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Scattering Processes are the particle physicists’ Microscope.

I Quantum Field Theory (QFT) used to
formulate dynamical laws governing
scattering reactions, particle structure,
-creation and -decay processes.

I Scattering Theory of massive QFT is
mathematically well understood.

[Haag’58] [Ruelle’62]

I Yet, so far only very few interacting
QFT models have been constructed with
mathematical control.

More recent progress: Rigorous constructions of “almost”QFTs
(“wedge-local”) exhibiting non-trivial 2-particle interactions.

[Grosse, Lechner’07] [Buchholz, Lechner, Summers’11]

What is the physical interpretation of these models?
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Problematic Geometry of Wedge-local 3-Particle Scattering

I Scattering Amplitudes

Sfi = out〈1 2 3|1′ 2′〉in

I Large-time limit τ →∞:

|1 2 3〉out := lim
τ→∞

B1τB2τB3τ |Ω〉

Bkτ |Ω〉 →
τ→∞

|k〉

“Haag-Ruelle Theory”

I Existence of Limit proven
using Separation of
Localizations

lim
τ→∞

‖[B1τ ,B2τ ]‖ → 0

I Wedges W1,W2,W3 cannot
pairwise space-like separate!
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What is a Wedge-local QFT?
I Field Theory: φ(x) measurable quantity associated to

space-time point x ∈ Rs+1 (e.g. electromagn. fields)

I Quantum Field Theory (QFT): φ(x) “operator” on H

I Local QFT: φ(x) localized in CR + x , x = (t, x) ∈ Rs+1:

CR + x1, CR + x2 space-like =⇒ [φ(x1), φ(x2)] = 0

CR CR + x

W ′ W+x

I Wedge-Local QFT: φW(t, x) localized in W + (t, x):

x1 +W1, x2 +W2 space-like =⇒ [φW1(x1), φW2(x2)] = 0

MATHEMATICALLY/PHYSICALLY WEAKER!
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Family of Rindler-Wedge-Regions in Space-Time

Rindler Reference Wedge:

Wr :={(t, x) ∈ Rs+1 : |t| < x1}

Definition: General Wedge regions W are generated by Poincaré
transformations λ ∈ P = LnRs+1

W = λWr = ΛWr + x

Elementary advantages: Highly symmetric, causally closed, . . .
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Axiomatic framework for Wedge-local QFT

Wedge-local model defined by specifying the following
mathematical objects (A, α,Ω,H ).

I Hilbert space H of vector states

I Distinguished vacuum state Ω ∈H

I “Net” of von Neumann algebras W 7→ A(W) ⊂ B(H ),
W ⊂ Rs+1 wedge region in space-time

I Space-time translations of states (t, x) 7→ U(t, x) = e itH−ix·P

I Translations of observables αxA := A(x) := U(x)AU(x)∗
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These objects (A, α,Ω,H ) further have to satisfy the wedge-local
Haag-Kastler postulates.

Firstly, minimal assumptions required for a sensible interpretation
of A ∈ A(W) ⊂ B(H ) “being localizable” in wedge W ⊂ Rs+1,

(HK1) Isotony: W1 ⊂ W2 =⇒ A(W1) ⊂ A(W2)

(HK2) Wedge-Locality: W1 ⊂ W ′2 =⇒ A(W1) ⊂ A(W2)′

(HK3) Translation-Covariance: αxA(W) = A(W + x)

Secondly, need assumptions on structure of Hilbert space of states:

(HK4) Uniqueness of the vacuum Ω

(HK5) Haag-Ruelle Spectrum Condition:

I Positivity of Energy
I Existence of Isolated Mass Shell

(Stable 1-particle states, purely massive theory)

(HK6) Cyclicity of Ω
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Analysis of the Particle Content & Spectrum Condition

Space-time translations α unitarily implemented: (A ∈ A, x = (t, x))

A(x) := αx (A) = U(x)AU(x)∗

p

ω

suppE (∆)
Hm

supp χ̂

Generators of space-time translations:

U(t, x) = eiHt−iP·x

Shape of joint spectrum of (H,P)
specified by spectrum condition:

σ(H,P) = {0} ∪ Hm ∪ H̄2m

Def. (Wigner particle) Single-particle
states are eigenvectors Ψ1 ∈ H of
the mass operator M2 := H2 − P2.

