Renormalization and a conjecture of Quillen on determinant lines.

Workshop Mathematics of interacting QFT models, York

Nguyen Viet Dang ${ }^{1}$
${ }^{1}$ Université Lyon 1

Motivation of the talk: copyright to Alex Schenkel.

(1) QFT is a tool to learn something about geometry, e.g. invariants of manifolds via differential geometry, analysis? What QFT has to say about the geometry of space times.
(2) QFT leads to interesting geometric structures that are parametrized by geometric and functional objects?

Motivation of the talk : copyright to Alex Schenkel.

(1) QFT is a tool to learn something about geometry, e.g. invariants of manifolds via differential geometry, analysis? What QFT has to say about the geometry of space times.
(2) QFT leads to interesting geometric structures that are parametrized by geometric and functional objects?

How?

Motivation of the talk: copyright to Alex Schenkel.

(1) QFT is a tool to learn something about geometry, e.g. invariants of manifolds via differential geometry, analysis? What QFT has to say about the geometry of space times.
(2) QFT leads to interesting geometric structures that are parametrized by geometric and functional objects ?

How ? Understand simple things from free quantum fields interacting with external classical fields, how they depend on the external field.

Finally, I am a bad Euclidean guy.

(M, g) closed, compact, connected Riemannian manifold dimension d, volume form $d v, \Delta$ Laplace-Beltrami.
Sequence $\sigma=\left\{0=\lambda_{0}<\lambda_{1} \leqslant \cdots \leqslant \lambda_{k} \rightarrow+\infty\right\}$ and $\left(e_{\lambda}\right)_{\lambda \in \sigma}$ eigenfunctions

$$
\Delta e_{\lambda}=\lambda e_{\lambda} .
$$

Green kernel :

$$
\mathbf{G}(x, y)=\sum_{\lambda \in \sigma, \lambda>0} \lambda^{-1} e_{\lambda}(x) e_{\lambda}(y)
$$

Finally, I am a bad Euclidean guy.

(M, g) closed, compact, connected Riemannian manifold dimension d, volume form $d v, \Delta$ Laplace-Beltrami.
Sequence $\sigma=\left\{0=\lambda_{0}<\lambda_{1} \leqslant \cdots \leqslant \lambda_{k} \rightarrow+\infty\right\}$ and $\left(e_{\lambda}\right)_{\lambda \in \sigma}$ eigenfunctions

$$
\Delta e_{\lambda}=\lambda e_{\lambda} .
$$

Green kernel :

$$
\mathbf{G}(x, y)=\sum_{\lambda \in \sigma, \lambda>0} \lambda^{-1} e_{\lambda}(x) e_{\lambda}(y)
$$

Example (Circle)
\mathbb{S}^{1} constant metric, volume form $d \theta, \Delta=-\partial_{\theta}^{2}$. Spectrum $\sigma=\mathbb{N}^{2}$ and eigenfunctions are usual $(\cos (n x), \sin (n x))_{n \in \mathbb{N}}$.

Euclidean QFT.

(1) Constructive fields : Albeverio, Fröhlich, Gallavotti, Gawedzki, Glimm, Guerra, Jaffe, Kupiainen, Magnen, Nelson, Rivasseau, Seiler, Sénéor, Spencer, Simon, Sokal, Symanzik, Wightman just to name a few and many others.
(2) Euclidean QFT + geometry: Dappiaggi-Drago-Rinaldi, Dimock, Kandel, Pickrell, Segal, Stolz-Teichner...

Example.

Free quantum fields interacting with external fields :

	Free Bosons
Fast	ϕ scalar
Slow	(potential V, metric g)
Operator	$\Delta_{g}+V$
Action	$S(\phi, V, g)=\frac{1}{2} \int_{M} \phi\left(\Delta_{g}+V\right) \phi d v$
Partition f. integrate fast field	$Z_{g}(V)=\int[D \phi] e^{-S(\phi, V, g)}$

Example.

Free quantum fields interacting with external fields :

	Free Bosons
Fast	ϕ scalar
Slow	(potential V, metric g)
Operator	$\Delta_{g}+V$
Action	$S(\phi, V, g)=\frac{1}{2} \int_{M} \phi\left(\Delta_{g}+V\right) \phi d v$
Partition f. integrate fast field	$Z_{g}(V)=\int[D \phi] e^{-S(\phi, V, g)}$

Goal : give a meaning to the functional integrals with emphasis on dependence in slow field.

Cartoon oversimplified picture of TQFT's

Topological Field Theories
closed manifold $M \longmapsto$ partition function $Z(M) \sim \sum_{n=0}^{\infty} \lambda^{n} \underbrace{F_{n}(M)}$.
$F_{n}(M)$ topological invariant independent of C^{∞} structure of M.

Invariants.

Flat space : Belkale-Brosnan, Bogner-Weinzierl show Feynman amplitudes are special numbers i.e. periods. But on curved space, QFT numbers should depend on the metric g and thus could be anything. More structure on M, complex, Riemannian, bundles $E \mapsto M$, how to get invariants of corresponding structures?

