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String-local fields
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String-local fields
[Mund,Schroer,Yngvason — 2005; Mund,Rehren,Schroer — 2017]
Definition (helicity s = 1, higher helicities straight forward)

Let e be a spacelike direction, e =—1, FH(x) the usual field strength
tensor and define

At (x,e) = I.F" (x)e,,

where I, is the string-integral operator I. f(x) := [~ d\ f(z + Ae).

This talk: Massless fields only! (massive case is similar but employs
more fields that decouple from the main field in the massless limit)

Advantages:
e Have 9,A4" =0, e, A¥ = 0 = correct number of d.o.f.
@ String-local A* lives on physical Hilbert space.
@ No ghosts, no BRST needed!
o

Stringlocal fields of any helicity have UV-dimension dyy = 1 (but the
delocalization increases the renormalization freedom accordingly).
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Two-point functions

z,e ' e)) = " e—ip(e—a') [ _ €oPu €uPo _ (e€")pup,
<<Au( » )AQ( e )) /d/ o(p) e < Nuo + (pe)_ + (pe')+ (1)6)7(1)81)+>

o Additional denominators potentially cause infrared issues
~> This talk: concentrate on ultraviolet region. We are safe as long
as we smear in test functions f(z) with f(0) = 0.
Remark: There are cases with and cases without infrared issues!
e 2pf is a distribution on (R* x H_;)?
~> subtle notion of scaling behavior: affects renormalization freedom!

Naive choice of the time-ordered two-point function would be

—ip(z—a') e e (e€pup,
Ty Au(z,e) Ag(a/,e)) = [ d*p“——on (- Py | “nte _ iy
(To Au(z,e) Ay(2',€)) / P 210 Nue + (pe)_ + () (po)—_(pe)s )’

and this is unique up to certain “stringy d-distributions” .

This Ty is always one choice but it is not clear if it's a good choice! )
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Stringy J-distributions:
We can add terms ~ p? to the 2pf kernel without changing the 2pf.
But the propagator will change by a linear combination of terms

o ~ 0 (z — ') (point-local),
o ~ [[TdN [T dN u(A\,N) 8 (z — 2’ + Xe — A€/) (string-local).

Rigorous formulation (Epstein-Glaser): splitting of distributions.
~» Restrict number of allowed terms by upper bound on scaling behavior:

Scaling degree everywhere determined by
@ the number of derivatives, |al,
@ the respective codimension,
@ and by properties of

o u(0,0) at {(\,\) = (0,0)},
e u(X,0) at {\#0,\ =0}

e te!

Example: u()\, \) = A" = o] (g — o) |
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In general: huge renormalization freedom due to presence of u(X, ).

Way out: “Induce” renormalization from F*(x)

Define T-products for field strengths and lift to potentials: Simplest case
would be

(TA* (2, )4 (2", €)) = LI {TF " (z) F*A(2') )ene).

Advantages of induction from field strength:
@ Renormalization reduces to extension of distributions to the diagonal.
@ Function u(X, \') is fixed by renormalization of F*(x).
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In general: huge renormalization freedom due to presence of u(X, ).

Way out: “Induce” renormalization from F*(x)

Define T-products for field strengths and lift to potentials: Simplest case
would be

(TA* (2, )4 (2", €)) = LI {TF " (z) F*A(2') )ene).

Advantages of induction from field strength:
@ Renormalization reduces to extension of distributions to the diagonal.
@ Function u(X, \') is fixed by renormalization of F*(x).

Obstruction:
Require that time-ordering maps 0 to 0. Specifically,

0= (T (9"F" + cyclic) X') = (T 9, F"™ X') = (T (dA—F) X},

etc. This is not compatible with (7" 0" A” X") £1. (TOFFY™> X'") eq.

~» If induction is possible, then not in a naive sense!
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Brouder-Diitsch-Fredenhagen (BDF) on-shell formalism
[Diitsch,Fredenhagen — 2004; Brouder,Diitsch — 2008]

@ Introduce off-shell algebra Ay of fields without any relations.

@ Specify on-shell relations on the subspace A™M) C Ay spanned by
linear expressions in the fields and their derivatives.

@ Let [ be the ideal in Ay generated by these relations.
@ Define on-shell algebra Ao, := Aofr/~, where A~ B A—Bel.

Q@ 7 : Aot — Aon the canonical projection and & : Ay, — Ao an
algebra homomorphism — picking a representative — s.t.
o T =id,
° gﬂ.(A(l)) c AM,
o &m does not worsen the scaling behavior of the fields,
o Lorentz transformations commute with &7.