Mass Gaps ⇒ Separation of Hm and σ(H,P) \Hm via χ̂ ∈ S (Rs+1)
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Definition of Haag-Ruelle Creation-Op. Approximants
From a given wedge-local operator A ∈ A(W) can construct new
operators by space-time translations αx (A) and via superpositions.

Combined: Space-time Smearing of A with χ : Rs+1 −→ C,

B := A(χ) :=

∫
ds+1x χ(x)αx (A)

Apply: Construct Solution of 1-Particle Problem [Haag, Ruelle’60s]

(Step 1) Construction of 1-Particle States
If χ̂ separates mass shell from remaining spectrum,
B = A(χ) creates 1-particle states from vacuum:

BΩ ∈H1 = E (Hm)H

(Step 2) Introduce Comparison Dynamics
Adding spatial smearing with Klein-Gordon solution f
=⇒ τ -independent one-particle vector Bτ (f )Ω,

created at time τ .

But: Wedge-Localization is obstacle for multi-particle problem!
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Towards Construction of N-Particle Scattering States

Important: Localization and Ordering of Wave Packets and Bτ ’s

f (t, x) :=

∫
dsk e−iωm(k)t+ik·x f̃ (k), ωm(k) :=

√
k2 + m2,

Bτ (f ) :=

∫
dsx f (τ, x) B(τ, x), f̃ ∈ C∞c (Rs), τ ∈ R.

supp f ↑
B⊥τ (f ⊥) Bτ (f )B⊥τ (f )Bτ (f ⊥)

τ

x

t
Defs.: Velocity support:

V(f ) := {(1, k
ωm(k)) : k ∈ supp f̃ }

Precursor Order Relation:

V1≺W V2 :⇔ V2 − V1 ⊂ W.

(Vk ⊂ Rs+1, W centered)

Proposition: Correct Ordering leads to Commutator Decay.
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Construction of N-Particle Scattering States [MD’18]

Ingredient (1): Correct Ordering

Let Ak ∈ A(W), (1 ≤ k ≤ n), Bk := Ak (χ), and fk s.t.

V(fn) ≺W V(fn−1) ≺W . . . ≺W V(f1).

Then corresponding outgoing scattering state defined by

Ψ+ := lim
τ→∞

B1τ (f1)B2τ (f2) . . .Bnτ (fn)Ω,

where ordering of operators must match velocity order!

Vn Vn−1 V3 V2 V1

V1 +W

V1. . .
x

t > 0t = τ
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(2) Wedge-Swapping Symmetry of 1-Particle States

Ψ+ := lim
τ→∞

B1τ (f1)B2τ (f2) . . .Bnτ (fn)Ω.

Bnτ (fn)

Vn

Bn−1τ (fn−1)

Vn−1

B3τ (f3)

V3

B2τ (f2)

V2

B1τ (f1)

V1

B⊥nτ (fn)

Vn

. . .

x

t > 0t = τ

Def.: A one-particle state Ψ1 ∈H1 is swappable w.r.t. W if

Ψ1 = E (Hm)AΩ = E (Hm)A⊥Ω, for A ∈ A(W),A⊥ ∈ A(W⊥).

Remark: Swappable Ψ1 can be constructed from Wedge duality
A(W)′ = A(W ′) using Tomita-Takesaki Theory, dense in H1.
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Main Result: Wedge-local Haag-Ruelle Theorem
Fix a wedge W, let Ψk = E (Hm)Ak Ω = E (Hm)A⊥k Ω swappable,
i.e. Ak ∈ A(W), A⊥k ∈ A(W⊥), and assume isolated mass shells.

Let f1, . . . , fn regular Klein-Gordon solutions with velocities V(fk )
ordered s.t.