Hierarchy of information.

$\underbrace{C^{\infty} \text { Riemannian }}_{C^{\infty} \text { metric }} \subset \underbrace{\text { smooth manifold }}_{C^{\infty} \text { structure }} \subset \underbrace{\text { topological manifold }}_{\text {topology }}$.

Fixed M, metrics, diffeomorphisms and an isometry invariant.

Fixed M smooth compact. Metrics $\operatorname{Met}(M)$: open convex cone in symmetric 2-tensors $C^{\infty}\left(S^{2} T^{*} M\right)$. Diff (M) acts on metrics by pull-back $g \mapsto \varphi^{*} g$.

Fixed M, metrics, diffeomorphisms and an isometry invariant.

Fixed M smooth compact. Metrics $\operatorname{Met}(M)$: open convex cone in symmetric 2-tensors $C^{\infty}\left(S^{2} T^{*} M\right)$. $\operatorname{Diff}(M)$ acts on metrics by pull-back $g \mapsto \varphi^{*} g$.

Definition (polygon Feynman amplitude)
For $V \in C^{\infty}(M, \mathbb{C})$,

$$
\begin{equation*}
c_{n}(g, V)=\int_{M^{n}} \mathbf{G}\left(x_{1}, x_{n}\right) V\left(x_{1}\right) \ldots \mathbf{G}\left(x_{n}, x_{1}\right) V\left(x_{n}\right) d v_{n}\left(g_{n}\right) \tag{1}
\end{equation*}
$$

where $d v_{n}\left(g_{n}\right)$ volume form on $\left(M^{n}, g_{n}\right)$ for g_{n} natural metric on M^{n}.

Fixed M, metrics, diffeomorphisms and an isometry invariant.

Fixed M smooth compact. Metrics $\operatorname{Met}(M)$: open convex cone in symmetric 2-tensors $C^{\infty}\left(S^{2} T^{*} M\right)$. $\operatorname{Diff}(M)$ acts on metrics by pull-back $g \mapsto \varphi^{*} g$.

Definition (polygon Feynman amplitude)
For $V \in C^{\infty}(M, \mathbb{C})$,

$$
\begin{equation*}
c_{n}(g, V)=\int_{M^{n}} \mathbf{G}\left(x_{1}, x_{n}\right) V\left(x_{1}\right) \ldots \mathbf{G}\left(x_{n}, x_{1}\right) V\left(x_{n}\right) d v_{n}\left(g_{n}\right) \tag{1}
\end{equation*}
$$

where $d v_{n}\left(g_{n}\right)$ volume form on $\left(M^{n}, g_{n}\right)$ for g_{n} natural metric on M^{n}.
Claim : if $V=1$ and $c_{n}(g, 1)$ converges then isometry invariant:

$$
\int_{M^{n}}\left(\varphi^{*} \mathbf{G}\right)\left(x_{1}, x_{n}\right) \ldots\left(\varphi^{*} \mathbf{G}\right)\left(x_{n}, x_{1}\right) d v_{n}\left(\varphi^{*} g_{n}\right)=\int_{M^{n}} \mathbf{G}\left(x_{1}, x_{n}\right) \ldots \mathbf{G}\left(x_{n}, x_{1}\right) d v_{n}
$$

Another cartoon.

$$
\text { Riemannian mfd }(M, g), \text { potential } V \stackrel{\text { QFT }}{\longmapsto} Z_{g}(\lambda, V)=\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V: \phi^{2}: d v\right)\right\rangle
$$

where

$$
Z_{g}(\lambda, 1)=\exp \left(\sum_{n \geqslant 2} \frac{(-1)^{n} \lambda^{n}}{2} c_{n}(g, 1)\right)
$$

isometry invariant of metric g i.e. depends only on Riemannian structure.

Another cartoon.

$$
\text { Riemannian mfd }(M, g), \text { potential } V \stackrel{\text { QFT }}{\longmapsto} Z_{g}(\lambda, V)=\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V: \phi^{2}: d v\right)\right\rangle
$$

where

$$
Z_{g}(\lambda, 1)=\exp \left(\sum_{n \geqslant 2} \frac{(-1)^{n} \lambda^{n}}{2} c_{n}(g, 1)\right)
$$

isometry invariant of metric g i.e. depends only on Riemannian structure.
When $\operatorname{dim}(M)=4$, is $Z_{g}(\lambda, V)$ well-defined ?

Another cartoon.

$$
\text { Riemannian mfd }(M, g), \text { potential } V \stackrel{\text { QFT }}{\longmapsto} Z_{g}(\lambda, V)=\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V: \phi^{2}: d v\right)\right\rangle
$$

where

$$
Z_{g}(\lambda, 1)=\exp \left(\sum_{n \geqslant 2} \frac{(-1)^{n} \lambda^{n}}{2} c_{n}(g, 1)\right)
$$

isometry invariant of metric g i.e. depends only on Riemannian structure.
When $\operatorname{dim}(M)=4$, is $Z_{g}(\lambda, V)$ well-defined ? What information on (M, g) contained in $Z_{g}(\lambda, 1)$?

