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Abstract

“Lifting” the massless limit of Wigner representations of higher spin to
the associated local quantum fields, encounters several obstructions due
to the well-known conflicts between Hilbert space positivity, covariance and
causality.

In a unified setting using “string-localization”, these conflicts can be
resolved, and details of the decoupling of the degrees of freedom can be
studied.

Joint work with Jens Mund, Bert Schroer
(arXiv:1703.04407 and 04408)
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THE LESSON FROM “SPIN ONE”



KHRehren Leipzig, June 2017 Higher spin fields 5 / 29

The quantum Maxwell potential

“Canonical quantization” produces a conflict between Hilbert space
positivity, covariance, and locality:

Quantum field Aµ such that Fµν = ∂µAν − ∂νAµ (“curl”)?

Feynman gauge
〈
AµAν

〉
=
∫
d4k θ(k0)δ(k2)[−ηµν ]e−ikx :

indefinite.

ξ-gauges [−ηµνδ(k2) + (ξ − 1)kµkνδ
′(k2)]: indefinite.

Coulomb gauge A0 = 0,
〈
AiAj

〉
=
[
δij −

ki kj

~k2

]
: not covariant,

non-local.

A positive, covariant, and local potential does not exist.

Only the field strength (= curl of either of the above) is positive:〈
F[µν]F[κλ]

〉
= −ηµκkνkλ + ηνκkµkλ + ηµλkνkκ − ηνλkµkκ .
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Wigner quantization of free fields

Wigner rep’ns of the Poincaré group = Hilbert space H1 of
one-particle states (induced from unirep of stabilizer gp of k0).

massive: (half-)integer spin, 2s + 1 states (per momentum)

massless: (half-)integer helicity, 1 state; or “infinite spin”.

Local free fields on Fock space F(H1) of the form

Φi (x) =

∫
dµm(k)

[
uiα(k)aα(k)e−ikx + v a∗ e+ikx

]
transform covariantly iff uiα(k) and viα(k) fulfil an intertwining
condition between a matrix representation of the Lorentz group
and the given unitary representation of the stabilizer group.
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For integer spin, Wigner quantization yields

(m > 0, s): symmetric traceless rank s tensor fields Aµ1...µs

(generalizing the Proca field).

(m = 0, h = ±s): rank 2s field strength tensors F[µ1ν1]...[µsνs ].
(Single helicity fields are non-local).

Intertwiners for massless potentials Aµ1...µs do not exist.

Massless Wigner rep’ns are “contractions” of massive rep’ns (ie, the
inducing massless stabilizer group E (2) is a contraction of the
massive SO(3)).
Apparently, this limit does not lift to the associated quantum fields.
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s = 1: Massive case (Proca)

〈
AµAν

〉
m

= −ηµν +
kµkν
m2 ≡ −πµν .

Positive semi-definite.
UV-dim = 2 ⇒ weak interaction non-renormalizable.
Limit m→ 0 does not exist.

Define Fµν := ∂µAν − ∂νAµ, then〈
F[µν]F[κλ]

〉
m

= −πµκkνkλ ± · · · = −ηµκkνkλ ± . . .

is exactly the same as for m = 0, except that k2 = m2.

F [m > 0] converges to F [m = 0].

Moreover,
∂νFµν = m2Aµ

recovers the privileged (positive, covariant, local, conserved)
potential from its field strength.
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SPIN TWO



KHRehren Leipzig, June 2017 Higher spin fields 10 / 29

Why higher spin?

Gravity (helicity 2)

Why should Nature not use it?
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“Spin 2” is similar:

〈
F[µ1ν1][µ2ν2]F[κ1λ1][κ2λ2]

〉
= curls of

〈
Aµ1µ2Aκ1κ2

〉
where

m = 0 :
〈
Aµ1µ2Aκ1κ2

〉
0

= 1
2(ηµ1κ1ηµ2κ2 + ηµ2κ1ηµ1κ2)− 1

2ηµ1µ2ηκ1κ2 ,

m > 0 :
〈
Aµ1µ2Aκ1κ2

〉
m

= 1
2(πµ1κ1πµ2κ2 + πµ2κ1πµ1κ2)− 1

3πµ1µ2πκ1κ2 .

Both field strengths are positive, covariant and local, with
2s + 1 = 5 resp. 2 one-particle states per momentum; but

Indefinite Feynman gauge massless potentials do not exist on
the Fock space, Coulomb gauge non-covariant & non-local.

Massive potential is recovered from its field strength via
∂ν1∂ν2F[µ1ν1][µ2ν2] = (m2)2Aµ1µ2 . Positive, covariant, local,
traceless and conserved. No massless limit.
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. . . but different:

The “curls” do not see the difference between ηµν and

πµν = ηµν − kµkν
m2 in

〈
AA
〉
;

– but they see the different coefficients −1
2 vs −

1
3 of the third

term.

