KHRehren	Leipzig, June 2017	Higher spin fields	1 / 29

String-localized fields of higher spin: massless limit and stress-energy tensor

Karl-Henning Rehren

Institut für Theoretische Physik, Universität Göttingen

LQP-40, Leipzig, June 24, 2017

Abstract

"Lifting" the massless limit of Wigner **representations** of higher spin to the associated **local quantum fields**, encounters several obstructions due to the well-known conflicts between Hilbert space positivity, covariance and causality.

In a unified setting using "string-localization", these conflicts can be resolved, and details of the decoupling of the degrees of freedom can be studied.

Joint work with Jens Mund, Bert Schroer (arXiv:1703.04407 and 04408)

|--|

Plan:

The lesson from "spin one"

Spin two

String-localized potentials

Higher spin

KHRehren	Leipzig, June 2017	Higher spin fields	4 / 29

THE LESSON FROM "SPIN ONE"

The quantum Maxwell potential

"Canonical quantization" produces a conflict between Hilbert space positivity, covariance, and locality:

Quantum field A_{μ} such that $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ ("curl")?

- Feynman gauge $\langle A_{\mu}A_{\nu}\rangle = \int d^4k \,\theta(k^0)\delta(k^2)[-\eta_{\mu\nu}]e^{-ikx}$: indefinite.
- ξ -gauges $[-\eta_{\mu\nu}\delta(k^2) + (\xi 1)k_{\mu}k_{\nu}\delta'(k^2)]$: indefinite.
- Coulomb gauge $A_0 = 0$, $\langle A_i A_j \rangle = [\delta_{ij} \frac{k_i k_j}{\vec{k}^2}]$: not covariant, non-local.

A positive, covariant, and local potential does not exist.

Only the field strength (= curl of either of the above) is positive:

$$\left\langle F_{[\mu\nu]}F_{[\kappa\lambda]}\right\rangle = -\eta_{\mu\kappa}k_{\nu}k_{\lambda} + \eta_{\nu\kappa}k_{\mu}k_{\lambda} + \eta_{\mu\lambda}k_{\nu}k_{\kappa} - \eta_{\nu\lambda}k_{\mu}k_{\kappa} .$$

Wigner quantization of free fields

• Wigner rep'ns of the Poincaré group = Hilbert space \mathcal{H}_1 of one-particle states (induced from unirep of stabilizer gp of k_0).

massive: (half-)integer spin, 2s + 1 states (per momentum) massless: (half-)integer helicity, 1 state; or "infinite spin".

 \bullet Local free fields on Fock space $\mathcal{F}(\mathcal{H}_1)$ of the form

$$\Phi_i(x) = \int d\mu_m(k) \big[u_{i\alpha}(k) a_\alpha(k) e^{-ikx} + v a^* e^{+ikx} \big]$$

transform covariantly iff $u_{i\alpha(k)}$ and $v_{i\alpha(k)}$ fulfil an intertwining condition between a matrix representation of the Lorentz group and the given unitary representation of the stabilizer group.

KHRehren	Leipzig, June 2017	Higher spin fields	7 / 29

For integer spin, Wigner quantization yields

- (m > 0, s): symmetric traceless rank s tensor fields A_{μ1...μs} (generalizing the Proca field).
- $(m = 0, h = \pm s)$: rank 2s field strength tensors $F_{[\mu_1\nu_1]...[\mu_s\nu_s]}$. (Single helicity fields are non-local).
- Intertwiners for massless potentials $A_{\mu_1...\mu_s}$ do not exist.

Massless Wigner rep'ns are "contractions" of massive rep'ns (ie, the inducing massless stabilizer group E(2) is a contraction of the massive SO(3)). Apparently, this limit does not lift to the associated quantum fields.

$$\left\langle A_{\mu}A_{\nu}\right\rangle_{m}=-\eta_{\mu\nu}+\frac{k_{\mu}k_{\nu}}{m^{2}}\equiv-\pi_{\mu\nu}.$$

• Positive semi-definite.

- UV-dim = $2 \Rightarrow$ weak interaction **non-renormalizable**.
- Limit $m \rightarrow 0$ does not exist.