Another cartoon.

$$
\text { Riemannian mfd }(M, g), \text { potential } V \stackrel{\text { QFT }}{\longmapsto} Z_{g}(\lambda, V)=\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V: \phi^{2}: d v\right)\right\rangle
$$

where

$$
Z_{g}(\lambda, 1)=\exp \left(\sum_{n \geqslant 2} \frac{(-1)^{n} \lambda^{n}}{2} c_{n}(g, 1)\right)
$$

isometry invariant of metric g i.e. depends only on Riemannian structure.
When $\operatorname{dim}(M)=4$, is $Z_{g}(\lambda, V)$ well-defined ? What information on (M, g) contained in $Z_{g}(\lambda, 1)$? Two flavors:

- fixed smooth mfd M, question about metric g,
- M has no fixed diffeo type (C^{∞} structure), question about pair (M, g).

Moduli space of metrics.

Fixed M.
Definition (Moduli space of metrics)
$\mathcal{R}(M)=C^{\infty}$ Metrics $\operatorname{Met}(M) / C^{\infty}$ Diffeos $\operatorname{Diff}(M)$.
$[g] \in \mathcal{R}(M)$ called isometry class of metric.

Moduli space of metrics.

Fixed M.
Definition (Moduli space of metrics)
$\mathcal{R}(M)=C^{\infty}$ Metrics $\operatorname{Met}(M) / C^{\infty}$ Diffeos $\operatorname{Diff}(M)$.
$[g] \in \mathcal{R}(M)$ called isometry class of metric.
Group $\operatorname{Diff}(M)$ acts on $\operatorname{Met}(M)$ not free since some metrics have non trivial isometry groups :

$$
\begin{equation*}
\varphi^{*} g=g, \varphi \neq I d \in \operatorname{Diff}(M) . \tag{2}
\end{equation*}
$$

Moduli space of metrics.

Fixed M.
Definition (Moduli space of metrics)
$\mathcal{R}(M)=C^{\infty}$ Metrics $\operatorname{Met}(M) / C^{\infty}$ Diffeos $\operatorname{Diff}(M)$.
$[g] \in \mathcal{R}(M)$ called isometry class of metric.
Group $\operatorname{Diff}(M)$ acts on $\operatorname{Met}(M)$ not free since some metrics have non trivial isometry groups :

$$
\begin{equation*}
\varphi^{*} g=g, \varphi \neq I d \in \operatorname{Diff}(M) . \tag{2}
\end{equation*}
$$

In Alex Schenkel's talk these are the self-arrows.

Moduli space of metrics.

Moduli space of metrics.

Theorem (Ebin 1967, Fischer 1970, Bourguignon 1975)
(1) $\mathcal{R}(M)$ endowed with quotient topology is Hausdorff and distance \mathbf{d}.
(2) $\mathcal{R}(M)$ not manifold but rather an orbifold whose regular points $\mathcal{G}(M)$ are isometry classes of metrics $[\mathrm{g}]$ having no isometries.
(0) $\mathcal{G}(M)$ is open dense in $\mathcal{R}(M)$ and has C^{∞}-manifold structure.

Moduli space of metrics.

Theorem (Ebin 1967, Fischer 1970, Bourguignon 1975)
(1) $\mathcal{R}(M)$ endowed with quotient topology is Hausdorff and distance \mathbf{d}.
(2) $\mathcal{R}(M)$ not manifold but rather an orbifold whose regular points $\mathcal{G}(M)$ are isometry classes of metrics [g] having no isometries.
(3) $\mathcal{G}(M)$ is open dense in $\mathcal{R}(M)$ and has C^{∞}-manifold structure.

Concretely : $\left[g_{i}\right] \rightarrow[g] \in \mathcal{R}(M)$ if there is a sequence of representative $g_{i} \rightarrow g$ in C^{∞}.

Moduli space of metrics.

Theorem (Ebin 1967, Fischer 1970, Bourguignon 1975)
(1) $\mathcal{R}(M)$ endowed with quotient topology is Hausdorff and distance \mathbf{d}.
(2) $\mathcal{R}(M)$ not manifold but rather an orbifold whose regular points $\mathcal{G}(M)$ are isometry classes of metrics [g] having no isometries.
(0) $\mathcal{G}(M)$ is open dense in $\mathcal{R}(M)$ and has C^{∞}-manifold structure.

Concretely : $\left[g_{i}\right] \rightarrow[g] \in \mathcal{R}(M)$ if there is a sequence of representative $g_{i} \rightarrow g$ in C^{∞}.
Moduli space $\mathcal{M g}_{g}$ from string theory is orbifold because mapping class group does not act freely.

Subsets of $\mathcal{R}(M)$.

