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Abstract

The stress-energy tensor describes (among other) the coupling of matter
to gravity.

Classical stress-energy tensors are usually derived by variations of the
action. While already for Maxwell, the canonical formula gives an
asymmetric and non-gauge invariant result, the Hilbert prescription (by
variation of the metric) gives the correct symmetric and gauge-invariant
stress-energy tensor.

For higher spins, the problems become more severe because the action has
to take care of manifold constraints. In the quantum case, additional
problems of indefinite metric arise on top, which lead to famous no-go
results.

I present an alternative approach that allows to construct higher-spin
stress-energy tensors intrinsically via the Wigner representation,
without reference to an action functional. The method also applies to
infinite-spin representations.
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The action principle

The action principle is an extremely successful paradigm in
classical mechanics and classical field theory.

Invariants → field equations

It became most influential for modern QFT (eg, via the path
integral), and is often regarded as fundamental.

Yet, . . .
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I want to shed some vinegar over this beautiful picture
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Higher spin: the trouble starts

Covariant fields of spin s ≥ 1 have more components than physical
degrees of freedom. Need for kinematical and dynamical
constraints. (→ Gauge symmetry and Noether’s Second Theorem)

Massive, spin one:

∂µAµ
!

= 0.

Massive, spin two:

∂µAµν
!

= 0, ηµνAµν
!

= 0.

Massless, spin one:

∂µAµ
!

= 0 + gauge invariance.

. . .



KHRehren Wuppertal, June 2018 Quantum stress-energy tensors 6 / 28

Fronsdal 1978 (Fierz-Pauli 1939):

Spin ≥ 2 requires at least s − 1 auxiliary fields. The case s = 2 is
possible with A = ηµνAµν as unique auxiliary field:

L =
1
4F[µν]κF [µν]κ − 1

2(∂A)κ(∂A)κ − 1
4∂κA∂κA− m2

2 (AνκAνκ − A2)

(where F[µν]κ = ∂µAνκ − ∂νAµκ, (∂A)κ = ∂µAµκ),

but this pattern ceases at s > 2.
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Quantization: the trouble continues

Canonical quantization fails because some components have no
canonical conjugate momentum. Needs “gauge fixing”.

Classical Lagrangean not unique: adding a total divergence to
L preserves S =

∫
L, and hence the Euler-Lagrange equations

of motion; but may change the path integral.

More drastic case: Nambu-Goto string vs Polyakov string
(induced metric vs worldsheet metric) yield inequivalent
quantization.

Still results in indefinite “canonical” Hilbert spaces. The latter
issue has no classical analogue. Needs “ghosts” and BRST.

Even with such an arsenal of elaborate tricks: A queasy feeling
remains.
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Fortunately, one can construct local free fields of any mass and any
finite spin directly on the physical Fock space (Weinberg 1964),
based on the underlying positive-energy representations of the
Poincaré group (Wigner 1939).

Crucial ingredient: “intertwiners” to mediate between the
covariance of one-particle states and the covariance of fields.

Perturbative QFT along the lines of Bogoliubov and of
Glaser-Epstein starts from free fields (no need of a “free
Lagrangian”). The “interacting part of the Lagrangian” is just a
linear space (of couplings) on which the renormalization group acts
(by readjusting the coefficients).
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Stress-energy tensor: more trouble

Classical Maxwell: canonical stress-energy tensor (SET) is neither
symmetric nor gauge-invariant. Can be fixed “by hand”.

General: many ambiguities (Belinfante 1940)

Modern attitude: Hilbert SET via variation of a generally covariant
action by the metric. Automatically symmetric and gauge invariant.
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Quantum stress-energy tensor: yet
more trouble

Weinberg-Witten theorem (1980): For s > 1, a local covariant
stress-energy tensor on the physical Hilbert space does not exist
(even for free fields).

(Conflict between covariant transformation laws of one-particle
states and the purported SET).

Then, how does massless quantum matter couple to the
gravitational field?
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Reminder: Wigner quantization

p0 ∈ Spec(P), p = Bpp0.

unirep d of “little group” Stab(p0) ⊂ L↑+ induces one-particle

unirep U1 of P↑+ (Mackey).

