_{k}=A_{k}(\chi), A_{k}\in\mathfrak{A}(\mathcal{W}).$

Construction of W[±]_W a priori only for velocity-ordered configurations, i.e. W[±]_W : Γ^{≻_W/≺_W → ℋ map on ordered Fock spaces}

 $\Gamma^{\succ_{\mathcal{W}}} := \mathsf{span}\{\Psi_1 \otimes \ldots \otimes \Psi_N, \Psi_1 \prec_{\mathcal{W}} \ldots \prec_{\mathcal{W}} \Psi_N, N \in \mathbb{N}_0\}.$

Wedge-local Møller-Operators W[±]_W can exhibit dependence on the preparation wedge W (ruled out in local QFT),

 $\mathbf{W}_{\mathcal{W}}^{\pm}\Psi_{1}\otimes\ldots\otimes\Psi_{N}:=\lim_{\tau\to\pm\infty}B_{1\tau}(f_{1})\ldots B_{N\tau}(f_{N})\Omega,$ where $B_{k\tau}(f_{k})\Omega=\Psi_{k}, B_{k}=A_{k}(\chi), A_{k}\in\mathfrak{A}(\mathcal{W}).$

Construction of W[±]_W a priori only for velocity-ordered configurations, i.e. W[±]_W : Γ<sup>≻_W/≺_W → ℋ map on ordered Fock spaces
 Γ^{≻_W} := span{Ψ₁ ⊗ ... ⊗ Ψ_N, Ψ₁ ≺_W ... ≺_W Ψ_N, N ∈ N₀}.
</sup>

Def.: A wedge-local QFT $(\mathfrak{A}, U, \Omega, \mathscr{H})$ is asymptotically complete (AC), if $\overline{\mathbf{W}_{\mathcal{W}}^{\pm}\mathcal{V}^{\succ_{\mathcal{W}}/\prec_{\mathcal{W}}}} = \mathscr{H}$ for any wedge region \mathcal{W} .

Wedge-local Møller-Operators W[±]_W can exhibit dependence on the preparation wedge W (ruled out in local QFT),

 $\mathbf{W}_{\mathcal{W}}^{\pm}\Psi_{1}\otimes\ldots\otimes\Psi_{N}:=\lim_{\tau\to\pm\infty}B_{1\tau}(f_{1})\ldots B_{N\tau}(f_{N})\Omega,$ where $B_{k\tau}(f_{k})\Omega=\Psi_{k}, B_{k}=A_{k}(\chi), A_{k}\in\mathfrak{A}(\mathcal{W}).$

Construction of W[±]_W a priori only for velocity-ordered configurations, i.e. W[±]_W : Γ<sup>≻_W/≺_W → ℋ map on ordered Fock spaces
Γ^{≻_W} := span{Ψ₁ ⊗ ... ⊗ Ψ_N, Ψ₁ ≺_W ... ≺_W Ψ_N, N ∈ N₀}.</sup>

Def.: A wedge-local QFT $(\mathfrak{A}, U, \Omega, \mathscr{H})$ is asymptotically complete (AC), if $\overline{\mathbf{W}}_{\mathcal{W}}^{\pm}\mathcal{V}^{\succ_{\mathcal{W}}/\prec_{\mathcal{W}}} = \mathscr{H}$ for any wedge region \mathcal{W} .

Lemma. (in preparation) In the models of [Grosse,Lechner'07] and [Buchholz,Lechner,Summers'11] we have $\mathbf{W}_{Q,W}^{\pm} = \mathbf{W}_{0,W}^{\pm} S_Q^{\succ W/\prec W}$, with unitary $S_Q^{\succ W/\prec W} = \prod_{1 \le i < j \le N} e^{iP_i \cdot QP_j/2}$, Q GL deformation matrix. (*)

 Wedge-local Møller-Operators W[±]_W can exhibit dependence on the preparation wedge W (ruled out in local QFT),

 $\mathbf{W}_{\mathcal{W}}^{\pm}\Psi_{1}\otimes\ldots\otimes\Psi_{N}:=\lim_{\tau\to\pm\infty}B_{1\tau}(f_{1})\ldots B_{N\tau}(f_{N})\Omega,$ where $B_{k\tau}(f_{k})\Omega=\Psi_{k}$, $B_{k}=A_{k}(\chi)$, $A_{k}\in\mathfrak{A}(\mathcal{W})$.