For $0<\varepsilon<1, \mathcal{R}(M)_{\left[-\varepsilon^{-1},-\varepsilon\right]}$ moduli space of metrics whose sectional curvatures are contained in $\left[-\varepsilon^{-1},-\varepsilon\right]$.

Subsets of $\mathcal{R}(M)$.

For $0<\varepsilon<1, \mathcal{R}(M)_{\left[-\varepsilon^{-1},-\varepsilon\right]}$ moduli space of metrics whose sectional curvatures are contained in $\left[-\varepsilon^{-1},-\varepsilon\right]$.

Example
$d=2$ Riemann surface $g \geqslant 2 . d=3$ Many hyperbolic 3-manifolds...

Subsets of $\mathcal{R}(M)$.

For $0<\varepsilon<1, \mathcal{R}(M)_{\left[-\varepsilon^{-1},-\varepsilon\right]}$ moduli space of metrics whose sectional curvatures are contained in $\left[-\varepsilon^{-1},-\varepsilon\right]$.

Example
$d=2$ Riemann surface $g \geqslant 2 . d=3$ Many hyperbolic 3-manifolds...
Singular stratum $\partial \mathcal{G} \subset \mathcal{R}(M)$ of metric classes [g] admitting isometries. Then

$$
\mathcal{G}_{\geqslant \varepsilon}=\{[g] \in \mathcal{G} \text { s.t. } \mathbf{d}([g], \partial \mathcal{G}) \geqslant \varepsilon\} .
$$

Renormalized partition function

Proposition
$2 \leqslant d \leqslant 4, \varepsilon>0, \phi_{\varepsilon}=e^{-\varepsilon \Delta} \phi$ heat regularized GFF. : $\phi_{\varepsilon}^{2}(x):=\phi_{\varepsilon}^{2}(x)-\left\langle\phi_{\varepsilon}^{2}(x)\right\rangle$ and the renormalized partition functions :
$Z_{g}(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}}\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V(x): \phi_{\varepsilon}^{2}(x): d v\right)\right\rangle, d=(2,3)$,
$Z_{g}(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}}\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V(x): \phi_{\varepsilon}^{2}(x): d v-\frac{\lambda^{2} \int_{M} V^{2}(x) d v}{64 \pi^{2}}|\log (\varepsilon)|\right)\right\rangle, d=4$.

Renormalized partition function

Proposition

$2 \leqslant d \leqslant 4, \varepsilon>0, \phi_{\varepsilon}=e^{-\varepsilon \Delta} \phi$ heat regularized GFF. : $\phi_{\varepsilon}^{2}(x):=\phi_{\varepsilon}^{2}(x)-\left\langle\phi_{\varepsilon}^{2}(x)\right\rangle$ and the renormalized partition functions :

$$
\begin{aligned}
& Z_{g}(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}}\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V(x): \phi_{\varepsilon}^{2}(x): d v\right)\right\rangle, d=(2,3) \\
& Z_{g}(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}}\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V(x): \phi_{\varepsilon}^{2}(x): d v-\frac{\lambda^{2} \int_{M} V^{2}(x) d v}{64 \pi^{2}}|\log (\varepsilon)|\right)\right\rangle, d=4 .
\end{aligned}
$$

For small $|\lambda|,\|V\|_{\infty}$:

$$
\begin{equation*}
Z_{g}(\lambda, V)=\exp \left(P(\lambda, V)+\sum_{n>\frac{d}{2}} \frac{(-1)^{n} c_{n}(g, V) \lambda^{n}}{2 n}\right) \tag{3}
\end{equation*}
$$

Renormalized partition function

Proposition
$2 \leqslant d \leqslant 4, \varepsilon>0, \phi_{\varepsilon}=e^{-\varepsilon \Delta} \phi$ heat regularized GFF. : $\phi_{\varepsilon}^{2}(x):=\phi_{\varepsilon}^{2}(x)-\left\langle\phi_{\varepsilon}^{2}(x)\right\rangle$ and the renormalized partition functions :
$Z_{g}(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}}\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V(x): \phi_{\varepsilon}^{2}(x): d v\right)\right\rangle, d=(2,3)$,
$Z_{g}(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}}\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V(x): \phi_{\varepsilon}^{2}(x): d v-\frac{\lambda^{2} \int_{M} V^{2}(x) d v}{64 \pi^{2}}|\log (\varepsilon)|\right)\right\rangle, d=4$.
For small $|\lambda|,\|V\|_{\infty}$:

$$
\begin{equation*}
Z_{g}(\lambda, V)=\exp \left(P(\lambda, V)+\sum_{n>\frac{d}{2}} \frac{(-1)^{n} c_{n}(g, V) \lambda^{n}}{2 n}\right) \tag{3}
\end{equation*}
$$

and Z_{g}^{-2} extends as entire function on \mathbb{C} with zeroes in $-\sigma\left(V \Delta^{-1}\right)$.