Define
$$F_{\mu
u}:=\partial_{\mu}A_{
u}-\partial_{
u}A_{\mu}$$
, then

$$\left\langle \mathsf{F}_{[\mu\nu]}\mathsf{F}_{[\kappa\lambda]}\right\rangle_{m} = -\pi_{\mu\kappa}\mathsf{k}_{\nu}\mathsf{k}_{\lambda}\pm\cdots = -\eta_{\mu\kappa}\mathsf{k}_{\nu}\mathsf{k}_{\lambda}\pm\ldots$$

is exactly the same as for m = 0, except that $k^2 = m^2$.

• F[m > 0] converges to F[m = 0].

Moreover,

$$\partial^{\nu}F_{\mu\nu}=m^{2}A_{\mu}$$

recovers the privileged (positive, covariant, local, conserved) potential from its field strength.

KHRehren	Leipzig, June 2017	Higher spin fields	9 / 29

SPIN TWO

KHRehren	Leipzig, June 2017	Higher spin fields	10 / 29

Why higher spin?

- Gravity (helicity 2)
- Why should Nature not use it?

"Spin 2" is similar:

where
$$\langle F_{[\mu_1\nu_1][\mu_2\nu_2]}F_{[\kappa_1\lambda_1][\kappa_2\lambda_2]} \rangle = \text{curls of } \langle A_{\mu_1\mu_2}A_{\kappa_1\kappa_2} \rangle$$

$$\begin{split} m &= 0: \quad \left\langle \left\langle A_{\mu_{1}\mu_{2}}A_{\kappa_{1}\kappa_{2}}\right\rangle_{0} = \frac{1}{2}(\eta_{\mu_{1}\kappa_{1}}\eta_{\mu_{2}\kappa_{2}} + \eta_{\mu_{2}\kappa_{1}}\eta_{\mu_{1}\kappa_{2}}) - \frac{1}{2}\eta_{\mu_{1}\mu_{2}}\eta_{\kappa_{1}\kappa_{2}}, \right] \\ m &> 0: \quad \left\langle \left\langle A_{\mu_{1}\mu_{2}}A_{\kappa_{1}\kappa_{2}}\right\rangle_{m} = \frac{1}{2}(\pi_{\mu_{1}\kappa_{1}}\pi_{\mu_{2}\kappa_{2}} + \pi_{\mu_{2}\kappa_{1}}\pi_{\mu_{1}\kappa_{2}}) - \frac{1}{3}\pi_{\mu_{1}\mu_{2}}\pi_{\kappa_{1}\kappa_{2}}. \end{split} \right.$$

Both **field strengths are positive, covariant and local**, with 2s + 1 = 5 resp. 2 one-particle states per momentum; but

- Indefinite Feynman gauge massless potentials do not exist on the Fock space, Coulomb gauge non-covariant & non-local.
- Massive potential is recovered from its field strength via $\partial^{\nu_1}\partial^{\nu_2}F_{[\mu_1\nu_1][\mu_2\nu_2]} = (m^2)^2 A_{\mu_1\mu_2}$. Positive, covariant, local, traceless and conserved. No massless limit.

... but different:

The "curls" do not see the difference between $\eta_{\mu\nu}$ and $\pi_{\mu\nu} = \eta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{m^2}$ in $\langle AA \rangle$;

– but they see the different coefficients $\left[-\frac{1}{2}vs - \frac{1}{3}\right]$ of the third term.

- Therefore also the massive field strength does not converge to the massless field strength.
- Even in lowest order (where non-renormalizability doesn't matter), or in indefinite gauges (where the massless potentials can be used), perturbative massive gravity does not converge to massless gravity (vanDam-Veltman–Zakharov 1970).

The UV dimension of the massive potential increases with s.

Weinberg-Witten (1980): No local stress-energy tensor for m = 0. (Field strengths involve too many derivatives!)

	KHRehren	Leipzig, June 2017	Higher spin fields	13 / 29
--	----------	--------------------	--------------------	---------

STRING-LOCALIZED POTENTIALS

KHRehren	Leipzig, June 2017	Higher spin fields	14 / 29
----------	--------------------	--------------------	---------

Some answers in this talk:

Identification of potentials of any (integer) spin and any mass $m \ge 0$ that

- live on the respective Wigner Fock spaces,
- do admit a massless limit,
- have non-increasing UV dimension 1,
- quantify the DVZ discontinuity,
- admit massless stress-energy tensors.