V(fn) ≺W . . . ≺W V(f1)

let Ψk := lim
τ→∞

Bkτ (fk )Ω and consider scattering-state approximants

Ψ(τ) := B1τ (f1)B2τ (f2) . . .Bnτ (fn)Ω.

Theorem. [MD’18] (1) Ψ+ := limτ→+∞Ψ(τ) convergent.

(2) For fixed W with “upright geometry”, scalar products of any
two such Ψ+, Ψ′+ are given by the Fock structure relation〈

Ψ+,Ψ′+
〉

= δnn′

n∏
k=1

〈
Ψk ,Ψ

′
k

〉
.

Interpretation: Ψ+ outgoing scattering state
Remark: get also incoming Ψ−, but need opposite ordering
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Proof Idea (Convergence of 3-Particle Out-States)
Ak ∈ A(W), A⊥k ∈ A(W⊥), s.t. EmAk Ω = EmA⊥k Ω, (1 ≤ k ≤ 3)
Let fk reg. positive-energy KG solutions, Vf3 ≺W Vf2 ≺W Vf1 .

B
(⊥)
k := A

(⊥)
k (χ), and consider

Ψout := lim
τ→∞

Ψτ := lim
τ→∞

B1τ (f1)B2τ (f2)B3τ (f3)Ω.

Proof of Convergence via Cook’s Method: For τ2 > τ1 > 0,

Ψτ2 −Ψτ1 =

∫ τ2

τ1

dτ ∂τΨτ (1)

Here, ∂τΨτ has 3 terms. Their contributions to (1) are estimated
via a novel strategy [MD’18],

B1τ (f1)B2τ (f2)∂τB3τ (f3)Ω = 0

B1τ (f1)(∂τB2τ (f2))B3τ (f3)Ω
(swap)

= B1τ (f1)(∂τB2τ (f2))B⊥3τ (f3)Ω

= B1τ (f1) [∂τB2τ (f2)),B⊥3τ (f3)]︸ ︷︷ ︸
‖·‖≤CNτ−N

Ω + 0

= O(τ−N)



13/17

Proof Idea (Convergence of 3-Particle Out-States)
Ak ∈ A(W), A⊥k ∈ A(W⊥), s.t. EmAk Ω = EmA⊥k Ω, (1 ≤ k ≤ 3)
Let fk reg. positive-energy KG solutions, Vf3 ≺W Vf2 ≺W Vf1 .

B
(⊥)
k := A

(⊥)
k (χ), and consider

Ψout := lim
τ→∞

Ψτ := lim
τ→∞

B1τ (f1)B2τ (f2)B3τ (f3)Ω.

Proof of Convergence via Cook’s Method: For τ2 > τ1 > 0,

Ψτ2 −Ψτ1 =

∫ τ2

τ1

dτ ∂τΨτ (1)

Here, ∂τΨτ has 3 terms. Their contributions to (1) are estimated
via a novel strategy [MD’18],

B1τ (f1)B2τ (f2)∂τB3τ (f3)Ω = 0

B1τ (f1)(∂τB2τ (f2))B3τ (f3)Ω
(swap)

= B1τ (f1)(∂τB2τ (f2))B⊥3τ (f3)Ω

= B1τ (f1) [∂τB2τ (f2)),B⊥3τ (f3)]︸ ︷︷ ︸
‖·‖≤CNτ−N

Ω + 0

= O(τ−N)



13/17

Proof Idea (Convergence of 3-Particle Out-States)
Ak ∈ A(W), A⊥k ∈ A(W⊥), s.t. EmAk Ω = EmA⊥k Ω, (1 ≤ k ≤ 3)
Let fk reg. positive-energy KG solutions, Vf3 ≺W Vf2 ≺W Vf1 .

B
(⊥)
k := A

(⊥)
k (χ), and consider

Ψout := lim
τ→∞

Ψτ := lim
τ→∞

B1τ (f1)B2τ (f2)B3τ (f3)Ω.