Renormalized partition function

Proposition

$2 \leqslant d \leqslant 4, \varepsilon>0, \phi_{\varepsilon}=e^{-\varepsilon \Delta} \phi$ heat regularized GFF. : $\phi_{\varepsilon}^{2}(x):=\phi_{\varepsilon}^{2}(x)-\left\langle\phi_{\varepsilon}^{2}(x)\right\rangle$ and the renormalized partition functions :
$Z_{g}(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}}\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V(x): \phi_{\varepsilon}^{2}(x): d v\right)\right\rangle, d=(2,3)$,
$Z_{g}(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}}\left\langle\exp \left(-\frac{\lambda}{2} \int_{M} V(x): \phi_{\varepsilon}^{2}(x): d v-\frac{\lambda^{2} \int_{M} V^{2}(x) d v}{64 \pi^{2}}|\log (\varepsilon)|\right)\right\rangle, d=4$.
For small $|\lambda|,\|V\|_{\infty}$:

$$
\begin{equation*}
Z_{g}(\lambda, V)=\exp \left(P(\lambda, V)+\sum_{n>\frac{d}{2}} \frac{(-1)^{n} c_{n}(g, V) \lambda^{n}}{2 n}\right) \tag{3}
\end{equation*}
$$

and Z_{g}^{-2} extends as entire function on \mathbb{C} with zeroes in $-\sigma\left(V \Delta^{-1}\right)$.
See also Dappiaggi-Drago-Rinaldi.

nice

Main result heuristics.

Random variable X given by probability distribution μ or Fourier-Laplace transform of μ.

Main result heuristics.

Random variable X given by probability distribution μ or Fourier-Laplace transform of μ.

When $d=(2,3)$, Riemannian rigidity in negative curvature where fluctuations of $\int_{M}: \phi^{2}(x): d v$ are encoded by probability distribution of random variable $\int_{M}: \phi^{2}(x): d v$ or partition function Z_{g}.

Wick square also in Fewster-Hollands, Sanders, Dappiaggi-Drago-Rinaldi, Moretti

Main result heuristics.

Random variable X given by probability distribution μ or Fourier-Laplace transform of μ.

When $d=(2,3)$, Riemannian rigidity in negative curvature where fluctuations of $\int_{M}: \phi^{2}(x): d v$ are encoded by probability distribution of random variable $\int_{M}: \phi^{2}(x): d v$ or partition function Z_{g}.

Wick square also in Fewster-Hollands, Sanders, Dappiaggi-Drago-Rinaldi, Moretti
When $d=4, \int_{M}: \phi^{2}(x): d v$ no longer random variable! Only renormalized Z_{g} well-defined and similar rigidity result fixing Z_{g}.

Corollary of main results.

$d=4, N$ finite dimensional submfd of $\mathcal{G} \subset \mathcal{R}(M)$. Choose $\varepsilon \in(0,1)$,

Corollary of main results.

$d=4, N$ finite dimensional submfd of $\mathcal{G} \subset \mathcal{R}(M)$. Choose $\varepsilon \in(0,1)$,

$$
[g] \in N \cap \mathcal{R}(M)_{\left[-\varepsilon^{-1},-\varepsilon\right]} \longmapsto \underbrace{\left(c_{3}(g), c_{4}(g), \ldots, c_{n}(g), \ldots\right) \in \mathbb{R}^{\mathbb{N}}}_{\text {sequence Feynman amplitudes are local coordinates }} .
$$

Corollary of main results.

$d=4, N$ finite dimensional submfd of $\mathcal{G} \subset \mathcal{R}(M)$. Choose $\varepsilon \in(0,1)$,

$$
[g] \in N \cap \mathcal{R}(M)_{\left[-\varepsilon^{-1},-\varepsilon\right]} \longmapsto \underbrace{\left(c_{3}(g), c_{4}(g), \ldots, c_{n}(g), \ldots\right) \in \mathbb{R}^{\mathbb{N}}}_{\text {sequence Feynman amplitudes are local coordinates }} .
$$

Sequence $\left(M_{i}, g_{i}\right)_{i}$ with given Z_{g} plus condition on curvature. \exists finite number of manifolds $\left(M_{1}^{\prime}, \ldots, M_{k}^{\prime}\right)$ and on each M_{j}^{\prime} a compact family of metrics \mathcal{M}_{j}^{\prime} such that each of the manifolds M_{j} is diffeomorphic to one of the M_{i}^{\prime} and isometric to an element of \mathcal{M}_{i}^{\prime}.

Main result, dim $(2,3)$.

Theorem (D 2019)
(1) N finite dimensional submfd of $\mathcal{G} \subset \mathcal{R}(M)$ s.t. $\partial N \subset \partial \mathcal{G}$. $\forall \varepsilon>0$, the set of classes of metrics $[g] \in N \cap \mathcal{R}(M)_{\leqslant-\varepsilon} \cap \mathcal{G}_{\geqslant \varepsilon}$ s.t. $\int_{M}: \phi^{2}(x): d v$ has given probability distribution is finite.
(2) When $d=2$, the genus and diffeo type determined.
(0) When $d=3$, for a sequence $\left(M_{i}, g_{i}\right)_{i \in \mathbb{N}}$ of Riemannian 3-mfds of negative curvature s.t. $\int_{M}: \phi^{2}(x): d v$ has given probability distribution, $\left(M_{i}\right)_{i}$ contains finitely many diffeo types and one can extract a subsequence s.t. M_{i} has fixed diffeo type and $g_{i} \rightarrow g$.