The price: a weaker localization property

(... of the potentials, not of the particles!)

KHRehren	Leipzig, June 2017	Higher spin fields	15 / 29

s = 1

For any mass $m \ge 0$, define op-val distributions in x and $e \in \mathbb{R}^4$

$$A_{\mu}(x,e) := \int_{\mathbb{R}_+} d\lambda F_{\mu
u}(x+\lambda e)e^{
u}.$$

Short hand:

$$A(e) = I_e Fe = I_e curl(A)e.$$

These are

- potentials for their respective field strengths,
- defined on the respective Fock space, hence positive,
- regular at m = 0 (because F are),
- axial gauge potentials: $e^{\mu}A_{\mu}(e)=0$,
- covariant: $U(\Lambda)A(x,e)U(\Lambda^*) = \Lambda^{-1}A(\Lambda x, \Lambda e)$,
- UV-tame: dimension 1,
- "string-localized": the commutator vanishes when the two "strings" $x + \mathbb{R}_+ e$ and $x' + \mathbb{R}_+ e'$ are spacelike separated;

Remark: Causality requires spacelike e, WLoG $e^2 = -1$.

Correlation functions

For any $m \ge 0$:

Leipzig, June 2017

$$\begin{array}{ll} \left\langle A_{\mu}(-e)A_{\nu}(e')\right\rangle_{m} &= -\eta_{\mu\nu} + \frac{k_{\mu}e_{\nu}}{(ek)_{+}} + \frac{e'_{\mu}k_{\nu}}{(e'k)_{+}} - \frac{(ee')k_{\mu}k_{\nu}}{(ek)_{+}(e'k)_{+}} \\ &\equiv -E(e,e')_{\mu\nu}. \end{array}$$

The same formula for m > 0 and m = 0, except that $k^2 = m^2$. Massless limit exists (as a limit of states on the Borchers algebra: the correlation functions define the fields).

The string-localized **massive potential converges to the massless potential** (not only the field strength).

KHRehren	Leipzig, June 2017	Higher spin fields	18 / 29

s = 2 is different

KHRehren	Leipzig, June 2017	Higher spin fields	19 / 29

$$A_{\mu_1\mu_2}(x,e) := \int_{\mathbb{R}_+} d\lambda_1 \, d\lambda_2 \, F_{[\mu_1
u_1][\mu_2
u_2]}(x+\lambda_1 e+\lambda_2 e) e^{
u_1} e^{
u_2}$$

 $A(e) = I_e I_e Fee = I_e I_e curl curl(A)ee.$

Again, these are

- potentials for their respective field strengths,
- defined on the respective Fock space, hence positive,

• regular at
$$m = 0$$
 (because F are),

- covariant: $U(\Lambda)A(x,e)U(\Lambda^*) = (\Lambda \otimes \Lambda)^{-1}A(\Lambda x, \Lambda e)$
- UV-tame: non-increasing dimension = 1,
- string-localized.

But, unlike s = 1:

$$m > 0: \ \left| \left\langle A_{\mu_1 \mu_2} A_{\kappa_1 \kappa_2} \right\rangle_m = \frac{1}{2} (E_{\mu_1 \kappa_1} E_{\mu_2 \kappa_2} + E_{\mu_2 \kappa_1} E_{\mu_1 \kappa_2}) - \frac{1}{3} E_{\mu_1 \mu_2} E_{\kappa_1 \kappa_2}, \right.$$

$$m = 0: \ \left| \left\langle A_{\mu_1 \mu_2} A_{\kappa_1 \kappa_2} \right\rangle_0 = \frac{1}{2} (E_{\mu_1 \kappa_1} E_{\mu_2 \kappa_2} + E_{\mu_2 \kappa_1} E_{\mu_1 \kappa_2}) - \frac{1}{2} E_{\mu_1 \mu_2} E_{\kappa_1 \kappa_2}. \right.$$