Proof of Convergence via Cook’s Method: For τ2 > τ1 > 0,

Ψτ2 −Ψτ1 =

∫ τ2

τ1

dτ ∂τΨτ (1)

Here, ∂τΨτ has 3 terms. Their contributions to (1) are estimated
via a novel strategy [MD’18],

B1τ (f1)B2τ (f2)∂τB3τ (f3)Ω = 0

B1τ (f1)(∂τB2τ (f2))B3τ (f3)Ω
(swap)

= B1τ (f1)(∂τB2τ (f2))B⊥3τ (f3)Ω

= B1τ (f1) [∂τB2τ (f2)),B⊥3τ (f3)]︸ ︷︷ ︸
‖·‖≤CNτ−N

Ω + 0

= O(τ−N)



13/17

Proof Idea (Convergence of 3-Particle Out-States)
Ak ∈ A(W), A⊥k ∈ A(W⊥), s.t. EmAk Ω = EmA⊥k Ω, (1 ≤ k ≤ 3)
Let fk reg. positive-energy KG solutions, Vf3 ≺W Vf2 ≺W Vf1 .

B
(⊥)
k := A

(⊥)
k (χ), and consider

Ψout := lim
τ→∞

Ψτ := lim
τ→∞

B1τ (f1)B2τ (f2)B3τ (f3)Ω.

Proof of Convergence via Cook’s Method: For τ2 > τ1 > 0,

Ψτ2 −Ψτ1 =

∫ τ2

τ1

dτ ∂τΨτ (1)

Here, ∂τΨτ has 3 terms. Their contributions to (1) are estimated
via a novel strategy [MD’18],

B1τ (f1)B2τ (f2)∂τB3τ (f3)Ω = 0

B1τ (f1)(∂τB2τ (f2))B3τ (f3)Ω
(swap)

= B1τ (f1)(∂τB2τ (f2))B⊥3τ (f3)Ω

= B1τ (f1) [∂τB2τ (f2)),B⊥3τ (f3)]︸ ︷︷ ︸
‖·‖≤CNτ−N

Ω + 0

= O(τ−N)



13/17

Proof Idea (Convergence of 3-Particle Out-States)
Ak ∈ A(W), A⊥k ∈ A(W⊥), s.t. EmAk Ω = EmA⊥k Ω, (1 ≤ k ≤ 3)
Let fk reg. positive-energy KG solutions, Vf3 ≺W Vf2 ≺W Vf1 .

B
(⊥)
k := A

(⊥)
k (χ), and consider

Ψout := lim
τ→∞

Ψτ := lim
τ→∞

B1τ (f1)B2τ (f2)B3τ (f3)Ω.

Proof of Convergence via Cook’s Method: For τ2 > τ1 > 0,

Ψτ2 −Ψτ1 =

∫ τ2

τ1

dτ ∂τΨτ (1)

Here, ∂τΨτ has 3 terms. Their contributions to (1) are estimated
via a novel strategy [MD’18],

B1τ (f1)B2τ (f2)∂τB3τ (f3)Ω = 0

B1τ (f1)(∂τB2τ (f2))B3τ (f3)Ω
(swap)

= B1τ (f1)(∂τB2τ (f2))B⊥3τ (f3)Ω

= B1τ (f1) [∂τB2τ (f2)),B⊥3τ (f3)]︸ ︷︷ ︸
‖·‖≤CNτ−N

Ω + 0

= O(τ−N)



13/17

Proof Idea (Convergence of 3-Particle Out-States)
Ak ∈ A(W), A⊥k ∈ A(W⊥), s.t. EmAk Ω = EmA⊥k Ω, (1 ≤ k ≤ 3)
Let fk reg. positive-energy KG solutions, Vf3 ≺W Vf2 ≺W Vf1 .

B
(⊥)
k := A

(⊥)
k (χ), and consider

Ψout := lim
τ→∞

Ψτ := lim
τ→∞

B1τ (f1)B2τ (f2)B3τ (f3)Ω.