~> in many cases, £ is uniquely fixed!
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Brouder-Diitsch-Fredenhagen (BDF) on-shell formalism

On-shell time-ordered products

Given off-shell fields ¢1, ..., ¢,, define the on-shell time-ordered product

T (w(¢1), -, m(¢n)) = T (€m(d1)s - -, Em(dn))

where T° commutes with derivatives and satisfies the usual
requirements for time-ordering;:
linearity, symmetry in the all arguments, causal factorization, T°f(¢) = ¢.

o No derivatives: {T°"7(¢1) w(¢2))) may have renorm. freedom,

@ but since T°% commutes with derivatives, no new renormalization
constants appear in ((T°" m(0%¢1) (8% ¢2) ))!

~> Possible interference between BDF and Epstein-Glaser constructions.

Adjust BDF to string-local fields to achieve “induced renormalization”. J
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Example: massless vector field

@ View point-local field strength as fundamental,

o write A# = I.F*¥e, (as a kind of shorthand notation),

@ algebra generated by F*”, I7F*e, and their derivatives,
@ ideal is generated by

I, := 0" F"¥ + cyclic, Iy := 0, F".
Start with fields with no derivatives:

En(Frv)y = Fr,
en(AM) = en(I.F*e,) = [LF"e, = A",

1
ER(O"F™) = 9FF — Z{(0"F" + cyclic) + 1" 0, — "0, %"}
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Example: massless vector field

en(PH) = ¥,
fﬂ-(A#) = gﬂ-(IeFlweu) = IeFW/eV = A/'L,

1
Em(O"F1) = 9" FH — S {(0°F" + cyclic) + 1“0, F " — 1", F*"}

Em(OFAM) = 9" AF + dy I, {0 F* + cyclic} e,

Wk
+d2—[e { (UW - eej > aQFQV} €y

O 77’@/“ {W(aKA'U‘) ; O = d2 = —%’
1

o Em(BFAF — GPAR) = En(FFH) = Frit = dy = -3,
e ¢, &m(07A*) =0 and e, Em(0FAH*) = —F" e, (by choice of “axial
combination” in dp-term).
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Example: massless vector field

Em(F1) = FH,
en(A*) = En(I.F™e,) = LF*e, = A",

1
Er(O"F) = OFF™ — Z{(9"F + cyclic) + 1", P — "0, F*"},

En(9FAR) = 98 AM — 1, {; (9" F" + cyclic)

1 etel ”
G LA I

Induction of string-local time-ordering from point-local field
strength is possible, but not in a naive way:

En(08AF) = en(I,O"F"e,) # LEm(O5F™)e,

but &7 (07 A*) = I.&m(some point-local X" )e,,.
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A string-local Epstein-Glaser programme

Construct the scattering matrix in the string-local setting:

S(g,h) =1+ Z %/d%x d"o(e) T [Lint(w1,€1) ** Lint(Tn, €,,)]
n=1 "

n

x [T o) H h(eiz)-

z=1

S(g, h) should be independent of the choice of h:

6S(g,h)
oh

!
=0.

This is satisfied in the adiabatic limit wrt x if

Perturbative string independence (SI)
0

o
ox;

dei‘_jT[‘Cint(mlagl)"'} = T[‘Cint($17§1)"'Q#(xiagi)"'} Vi,j,n.
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At lowest non-trivial order:
L-Q-pair
T [ﬁint(x’g)} - Eint($,2) = def’ﬁint(xvﬁ) = aqu:(;EaQ) ’

At higher orders:

Can we exploit renormalization . Does SI fix/reduce renor-
freedom to achieve SI? malization freedom?

@ If not, can we achieve S| by adding new (“induced”) terms to Lin?

?

~ deij [Acint .. ] = 8MT [ . Ql,i e ] - defyjcinduced
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At lowest non-trivial order:

!

L-Q-pair
Tllm(@ el = Ll e) = g Li(e,0) £ 0,QL(z, ) J

At higher orders:

Can we exploit renormalization . Does SI fix/reduce renor-
freedom to achieve SI7 malization freedom?

@ If not, can we achieve S| by adding new (“induced”) terms to Lin?

~ des T [Ling -] Z 0T [+ Q-+ ] — der, Linduced

Strategy:

@ Start with cubic ansatz of smallest possible UV-dimension for L,

@ The model will tell if higher order couplings are needed!
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o L-Q-pair is

L= A,uj'uv in = wﬁj#a

where w,, = [ Ay s.t. dex Ay = 0w, and jH = Pyt

@ Second order:

T[LL')|yyee = (T A, AL)) j*5'° 4 fermionic contractions

|tree
@ fermionic contractions unproblematic but

der (T A AQ)) 345 = 8, (T wi Ay)) 55
+edes {I I, ((e€)nHe — e2e'™)} §(x — 2') j*5'°.

@ This is only a divergence if ¢ = 0.
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Example: Massless Yang-Mills theory

General ansatz:
L = gapeAapAv (0" AY), Jabe arbitrary constants.