Construction of W[±]_W a priori only for velocity-ordered configurations, i.e. W[±]_W : Γ<sup>≻_W/≺_W → ℋ map on ordered Fock spaces
 Γ^{≻_W} := span{Ψ₁ ⊗ ... ⊗ Ψ_N, Ψ₁ ≺_W ... ≺_W Ψ_N, N ∈ N₀}.
</sup>

Def.: A wedge-local QFT $(\mathfrak{A}, U, \Omega, \mathscr{H})$ is asymptotically complete (AC), if $\overline{\mathbf{W}_{W}^{\pm}}\mathcal{V}^{\succ_{W}/\prec_{W}} = \mathscr{H}$ for any wedge region \mathcal{W} .

Lemma. (in preparation) In the models of [Grosse,Lechner'07] and [Buchholz,Lechner,Summers'11] we have $\mathbf{W}_{Q,W}^{\pm} = \mathbf{W}_{0,W}^{\pm} S_Q^{\succ W/\prec W}$, with unitary $S_Q^{\succ W/\prec W} = \prod_{1 \le i < j \le N} e^{iP_i \cdot QP_j/2}$, Q GL deformation matrix. (*)

Kor. BLS-deformed model AC \iff underlying undeformed model AC. Thm. *N*-particle states of GL-model have factorizing scattering data (*).

 $^{15/17}$ Hence the GL-Model is interacting and asymptotically complete

Inspiration: [Longo, Tanimoto, Ueda'17] [D'Antoni, Longo, Rădulescu'01]

$$\begin{split} \mathscr{H}_{1} &:= L^{2}(\mathbb{R}, \mathrm{d}\theta) \\ \mathscr{H} &:= \Gamma^{u}(\mathscr{H}_{1}) = \bigoplus_{k=0}^{\infty} \bigotimes^{k} \mathscr{H}_{1} \qquad (\text{unsymmetrized}) \\ U(x, \Lambda) &= \Gamma(U_{1}(x, \Lambda)) \end{split}$$

Inspiration: [Longo, Tanimoto, Ueda'17] [D'Antoni, Longo, Rădulescu'01]

$$\begin{aligned} \mathscr{H}_{1} &:= L^{2}(\mathbb{R}, \mathrm{d}\theta) \\ \mathscr{H} &:= \Gamma^{u}(\mathscr{H}_{1}) = \bigoplus_{k=0}^{\infty} \bigotimes^{k} \mathscr{H}_{1} \qquad (\text{unsymmetrized}) \\ U(x, \Lambda) &= \Gamma(U_{1}(x, \Lambda)) \\ &z^{*}(\psi) \Psi_{n} := \sqrt{n} \ \psi \otimes \Psi_{n}, \qquad \psi \in \mathscr{H}_{1}, \\ (z(\psi) \Psi)_{n}(\theta_{1}, \dots, \theta_{n}) &:= \sqrt{n+1} \int \mathrm{d}\theta \ \overline{\psi(\theta)} \ \Psi_{n+1}(\theta, \theta_{1}, \dots, \theta_{n}), \\ &(J\Psi)_{n}(\theta_{1}, \dots, \theta_{n}) := \overline{\Psi_{n}(\theta_{n}, \dots, \theta_{1})}. \end{aligned}$$

Inspiration: [Longo, Tanimoto, Ueda'17] [D'Antoni, Longo, Rădulescu'01]

$$\begin{aligned} \mathscr{H}_{1} &:= L^{2}(\mathbb{R}, \mathrm{d}\theta) \\ \mathscr{H} &:= \Gamma^{u}(\mathscr{H}_{1}) = \bigoplus_{k=0}^{\infty} \bigotimes^{k} \mathscr{H}_{1} \qquad (\text{unsymmetrized}) \\ U(x, \Lambda) &= \Gamma(U_{1}(x, \Lambda)) \\ &z^{*}(\psi) \Psi_{n} := \sqrt{n} \ \psi \otimes \Psi_{n}, \qquad \psi \in \mathscr{H}_{1}, \\ (z(\psi) \Psi)_{n}(\theta_{1}, \dots, \theta_{n}) &:= \sqrt{n+1} \int \mathrm{d}\theta \ \overline{\psi(\theta)} \ \Psi_{n+1}(\theta, \theta_{1}, \dots, \theta_{n}), \\ &(J\Psi)_{n}(\theta_{1}, \dots, \theta_{n}) &:= \overline{\Psi_{n}(\theta_{n}, \dots, \theta_{1})}. \end{aligned}$$
Define fields $(f \in \mathscr{S}(\mathbb{R}^{2}), \ m > 0)$