Second quantization U = Γ(U1) on Fock space H = Γ(H1).

Creation and annihilation operators a
(∗)
m (p) on H.

Adjoint action U(Λ)a∗m(p)U(Λ)∗ = a∗n(Λp)d(WΛ,p)nm, with the
“Wigner rotations” WΛ,p = B−1

Λp ΛBp ∈ Stab(p0).

Free quantum fields

φM(x) =

∫
dµ(p) e ipxuM,m(p)a∗m(p) + h.c .
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φM(x) transform covariantly:

U(Λ)φM(x)U(Λ)∗ = D(Λ−1)NMφN(Λx)

iff the intertwiner functions uM,m(p) satisfy

u(Λp) = (D(Λ)⊗ d(WΛ,p))u(p).

φM(x) are local if uM′,m(p)uM,m(p) are polynomial functions.
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KHR: JHEP 11 (2017) 130
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Quantum SET: Roadmap

Want to write

Pµ =

∫
d3xTµ0(t, x)

Mµν =

∫
d3x(xµTν0(t, x)− xνTµ0(t, x))

with a symmetric and conserved tensor of local quantum fields.

Rewrite Pµ =
∫

dµ(p)pµa∗i (p)ai (p) as∫∫
dµ(p1)dµ(p2) a∗m(p1)

(p1 + p2)µ
2

(p1+p2)0δ(~p1 − ~p2)δmnan(p2).

Write δ(p1 − p2) = 1
2π

∫
d3x e−i(~p1−~p2)~x .
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Find a decomposition of unity

δmn = gMNuMm(p)uNn(p).

Rearrange

Pµ = −1

2
gMN

∫
d3x

[ ∫
dµ(p1)e ip1xuMi (p1)ai (p1)∗

]
·

↔
∂ µ
↔
∂ 0

[ ∫
dµ(p2)e−ip2xuNj(p2)ai (p2)

]
.
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Symmetrize 1↔ 2 ⇒

Pµ = −1

4
gMN

∫
d3x :φM

↔
∂ µ
↔
∂ 0 φN : (x)

!
=

∫
d3x Tµ0(x).

Similar (but more laborious) for Lorentz generators

Mµν =
1

2

∫
dµ(p)a∗i (p)(p∧

↔
∂ p)µνai (p)

!
=

∫
d3x

(
xµTν0(x)− xνTµ0(x)

)
.

Conclude

Tµν(x) = −1

4
gMN :φM

↔
∂ µ
↔
∂ ν φN : (x) + ∂κ[∆Tκ

µν ].

Derivative terms needed to accomodate the Lorentz generators.
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Massive vs massless

The main issue in this program is to find a complete system of
“localizing intertwiners” (ie. defining local quantum fields) satisfying

δmn = gMNuMm(p)uNn(p).

In the massive case, this is possible for any spin, giving SETs
originally found by Fierz (1939) (without the derivative terms).

In the massless case, there is an obstruction.
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Reminder: The Maxwell case

The origin of the obstruction is well known in the Maxwell case: A
local intertwiner for a vector potential (transforming in D(Λ) = Λ)
does not exist (Weinberg 1964).

The best one can achieve, is

U(Λ)Aµ(x)U(Λ)∗ = (Λ−1)νµ
[
Aν(Λx) + ∂νX ],

ie the vector potential transforms as a vector up to an
operator-valued gauge transformation. Of course, Fµν transforms
correctly as a tensor.

The gauge-invariant Maxwell SET is quadratic in Fµν .
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Higher helicity

The same obstruction (no local potentials, only local field strengths)
occurs with higher helicity h, except that the local and covariant field
strengths F involve more derivatives, so that quadratic expressions
in F are incompatible with the scaling dimension of the SET.

To build a SET, one has to work with (first derivatives of) potentials,
that are either not exactly covariant or not exactly local.
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String-localized fields

Mund-Schroer-Yngvason (2004): Integrating the Maxwell field
strength along a “string” extending from x to ∞, yields a
“string-localized potential”

Aµ(e, x) :=

∫ ∞
0

ds Fµν(x + se)eν .

Indeed, one has ∂µAν(e, x)− ∂νAµ(e, x) = Fµν(x), and the variation
of A(e, x) wrt the direction e is a gradient.