 $A_{\mu_1\mu_2}(e)$ is regular in the massless limit, but **the limit is not the** massless string-localized potential (because of " $-\frac{1}{3}$ vs $-\frac{1}{2}$ "). Instead:

$$A^{(2)}_{\mu
u}(e) := A_{\mu
u}(e) + rac{1}{2}E(e,e)_{\mu
u}a(e)$$

where $a(e) = -\eta^{\mu\nu}A_{\mu\nu}(e) = m^{-2}\partial^{\mu}\partial^{\nu}A_{\mu\nu}(e)$ and $E(e, e)_{\mu\nu} = \eta_{\mu\nu} + e_{\mu}I_e\partial_{\nu} + e_{\nu}I_e\partial_{\mu} + e^2I_eI_e\partial_{\mu}\partial_{\nu}$ is the momentum space kernel of the 2-point function as an operator in x-space.

Proposition:

The (string-localized) field strengths of the potentials $A^{(2)}$ on the massive spin-2 Fock spaces converge to the massless field strength.

The DVZ discontinuity

"Massive linearized gravity" coupled to classical matter:

$$S_{
m int}(e) = \int d^4x \, A^{
m Proca}_{\mu
u}(x) \, T^{\mu
u}(x) = \int d^4x \, A_{\mu
u}(x,e) \, T^{\mu
u}(x).$$

Decompose

$$\mathcal{A}_{\mu
u}(x,e)=\mathcal{A}^{(2)}_{\mu
u}(x,e)-rac{1}{2}\,\eta_{\mu
u}\, a(x,e)+{ ext{derivatives}},$$

where $\lim_{m\to 0} a(x, e) = \sqrt{2/3} \varphi(x)$ decouples from the massless helicity 2 potential $A^{(2)}(x, e)$. Thus,

$$\lim_{m\to 0} S_{\rm int}(e) = \int d^4x \, A^{(2)}_{\mu\nu}(x,e) \, T^{\mu\nu}(x) - \sqrt{1/6} \int d^4x \, \varphi(x) \, T^{\mu}_{\mu}(x).$$

The first term coincides with massless linearized gravity.

	KHRehren	Leipzig, June 2017	Higher spin fields	22 /	29
--	----------	--------------------	--------------------	------	----

HIGHER SPIN TENSOR POTENTIALS

For any spin and m > 0, we define (short-hand)

 $A(e) = I_e^s F e^s = I_e^s curl^s(A) e^s,$

which is regular at $m \rightarrow 0$.

- $A_{\mu_1...\mu_s}(x, e)$ is neither traceless nor conserved.
- Its 2-point function is a polynomial in $E_{\mu\nu}(e, e')$.
- A(x, e) differs from the singular privileged point-localized potential A(x) by derivatives of its partial divergences *∂*^μ_{r+1}...*∂*^μ_s A_{μ1...μs}(e):

$$A_{\mu_{1}...\mu_{s}}(x) = \underbrace{(-1)^{s} \langle A_{\mu_{1}...\mu_{s}} A^{\nu_{1}...\nu_{s}} \rangle}_{\textit{differential operator Polynom}(\pi_{\mu}^{\nu} = \delta_{\mu}^{\nu} + m^{-2}\partial_{\mu}\partial^{\nu})} A_{\nu_{1}...\nu_{s}}(x, e).$$

 The latter subtract all the singularities of A(x) as m → 0, and are also expected to carry away the non-renormalizable UV singularities, when coupled to a conserved current.

Massless limit

For all $r \leq s$: let $a_{\mu_1 \dots \mu_r}^{(r)}(e) := (-m)^{r-s} \cdot \partial^{\mu_{r+1}} \dots \partial^{\mu_s} A_{\mu_1 \dots \mu_s}(e)$, and

$$\mathcal{A}^{(r)}_{\mu\ldots\mu}(e) := \sum_{2k\leq r} lpha^r_k \cdot (\mathcal{E}_{\mu\mu}(e))^k a^{(r-2k)}_{\mu\ldots\mu}(e)$$

define string-localized tensor fields $A^{(r)}(e)$ of rank r on the same Fock space, regular at m = 0.

The coefficients α can be adjusted such that all $A^{(r)}(e)$ are traceless and decouple exactly at m = 0: $\left\langle A^{(r)}A^{(r')} \right\rangle \sim \delta_{rr'} + O(m)$.