$$\begin{split} \Phi(f) &:= z^*(f^+) + z(f^-), \quad \Phi'(f) := J\Phi(f^*)J, \\ f^{\pm}(\theta) &:= \int \frac{\mathrm{d}^2 x}{2\pi} \, \mathrm{e}^{\pm \mathrm{i} p_m(\theta) \cdot x} f(x). \end{split}$$

Inspiration: [Longo, Tanimoto, Ueda'17] [D'Antoni, Longo, Rădulescu'01]

$$\begin{aligned} \mathscr{H}_{1} &:= L^{2}(\mathbb{R}, \mathrm{d}\theta) \\ \mathscr{H} &:= \Gamma^{u}(\mathscr{H}_{1}) = \bigoplus_{k=0}^{\infty} \bigotimes^{k} \mathscr{H}_{1} \quad (\text{unsymmetrized}) \\ U(x, \Lambda) &= \Gamma(U_{1}(x, \Lambda)) \\ z^{*}(\psi)\Psi_{n} &:= \sqrt{n} \; \psi \otimes \Psi_{n}, \quad \psi \in \mathscr{H}_{1}, \\ (z(\psi)\Psi)_{n}(\theta_{1}, \dots, \theta_{n}) &:= \sqrt{n+1} \int \mathrm{d}\theta \; \overline{\psi(\theta)} \; \Psi_{n+1}(\theta, \theta_{1}, \dots, \theta_{n}), \\ (J\Psi)_{n}(\theta_{1}, \dots, \theta_{n}) &:= \overline{\Psi_{n}(\theta_{n}, \dots, \theta_{1})}. \end{aligned}$$
Define fields $(f \in \mathscr{S}(\mathbb{R}^{2}), \; m > 0)$
 $\Phi(f) &:= z^{*}(f^{+}) + z(f^{-}), \quad \Phi'(f) &:= J\Phi(f^{*})J, \\ f^{\pm}(\theta) &:= \int \frac{\mathrm{d}^{2}x}{2\pi} \; \mathrm{e}^{\pm \mathrm{i}p_{m}(\theta) \cdot x} f(x). \end{aligned}$

Observation: ordered incoming and outgoing states are orthogonal, 16/17 ordered AC fails.

Outlook and Summary

- Scattering Theory of Haag and Ruelle has been extended to massive wedge-local theories [MD'18]. Most notably, a fully general treatment of the N ≥ 3-particle case is provided.
- Applicable to presently known wedge-local models. (Interacting non-perturbative models in space-time-dim. four already available!)

Outlook and Summary

- Scattering Theory of Haag and Ruelle has been extended to massive wedge-local theories [MD'18]. Most notably, a fully general treatment of the N ≥ 3-particle case is provided.
- Applicable to presently known wedge-local models. (Interacting non-perturbative models in space-time-dim. four already available!)

Outlook and Open Problems:

- ▶ Work in progress: GL/BLS-models are the first examples wedge-local QFT on space-time dim. d ≥ 2 + 1 which are both interacting and asymptotically complete
- Many open conceptual questions on scattering in wedge-local QFT
- Extension to massless wedge-local case?

Outlook and Summary

- Scattering Theory of Haag and Ruelle has been extended to massive wedge-local theories [MD'18]. Most notably, a fully general treatment of the N ≥ 3-particle case is provided.
- Applicable to presently known wedge-local models. (Interacting non-perturbative models in space-time-dim. four already available!)

Outlook and Open Problems:

- ▶ Work in progress: GL/BLS-models are the first examples wedge-local QFT on space-time dim. d ≥ 2 + 1 which are both interacting and asymptotically complete
- Many open conceptual questions on scattering in wedge-local QFT
- Extension to massless wedge-local case?

Thank you for your attention.