Therefore also the massive field strength does not converge
to the massless field strength.

Even in lowest order (where non-renormalizability doesn’t
matter), or in indefinite gauges (where the massless potentials
can be used), perturbative massive gravity does not converge to
massless gravity (vanDam-Veltman–Zakharov 1970).

The UV dimension of the massive potential increases with s.

Weinberg-Witten (1980): No local stress-energy tensor for
m = 0. (Field strengths involve too many derivatives!)
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STRING-LOCALIZED POTENTIALS
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Some answers in this talk:

Identification of potentials of any (integer) spin and any mass m ≥ 0
that

live on the respective Wigner Fock spaces,

do admit a massless limit,

have non-increasing UV dimension 1,

quantify the DVZ discontinuity,

admit massless stress-energy tensors.

The price: a weaker localization property
(. . . of the potentials, not of the particles!)
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s = 1
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For any mass m ≥ 0, define op-val distributions in x and e ∈ R4

Aµ(x , e) :=
∫
R+

dλFµν(x + λe)eν .

Short hand:
A(e) = IeFe = Iecurl(A)e.

These are

potentials for their respective field strengths,

defined on the respective Fock space, hence positive,

regular at m = 0 (because F are),

axial gauge potentials: eµAµ(e) = 0,

covariant: U(Λ)A(x , e)U(Λ∗) = Λ−1A(Λx ,Λe),

UV-tame: dimension 1,

”string-localized”: the commutator vanishes when the two
“strings” x + R+e and x ′ + R+e

′ are spacelike separated;

Remark: Causality requires spacelike e, WLoG e2 = −1.
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Correlation functions

For any m ≥ 0:

〈
Aµ(−e)Aν(e ′)

〉
m

= −ηµν +
kµeν
(ek)+

+
e′µkν
(e′k)+

− (ee′) kµkν
(ek)+(e′k)+

≡ −E (e, e ′)µν .

The same formula for m > 0 and m = 0, except that k2 = m2.
Massless limit exists (as a limit of states on the Borchers algebra:
the correlation functions define the fields).

The string-localized massive potential converges to the massless
potential (not only the field strength).
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s = 2 is different
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Aµ1µ2(x , e) :=
∫
R+

dλ1 dλ2 F[µ1ν1][µ2ν2](x + λ1e + λ2e)eν1eν2

A(e) = Ie IeFee = Ie Iecurl curl(A)ee.

Again, these are

potentials for their respective field strengths,

defined on the respective Fock space, hence positive,

regular at m = 0 (because F are),

covariant: U(Λ)A(x , e)U(Λ∗) = (Λ⊗ Λ)−1A(Λx ,Λe)

UV-tame: non-increasing dimension = 1,

string-localized.
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But, unlike s = 1:

m > 0 :
〈
Aµ1µ2Aκ1κ2

〉
m

= 1
2(Eµ1κ1Eµ2κ2 + Eµ2κ1Eµ1κ2)− 1

3Eµ1µ2Eκ1κ2 ,

m = 0 :
〈
Aµ1µ2Aκ1κ2

〉
0

= 1
2(Eµ1κ1Eµ2κ2 + Eµ2κ1Eµ1κ2)− 1

2Eµ1µ2Eκ1κ2 .

Aµ1µ2(e) is regular in the massless limit, but the limit is not the
massless string-localized potential (because of “−1

3 vs −1
2”).

Instead:

A
(2)
µν (e) := Aµν(e) + 1

2E (e, e)µνa(e)

where a(e) = −ηµνAµν(e) = m−2∂µ∂νAµν(e) and
E (e, e)µν = ηµν + eµIe∂ν + eν Ie∂µ + e2Ie Ie∂µ∂ν is the momentum
space kernel of the 2-point function as an operator in x-space.

Proposition:

The (string-localized) field strengths of the potentials A(2) on the
massive spin-2 Fock spaces converge to the massless field strength.
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The DVZ discontinuity

“Massive linearized gravity” coupled to classical matter:

Sint(e) =

∫
d4x AProca

µν (x)Tµν(x) =

∫
d4x Aµν(x , e)Tµν(x).

Decompose

Aµν(x , e) = A(2)
µν (x , e)− 1

2
ηµν a(x , e) + derivatives,

where limm→0 a(x , e) =
√

2/3ϕ(x) decouples from the massless
helicity 2 potential A(2)(x , e). Thus,

limm→0 Sint(e) =
∫
d4x A

(2)
µν (x , e)Tµν(x)−

√
1/6

∫
d4x ϕ(x)Tµ

µ (x).

The first term coincides with massless linearized gravity.
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HIGHER SPIN TENSOR POTENTIALS
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For any spin and m > 0, we define (short-hand)

A(e) = I s
e Fe

s = I s
e curl

s(A)es ,

which is regular at m→ 0.