Proof of Convergence via Cook’s Method: For τ2 > τ1 > 0,

Ψτ2 −Ψτ1 =

∫ τ2

τ1

dτ ∂τΨτ (1)

Here, ∂τΨτ has 3 terms. Their contributions to (1) are estimated
via a novel strategy [MD’18],

B1τ (f1)B2τ (f2)∂τB3τ (f3)Ω = 0

B1τ (f1)(∂τB2τ (f2))B3τ (f3)Ω
(swap)

= B1τ (f1)(∂τB2τ (f2))B⊥3τ (f3)Ω

= B1τ (f1) [∂τB2τ (f2)),B⊥3τ (f3)]︸ ︷︷ ︸
‖·‖≤CNτ−N

Ω + 0

= O(τ−N)



14/17

Estimation of the third term
Recall: Vf3 ≺ Vf2 ≺ Vf1

(∂τB1τ (f1))B2τ (f2)B3τ (f3)Ω = (∂τB1τ (f1))B2τ (f2)B⊥3τ (f3)Ω

= B⊥3τ (f3)(∂τB1τ (f1))B2τ (f2)Ω + commutators

= B⊥3τ (f3)(∂τB1τ (f1))B⊥2τ (f2)Ω + O(τ−N)

= B⊥3τ (f3)B⊥2τ (f2)(∂τB1τ (f1))Ω + more comm.

= 0 + O(τ−N).

Thus,

‖Ψτ2 −Ψτ1‖ ≤
τ2∫
τ1

dτ ‖∂τΨτ‖ ≤
τ2∫
τ1

dτ CNτ
−N ≤ C ′Nτ

−N+1

is Cauchy for τ → +∞.

But: Perhaps Ψτ → 0?

Answer: Excluded by (Fock structure) result [MD’18].



14/17

Estimation of the third term
Recall: Vf3 ≺ Vf2 ≺ Vf1

(∂τB1τ (f1))B2τ (f2)B3τ (f3)Ω = (∂τB1τ (f1))B2τ (f2)B⊥3τ (f3)Ω

= B⊥3τ (f3)(∂τB1τ (f1))B2τ (f2)Ω + commutators

= B⊥3τ (f3)(∂τB1τ (f1))B⊥2τ (f2)Ω + O(τ−N)

= B⊥3τ (f3)B⊥2τ (f2)(∂τB1τ (f1))Ω + more comm.

= 0 + O(τ−N).

Thus,

‖Ψτ2 −Ψτ1‖ ≤
τ2∫
τ1

dτ ‖∂τΨτ‖ ≤
τ2∫
τ1

dτ CNτ
−N ≤ C ′Nτ

−N+1

is Cauchy for τ → +∞.

But: Perhaps Ψτ → 0?

Answer: Excluded by (Fock structure) result [MD’18].



14/17

Estimation of the third term
Recall: Vf3 ≺ Vf2 ≺ Vf1

(∂τB1τ (f1))B2τ (f2)B3τ (f3)Ω = (∂τB1τ (f1))B2τ (f2)B⊥3τ (f3)Ω

= B⊥3τ (f3)(∂τB1τ (f1))B2τ (f2)Ω + commutators

= B⊥3τ (f3)(∂τB1τ (f1))B⊥2τ (f2)Ω + O(τ−N)

= B⊥3τ (f3)B⊥2τ (f2)(∂τB1τ (f1))Ω + more comm.

= 0 + O(τ−N).

Thus,

‖Ψτ2 −Ψτ1‖ ≤
τ2∫
τ1

dτ ‖∂τΨτ‖ ≤
τ2∫
τ1

dτ CNτ
−N ≤ C ′Nτ

−N+1

is Cauchy for τ → +∞.

But: Perhaps Ψτ → 0?

Answer: Excluded by (Fock structure) result [MD’18].