° Split Yabec = fabc + dabc s.t. fabc = _facbv dabc = dacbv
® dupeAap A (OMAY) = %dabcﬁﬂ (AapAp AY) = only fape survives,
0 dex L = 0,Q% & fape totally anti-symmetric,

@ Thus: unique cubic Lagrangian of smallest possible UV-dimension

L = fabcAauAbchlw

~~ shorter and simpler than in gauge theory: only physical degrees of
freedom appear (no ghosts, no 0, A%)
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T [LLI”tree = fabcfcmy {Aa#Abu <<T ) ald F/gcr>> A A

To Yyo
=24, Ay, (T FEY AR ATE,
+ 244 Fy, (T A* F'7) AL LAY,

+4AZF1)MV <

/\

T A* A'®) AYF, .}

@ Since only F'*¥ and A" appear, normalization is fixed by
des (T AP A'2) = 9" (Tyw, A'2)
| S L —
yields divergence = v
+ cden {I 1, ((e€)nHe — %)} 6(x — ).

No divergence = c=0

° d 2 ; T[LL ”tree - ({) T[ (2# } o d |nduced
o j(,;,( satisfy Jacobl identity.

7 Linduced - ,/A()h{’,.frxl,‘y/lﬁll /1?;4’//1,1:/1 /1;/1/
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T [LL/Htree = el ey {AauAb,, (T F+ F/ga>> AL A

Tt Yo

+ 2Aq, Ay, (T F* A'®) A°F!

Yoo

+ 24YFy,, (T AP F'eo) A, A/

o yo

FAAY Py, (T AP A'0) ACF! D

@ Since only F*¥ and A" appear, normalization is fixed by

der (T A" A'?) = 0" (To w,, A'?))
[ L —
yields divergence = /
+ cder {I I, ((e€ )t — e2e™)} §(x — 2').

No divergence = c¢=0

° (]{,,»; TILL ]| oo = OuT[--- QM ---] — (],;r*]"_jLinduced
= [(,,)( satisfy Jacobi identity.

p p AL AV / /
M Linduced - ,/(71)(’./(:‘1:‘7/11':1 /11, /1.1:/1 A’lyz/
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der T [LLlyree = der fave feay {AapAvy (T F*™ F'27) A7, Ay

T Yo

+ 244, Ay, (T FH A'®) ACF!

Yoo

+ 24YFy,, (T A* F'eo) A Al

ro‘ yo

+4A% Fy (T A* A'0) A"’F’Qa}

@ Since only F*¥ and A" appear, normalization is fixed by

dow (T AP A'®Y) = 9" (Ty w,, A'®)
[ —
yields divergence = v/
+ cder {11, ((e€')nHe — e2e'™)} §(x — ).

No divergence = ¢=0

° de;j T[LL/]ltree - a#T[ o Qllé o ] - defyj Linduced
& fape satisfy Jacobi identity.

~ Linduced = fabcfcxyAgAZAquyu
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Outlook: Self-interactions of helicity-two fields

Massless heli-2 field h**(x, e) ~~ 3 unique L-Q-pair (mod divergence)

L = 1" [(0,h°?)(0uhap) + 2(0%hus) (0P hua)]
div 1 v VLK
3 TR — P}

where T,SZ) is the string-local stress energy tensor.

@ Derivatives of the field of other form than FJ, .5 enter L
= BDF construction is essential if renormalization induced from F'

@ Vanishing of “Ricci-trace” forces non-trivial choice of the propagator
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Outlook: Self-interactions of helicity-two fields

Massless heli-2 field h**(x, e) ~~ 3 unique L-Q-pair (mod divergence)

L = 1" [(0,h°?)(0uhap) + 2(0%hus) (0P hua)]
div 1 v VLK
3 TR — P}

where T,SZ) is the string-local stress energy tensor.

@ Derivatives of the field of other form than FJ, .5 enter L
= BDF construction is essential if renormalization induced from F'

@ Vanishing of “Ricci-trace” forces non-trivial choice of the propagator

BDF construction Trace: non-trivial 7°%

— future work
L>0h competing renorm.

Sl principle
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Conclusions and general outlook

@ Second order tree level: string-local version of QED and massless
Yang-Mills theory agree with gauge theoretic versions
~~> expectation: agreement to all orders.

@ Similar results in the massive case
[Mund,GraciaBondia,Varilly — 2017].

@ Implementation of a heli-2 self-interaction more involved.

o Compared to gauge theories: “string-local distributions” are more
subtle, but the algebraic structure in the S-matrix is much simpler.

@ String-local fields give a meaningful way to switch between field
strengths and potentials.

@ String-local loop graphs not yet considered!

Thanks to Karl-Henning Rehren and Karim Shedid Attifa

and thank you all for the attention!
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