Proposition:

The (string-localized) field strengths $F^{(r)}(e)$ of $A^{(r)}(e)$ converge to the point-localized massless field strengths of helicity $h = \pm r$. $A^{(0)}(e)$ converges to the *e*-independent massless scalar field.

Pauli-Lubanski limit

Proposition:

In the "Pauli-Lubanski limit"

$$m
ightarrow 0,\;s
ightarrow\infty:\qquad s(s+1)m^2=\kappa^2=cst$$

the "scalars" $A_{(m,s)}^{(0)}(e)$ converge to the massless infinite-spin field constructed by Mund-Schroer-Yngvason (2005).

More precisely (with R. Gonzo): the Wigner intertwiner of the limit violates the boundedness condition of MSY in the complex forward tube of *e*. This can be repaired by an additional operator

$$(1 + m I_e)^s A^{(0)}_{(m,s)}(e)$$

before taking the limit. The bound is secured by the resulting phase

 $e^{-i\kappa/(ke)_+}$.

Stress-energy tensors

The stress-energy tensor at higher spin is not unique. We found

- The massive Hilbert SET (variation of the action by the metric) for s = 2 is different from the SET proposed by Fierz in 1939. Both produce the same generators of the translations (momentum operators), but different Lorentz generators.
- Only the Lorentz generators of the Hilbert SET implement the correct Lorentz transformations.
- We found a simpler "reduced" SET (quadratic in A_{µν}(x), hence singular at m→ 0) that produces the same correct generators (not "derived from a Lagrangean").
- The reduced SET immediately generalizes to any s > 2.

KHRehren

Helicity decoupling

- We found yet another SET that is regular at m→ 0 and still produces the correct generators. It is quadratic in a^(r)(x, e), hence string-localized.
- We found a massless SET that still produces the correct generators at m = 0. It is quadratic in $A^{(r)}(x, e)$, hence string-localized. Because $A^{(r)}$ mutually commute, this SET is actually a **direct sum of massless SETs for all helicities** $h = \pm r$ present in the massless limit of the (m, s) representation:

Proposition:

 $(\times \equiv \mu_2 \dots \mu_r).$

$$T^{(r)}_{\rho\sigma}(x,e,e') = (-1)^r \Big[-\frac{1}{4} A^{(r)}_{\mu\times}(x,e) \stackrel{\leftrightarrow}{\partial_{\rho}} \stackrel{\leftrightarrow}{\partial_{\sigma}} A^{(r)\mu\times}(x,e') \\ -\frac{r}{4} \partial^{\mu} \Big(A^{(r)}_{\rho\times}(x,e) \stackrel{\leftrightarrow}{\partial_{\sigma}} A^{(r)\times}(x,e') \stackrel{+(e\leftrightarrow e')}{+(\rho\leftrightarrow\sigma)} \Big) \Big]$$

KHRehren Leipzig, June 2017 Higher spin fields 28 / 29
--

INTERACTIONS

In progress: Causal perturbation theory

- Interaction Lagrangeans involving string-localized fields such that $S = \int dx L_{int}(e)$ is independent of e.
- Examples: QED, massive QED: $L_{int} = A_{\mu}(x, e)j^{\mu}(x)$. Mund, in preparation.
- Show that the Bogoliubov scattering matrix
 S(g) = T exp i ∫ g(x)L_{int}(x, e) is e-independent in the adiabatic limit.
- Construct renormalized string-localized fields connecting the vacuum to charged states.

KHRehren	Leipzig, June 2017	Higher spin fields

- Explicit solution for A_μ(e) coupled to a classical conserved current: OK
- Similar for $A^{(2)}_{\mu\nu}(e)$ coupled to a classical matter stress-energy tensor?

30 / 29

 Standard model interactions: String-localized massive vector bosons must couple like gauge fields, their couplings to fermions must be chiral, and the presence of a Higgs field is required (in lowest orders)

GraciaBondia-Mund-Varilly: arxiv:1702.03383,

Mund-Schroer, in preparation.

- String-localized higher-spin SET coupled to (classical) gravity?
- Perturbative gravity?