Main result, dim 4

Theorem (D 2019)
(1) N finite dimensional submfd of $\mathcal{G} \subset \mathcal{R}(M)$ s.t. $\partial N \subset \partial \mathcal{G}$. $\forall \varepsilon \in(0,1)$, the set of classes of metrics $[g] \in N \cap \mathcal{R}(M)_{\left[-\varepsilon^{-1},-\varepsilon\right]} \cap \mathcal{G} \geqslant \varepsilon$ with given partition function Z_{g} is finite.
(2) For a sequence $\left(M_{i}, g_{i}\right)_{i \in \mathbb{N}}$ of Riemannian 4-mfds of negative curvature bounded in some compact interval s.t. Z_{g} is given, $\left(M_{i}\right)_{i}$ contains finitely many diffeo types and one can extract a subsequence s.t. M_{i} has fixed diffeo type and $\left(M_{i}, g_{i}\right) \rightarrow(M, g)$.

Chiral fermions.

Example (Chiral fermions coupled to external YM) Chiral fermions on \mathbb{S}^{4} coupled to external $Y M$ potential $\left(A_{\mu}\right)_{\mu}$.

$$
\begin{equation*}
D_{A}=i \sigma^{\mu}\left(\nabla_{\mu}+e A_{\mu}\right) \tag{4}
\end{equation*}
$$

where σ_{μ} obey the Weyl algebra $\sigma_{\mu} \sigma_{\nu}^{\dagger}+\sigma_{\nu} \sigma_{\mu}^{\dagger}=2 \delta_{\mu \nu}$.

Chiral fermions.

Example (Chiral fermions coupled to external YM)
Chiral fermions on \mathbb{S}^{4} coupled to external $Y M$ potential $\left(A_{\mu}\right)_{\mu}$.

$$
\begin{equation*}
D_{A}=i \sigma^{\mu}\left(\nabla_{\mu}+e A_{\mu}\right) \tag{4}
\end{equation*}
$$

where σ_{μ} obey the Weyl algebra $\sigma_{\mu} \sigma_{\nu}^{\dagger}+\sigma_{\nu} \sigma_{\mu}^{\dagger}=2 \delta_{\mu \nu}$.

Example (Quillen 1985)
Hermitian bundle $B \mapsto M$ on Riemann surface. Affine space

$$
\begin{equation*}
\mathcal{A}=\bar{\partial}+\omega, \omega \in \Omega^{0,1}(M, \operatorname{End}(B)) \tag{5}
\end{equation*}
$$

parametrizes complex structures on B hence $E_{+}=B, E_{-}=\Lambda^{0,1} T^{*} M \otimes B$.

Example.

	Chiral Fermions
Fast	$\left(\Psi_{ \pm}\right)$spinor
Slow	(gauge potential A, metric g)
Operator	$\underbrace{D+A}$
twisted Dirac	

Example.

	Chiral Fermions
Fast	$\left(\Psi_{ \pm}\right)$spinor
Slow	(gauge potential A, metric $g)$
Operator	$\underbrace{D+A}$
Actisted Dirac	

Goal : give a meaning to the functional integrals with emphasis on dependence in slow field.

General framework

Chiral Dirac $D: C^{\infty}\left(E_{+}\right) \mapsto C^{\infty}\left(E_{-}\right)$on pair $E_{ \pm}$of Hermitian bundles s.t. $\operatorname{Ind}(D)=0, \operatorname{ker}(D)=\{0\}$ and $D^{*} D: C^{\infty}\left(E_{+}\right) \mapsto C^{\infty}\left(E_{+}\right)$generalized Laplacian. Affine space :

$$
\begin{equation*}
\mathcal{A}=D+C^{\infty}\left(\operatorname{Hom}\left(E_{+}, E_{-}\right)\right) \tag{6}
\end{equation*}
$$

of perturbations of D.

Fermions and Quillen Det line bundle.

Chiral Dirac operator acts on spinors of different chirality.

Fermions and Quillen Det line bundle.

Chiral Dirac operator acts on spinors of different chirality. $(E, F) \operatorname{dim}<+\infty, T: E \mapsto F$ invertible, meaning of $\operatorname{det}(T)$? How to get Numbers?

Fermions and Quillen Det line bundle.

Chiral Dirac operator acts on spinors of different chirality. $(E, F) \operatorname{dim}<+\infty, T: E \mapsto F$ invertible, meaning of $\operatorname{det}(T)$?
How to get Numbers?
For every pair $\operatorname{vol}(E)$, vol (F), ratio $\frac{T_{*} \operatorname{vol}(E)}{\operatorname{vol}(F)}$ hence determinant line $\simeq \frac{\Lambda^{\text {top }}(E)}{\Lambda^{\text {top }}(F)}$.