For fixed e, this is just the “axial gauge” choice of potential. But
Aµ(e, x) coexist for all e on the Wigner Hilbert space.
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Immediate consequences:

Covariance

U(Λ)Aµ(e, x)U(Λ)∗ = (Λ−1)νµAν(Λe,Λx),

and local commutativity whenever two strings x1 + R+e1,
x2 + R+e2 are spacelike separated.

The same generalizes (with h-fold integrations) to arbitrary helicity.
The corresponding intertwiners are no longer polynomial, but involve
distributional inverse powers 1/(ep)h+ due to the string integrations.
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Stress-energy tensors

With these intertwiners at hand, one can construct string-localized
stress-energy tensors for massless fields of any helicity, defined on
the Hilbert space of the field strength tensor.

The Weinberg-Witten theorem (assuming strict locality) is evaded.

J. Mund, KHR, B. Schroer: Nucl. Phys. B924 (2017) 699, Phys. Lett.

B773 (2017) 625.

Thus, the coupling of higher-spin quantum matter to gravitational
fields (classical or quantum) can be formulated. The perturbative
theory of this coupling remains to be elaborated.

Optimist’s view (Schroer): Notorious causality problems with such
couplings (Velo-Zwanziger 1969) might be soothed.
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Infinite spin

The massless “infinite spin” representations of the Poincaré group
are special. In this case, even local “field strengths” do not exist
(Yngvason 1970), from which “potentials” could be obtained by
string integration.

Instead, Mund-Schroer-Yngvason (2004) have shown that
intrinsically string-localized fields do exist. Their intertwiners
u(e, p) have to satisfy certain bounds in the complex spacelike
hyperboloid e2 = −1 to ensure local commutativity whenever two
strings are spacelike separated.

M-S-Y gave integral representations for string-localized intertwiners
u(e, p).
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Reminder: Infinite spin

The little group Stab(p0) for massless representations (p2
0 = 0) is

isomorphic to E (2) = SO(2) nR2. If its “translations” R2 are
non-trivially represented, then the unitary repn spaces are L2(κS1),
where the Pauli-Lubanski parameter κ labels inequivalent
representations.

Accordingly, the multiplicity spaces of one-particle states of a fixed
momentum are L2(κS1), and wave fns and intertwiners are functions
of ~k ∈ κS1 (“continuous spin”) with discrete Fourier transform via
k1 + ik2 = κe imϕ (m ∈ Z, “infinite spin”).
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Infinite Spin intertwiners

Köhler (2015) gave explicit expressions for string-localized
intertwiners:

u(e, p)(~k) = e
−i κ

(ep)+︸ ︷︷ ︸
“Köhler factor”

·e−i
(eBpE(~k))

(ep)+ .

Both factors are highly singular at (ep) = 0; but the product is a
bounded function, ie, the Köhler factor absorbs the essential
singularity of the ~k-dependent factor, and provides the bound in the
complex tube that ensures locality.
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Comment

Schuster-Toro (2013) (in a different setting where the intertwiners
are regarded as one-particle wave functions, and the parameter e is
not given a geometric meaning) found the same expression –

without the Köhler factor and without worrying too much about the
essential singularity. Locality is not addressed in their one-particle
setting.
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KHR: JHEP 11 (2017) 130

Theorem:

It is possible to find an infinite system of string-localized

intertwiners u
(r)
µ1...µr (e, p)(~k) that fulfill the completeness relation

∞∑
r=0

(−1)ru(r)
µ1...µr (e, p)(~k)u(r)µ1...µr (e, p)(~k ′) = δκS1(~k − ~k ′).

Thus, the corresponding SET is an infinite sum of Wick squares

T (r) of (derivatives of) tensor fields Φ
(r)
µ1...µr (e, x).

Each T (r) is a string-localized Wightman field, while their sum is
only a quadratic form (finite matrix elements, but divergent
correlation functions).
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Summary

Intrinsic construction of quantum stress-energy tensors on the
Fock space over Wigner’s one-particle representations.

Way around Weinberg-Witten theorem (no SET for massless
fields of higher spin)

First construction of a SET for infinite-spin matter.