Aµ1...µs (x , e) is neither traceless nor conserved.

Its 2-point function is a polynomial in Eµν(e, e ′).

A(x , e) differs from the singular privileged point-localized
potential A(x) by derivatives of its partial divergences
∂µr+1 . . . ∂µs Aµ1...µs (e):

Aµ1...µs (x) = (−1)s
〈
Aµ1...µsA

ν1...νs
〉︸ ︷︷ ︸

differential operator Polynom(πν
µ=δ

ν
µ+m−2∂µ∂ν)

Aν1...νs (x , e).

The latter subtract all the singularities of A(x) as m→ 0, and
are also expected to carry away the non-renormalizable UV
singularities, when coupled to a conserved current.
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Massless limit

For all r ≤ s: let a
(r)
µ1...µr (e) := (−m)r−s · ∂µr+1 . . . ∂µs Aµ1...µs (e), and

A
(r)
µ...µ(e) :=

∑
2k≤r α

r
k · (Eµµ(e))ka

(r−2k)
µ...µ (e)

define string-localized tensor fields A(r)(e) of rank r on the same
Fock space, regular at m = 0.

The coefficients α can be adjusted such that all A(r)(e) are traceless

and decouple exactly at m = 0:
〈
A(r)A(r ′)

〉
∼ δrr ′ + O(m) .

Proposition:

The (string-localized) field strengths F (r)(e) of A(r)(e) converge to
the point-localized massless field strengths of helicity h = ±r .
A(0)(e) converges to the e-independent massless scalar field.
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Pauli-Lubanski limit

Proposition:

In the “Pauli-Lubanski limit”

m→ 0, s →∞ : s(s + 1)m2 = κ2 = cst

the “scalars” A
(0)
(m,s)(e) converge to the massless infinite-spin field

constructed by Mund-Schroer-Yngvason (2005).

More precisely (with R. Gonzo): the Wigner intertwiner of the limit
violates the boundedness condition of MSY in the complex forward
tube of e. This can be repaired by an additional operator

(1 + mIe)s A
(0)
(m,s)(e)

before taking the limit. The bound is secured by the resulting phase

e−iκ/(ke)+ .
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Stress-energy tensors

The stress-energy tensor at higher spin is not unique. We found

The massive Hilbert SET (variation of the action by the metric)
for s = 2 is different from the SET proposed by Fierz in 1939.
Both produce the same generators of the translations
(momentum operators), but different Lorentz generators.

Only the Lorentz generators of the Hilbert SET implement the
correct Lorentz transformations.

We found a simpler “reduced” SET (quadratic in Aµν(x), hence
singular at m→ 0) that produces the same correct generators
(not “derived from a Lagrangean”).

The reduced SET immediately generalizes to any s > 2.
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Helicity decoupling

We found yet another SET that is regular at m→ 0 and still
produces the correct generators. It is quadratic in a(r)(x , e),
hence string-localized.
We found a massless SET that still produces the correct
generators at m = 0. It is quadratic in A(r)(x , e), hence
string-localized. Because A(r) mutually commute, this SET is
actually a direct sum of massless SETs for all helicities
h = ±r present in the massless limit of the (m, s)
representation:

Proposition:

T (r)
ρσ (x , e, e ′) = (−1)r

[
− 1

4A
(r)
µ×(x , e)

↔
∂ρ
↔
∂σ A(r)µ×(x , e ′)

− r
4 ∂

µ
(
A
(r)
ρ×(x , e)

↔
∂σ A(r)×

µ (x , e ′)
+(e ↔ e ′)
+(ρ↔ σ)

)]
(× ≡ µ2 . . . µr ).
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INTERACTIONS
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In progress: Causal perturbation
theory

Interaction Lagrangeans involving string-localized fields such
that S =

∫
dx Lint(e) is independent of e.

Examples: QED, massive QED: Lint = Aµ(x , e)jµ(x).
Mund, in preparation.

Show that the Bogoliubov scattering matrix
S(g) = T exp i

∫
g(x)Lint(x , e) is e-independent in the

adiabatic limit.

Construct renormalized string-localized fields connecting the
vacuum to charged states.
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Explicit solution for Aµ(e) coupled to a classical conserved
current: OK

Similar for A
(2)
µν (e) coupled to a classical matter stress-energy

tensor?

Standard model interactions: String-localized massive vector
bosons must couple like gauge fields, their couplings to fermions
must be chiral, and the presence of a Higgs field is required (in
lowest orders)
GraciaBondia-Mund-Varilly: arxiv:1702.03383,
Mund-Schroer, in preparation.

String-localized higher-spin SET coupled to (classical) gravity?

Perturbative gravity?