Fermions and Quillen Det line bundle.

Chiral Dirac operator acts on spinors of different chirality. $(E, F) \operatorname{dim}<+\infty, T: E \mapsto F$ invertible, meaning of $\operatorname{det}(T)$?
How to get Numbers?
For every pair $\operatorname{vol}(E)$, $\operatorname{vol}(F)$, ratio $\frac{T_{*} \operatorname{vol}(E)}{\operatorname{vol}(F)}$ hence determinant line $\simeq \frac{\Lambda^{\text {top }}(E)}{\Lambda^{\operatorname{top}}(F)}$. Recall affine space \mathcal{A} of perturbations $D_{A}=D+A$ of some fixed Dirac D. Quillen (1985) constructed holomorphic line bundle $\mathcal{L} \mapsto \mathcal{A}$ in Cauchy-Riemann case generalized by Bismut-Freed (1986) to families of Dirac operators.

Fermions and Quillen Det line bundle.

Chiral Dirac operator acts on spinors of different chirality. $(E, F) \operatorname{dim}<+\infty, T: E \mapsto F$ invertible, meaning of $\operatorname{det}(T)$?
How to get Numbers?
For every pair $\operatorname{vol}(E)$, vol (F), ratio $\frac{T_{*} \operatorname{vol}(E)}{\operatorname{vol}(F)}$ hence determinant line $\simeq \frac{\Lambda^{\text {top }}(E)}{\Lambda^{\text {top }}(F)}$. Recall affine space \mathcal{A} of perturbations $D_{A}=D+A$ of some fixed Dirac D. Quillen (1985) constructed holomorphic line bundle $\mathcal{L} \mapsto \mathcal{A}$ in Cauchy-Riemann case generalized by Bismut-Freed (1986) to families of Dirac operators.

April 30,1984
According to flora the BRS analysis of Anomalies can be unolerstand in the case, where the gauge field is troated as an external field, and only the fermion field is a quantum field.

Consider then the guadsatc Lagrangian $\tilde{\psi} \varnothing_{A} \psi$ where ψ is a "chiral" fermion. Here ∂_{A} stands for half the Dirac operator from + spinors to - priors. functional integrals attached to this Lagrangian are equivalent to things assorisited to the determinant line of ϕ_{A}. More precisely, one gives a meaning to the functional integrals
(*)

$$
\int D \psi D \psi e^{\int \tilde{\psi} \ddot{A}_{A} \psi} \psi \cdots \psi \tilde{\psi} \cdot \psi
$$

by trivializing the determinant line.
Of one expands around a gauge field A_{0} with $\partial_{A_{0}}$ non-smigular the diagrams have only vertices

and the propatgator is given by a geometric series. The infuritios arise from loops. We have

$$
\operatorname{det}\left(\partial_{A}\right)=\operatorname{det}\left(\phi_{A_{0}}\right) \exp \left\{-\sum_{n \geqslant i} \frac{1}{n} \operatorname{tr}\left(k^{n}\right)\right\}
$$

finite value for them.
In renommalijed perturbatur theory there is a technique of adding counterterms to the Lagrangian to remove the infinities. Problem: Explain what there counter terms are in the present sitwation.

Here is an attempt to make seme seuse out of the abowe situation:

Fivist of all we have the determinant aine brendle Dover the sare a of gruge fields A. The furctimal integrals ($*$) are ceninical sections of \mathcal{L}, or better perhaps is to think of ($*$) as linear maps on \mathcal{L}^{-1}, so that pickening a nongero elts of \mathcal{L}_{A}^{-1} gives a meaning to these integrals as numbers.

The issue in making sense of this QFT is just to construct a trwialigation of the determinant line bundle.

Secendly there are the ileas from waiberg's paper on peeudo-particles, which are based in ant the Fredholn determinant theory. These ideas suggent that there complex analytic tivializations of 2 minique up to a Eacter of the form exp [polynomis) on \boldsymbol{A} \}, where the degree is bounded by the trakes which bave to be regularized.

We saw this is true over a Riemaun surface. Here the ambigaity was exp \{lineas froon $a\}$.

$$
\begin{aligned}
& \begin{array}{l}
\text { housed by the presence of } \\
\text { zero modes. However gredholm }
\end{array} \\
& \text { really showed how to represent } \frac{1}{1-7 K} \\
& \text { as the meromorplie ofeyiterction } \frac{\text { col }}{\text { dep }} \text { and } \\
& \text { O have the example of Keimarm surfaces }
\end{aligned}
$$

 grange fields additive should be a principal Hurdle for the additives of polynomial functions of
degree $s d$, where of bounds the traces which have to be regularized. The idea is that near each A we should have a well-definee trivialization of L up to exp of pouch a polynomial.
Moreover wo should hove a flat connection on this bundle.

\mathcal{L} Quillen

Digression on determinants.