14/17

Estimation of the third term
Recall: Vf3 ≺ Vf2 ≺ Vf1

(∂τB1τ (f1))B2τ (f2)B3τ (f3)Ω = (∂τB1τ (f1))B2τ (f2)B⊥3τ (f3)Ω

= B⊥3τ (f3)(∂τB1τ (f1))B2τ (f2)Ω + commutators

= B⊥3τ (f3)(∂τB1τ (f1))B⊥2τ (f2)Ω + O(τ−N)

= B⊥3τ (f3)B⊥2τ (f2)(∂τB1τ (f1))Ω + more comm.

= 0 + O(τ−N).

Thus,

‖Ψτ2 −Ψτ1‖ ≤
τ2∫
τ1

dτ ‖∂τΨτ‖ ≤
τ2∫
τ1

dτ CNτ
−N ≤ C ′Nτ

−N+1

is Cauchy for τ → +∞.

But: Perhaps Ψτ → 0?

Answer: Excluded by (Fock structure) result [MD’18].



Ordered Asymptotic
Completeness in Wedge-local

QFT



15/17

Application: Asymptotic Completeness, GL-Models
I Wedge-local Møller-Operators W±W can exhibit dependence on the

preparation wedge W (ruled out in local QFT),

W±WΨ1 ⊗ . . .⊗ΨN := lim
τ→±∞

B1τ (f1) . . .BNτ (fN )Ω,

where Bkτ (fk )Ω = Ψk , Bk = Ak (χ), Ak ∈ A(W).

I Construction of W±W a priori only for velocity-ordered configurations,
i.e. W±W : Γ�W/≺W −→H map on ordered Fock spaces

Γ�W := span{Ψ1 ⊗ . . .⊗ΨN ,Ψ1 ≺W . . . ≺W ΨN ,N ∈ N0}.

Def.: A wedge-local QFT (A,U,Ω,H ) is asymptotically complete (AC),

if W±WV�W/≺W = H for any wedge region W.

Lemma. (in preparation) In the models of [Grosse,Lechner’07] and [Buch-

holz,Lechner,Summers’11] we have W±Q,W = W±0,WS
�W/≺W
Q , with unitary

S
�W/≺W
Q =

∏
1≤i<j≤N

eiPi ·QPj/2, Q GL deformation matrix. (?)

Kor. BLS-deformed model AC ⇐⇒ underlying undeformed model AC.

Thm. N-particle states of GL-model have factorizing scattering data (?).
Hence the GL-Model is interacting and asymptotically complete
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Example: Failure of Asymptotic Completeness
Inspiration: [Longo,Tanimoto,Ueda’17] [D’Antoni,Longo,Rădulescu’01]

H1 := L2(R, dθ)

H := Γu(H1) =
∞⊕

k=0

⊗k H1 (unsymmetrized)

U(x ,Λ) = Γ(U1(x ,Λ))

z∗(ψ)Ψn :=
√
n ψ ⊗Ψn, ψ ∈H1,

(z(ψ)Ψ)n(θ1, . . . , θn) :=
√
n + 1

∫
dθ ψ(θ) Ψn+1(θ, θ1, . . . , θn),

(JΨ)n(θ1, . . . , θn) := Ψn(θn, . . . , θ1).

Define fields (f ∈ S (R2), m > 0)

Φ(f ) := z∗(f +) + z(f −), Φ′(f ) := JΦ(f ∗)J,

f ±(θ) :=

∫
d2x

2π
e±ipm(θ)·x f (x).

Observation: ordered incoming and outgoing states are orthogonal,
ordered AC fails.
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Outlook and Summary

I Scattering Theory of Haag and Ruelle has been extended to massive
wedge-local theories [MD’18]. Most notably, a fully general
treatment of the N ≥ 3-particle case is provided.

I Applicable to presently known wedge-local models. (Interacting
non-perturbative models in space-time-dim. four already available!)

Outlook and Open Problems:

I Work in progress: GL/BLS-models are the first examples
wedge-local QFT on space-time dim. d ≥ 2 + 1 which are both
interacting and asymptotically complete

I Many open conceptual questions on scattering in wedge-local QFT

I Extension to massless wedge-local case?

Thank you for your attention.
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