Complexity of entire function :

- Order $\rho(f) \geqslant 0$ of f, $\inf \rho$ s.t. $|f(z)| \leqslant A e^{K|z|^{\rho}}$. Controls growth at infinity.
- Divisor of f, set of zeros $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ of f counted with multiplicity. Critical exponents of $\left|a_{n}\right| \rightarrow+\infty$, inf $\alpha>0$ s.t. $\sum_{n} \frac{1}{\left|a_{n}\right|^{\alpha}}<+\infty$.

Digression on determinants.

Complexity of entire function :

- Order $\rho(f) \geqslant 0$ of f, $\inf \rho$ s.t. $|f(z)| \leqslant A e^{K|z|^{\rho}}$. Controls growth at infinity.
- Divisor of f, set of zeros $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ of f counted with multiplicity. Critical exponents of $\left|a_{n}\right| \rightarrow+\infty$, inf $\alpha>0$ s.t. $\sum_{n} \frac{1}{\left|a_{n}\right|^{\alpha}}<+\infty$.

Theorem (Hadamard's factorization Theorem)
a_{n} sequence s.t. $\sum_{n}\left|a_{n}\right|^{-(p+1)}<+\infty$ but $\sum_{n}\left|a_{n}\right|^{-p}=\infty$. Then any entire function s.t. $Z(f)=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ and $\rho(f)=p$ has unique representation :

$$
\begin{equation*}
f(z)=z^{m} e^{P(z)} \prod_{n=1}^{\infty} E_{p}\left(\frac{z}{a_{n}}\right) \tag{7}
\end{equation*}
$$

where P polynomial of deg $p, E_{p}(z)=(1-z) e^{z+\frac{z^{2}}{2}+\cdots+\frac{z^{p}}{p}}$ Weierstrass factor of order p and m vanishing order at 0 .

Digression on determinants.

Complexity of entire function :

- Order $\rho(f) \geqslant 0$ of f, $\inf \rho$ s.t. $|f(z)| \leqslant A e^{K|z|^{\rho}}$. Controls growth at infinity.
- Divisor of f, set of zeros $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ of f counted with multiplicity. Critical exponents of $\left|a_{n}\right| \rightarrow+\infty$, inf $\alpha>0$ s.t. $\sum_{n} \frac{1}{\left|a_{n}\right|^{\alpha}}<+\infty$.

Theorem (Hadamard's factorization Theorem)
a_{n} sequence s.t. $\sum_{n}\left|a_{n}\right|^{-(p+1)}<+\infty$ but $\sum_{n}\left|a_{n}\right|^{-p}=\infty$. Then any entire function s.t. $Z(f)=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ and $\rho(f)=p$ has unique representation :

$$
\begin{equation*}
f(z)=z^{m} e^{P(z)} \prod_{n=1}^{\infty} E_{p}\left(\frac{z}{a_{n}}\right) \tag{7}
\end{equation*}
$$

where P polynomial of deg $p, E_{p}(z)=(1-z) e^{z+\frac{z^{2}}{2}+\cdots+\frac{z^{p}}{p}}$ Weierstrass factor of order p and m vanishing order at 0 .

Finding f with prescribed divisor non unique when critical exponent >0, polynomial ambiguity P

Locality.

Definition (Local polynomial functionals)
$P: A \mapsto P(A), C^{\infty}$, local polynomial functional iff $P(A)=\int_{M} \Lambda\left(j^{k} A(x)\right) d v, d v$ C^{∞} density, Λ polynomial in jets of A. Denote $\mathcal{O}_{\text {loc }}$.

Example
$P(\varphi)=\int_{\mathbb{S}^{1}} \varphi^{4}(\theta) d \theta$.

Reformulation of defining functional integrals.

Find analytic map

$$
A \in C^{\infty}\left(\operatorname{Hom}\left(E_{+}, E_{-}\right)\right) \mapsto \mathcal{R} \operatorname{det}\left(D_{A}\right)
$$

vanishing over $Z=\left\{A\right.$ s.t. $\left.\operatorname{ker}\left(D_{A}\right) \neq 0\right\}$, of minimal order, obtained by local renormalization.
Regularize Ψ by heat operator, set $\Psi_{\varepsilon}=e^{-\varepsilon D^{*} D} \Psi$:

$$
\begin{array}{r}
\exists \text { local counterterm } P_{\varepsilon} \in \mathcal{O}_{\text {loc }} \otimes \mathbb{C}\left[\varepsilon^{-\frac{1}{2}}, \log (\varepsilon)\right] \text {, s.t. } \\
\mathcal{R} \operatorname{det}\left(D_{A}\right)=\lim _{\varepsilon \rightarrow 0^{+}} \int[D \bar{\Psi}][D \Psi] e^{\int_{M}\langle\bar{\Psi}, D \Psi\rangle+\left\langle\left\langle\bar{\psi}_{\varepsilon}, A \psi_{\varepsilon}\right\rangle d v-P_{\varepsilon}(A)\right.} .
\end{array}
$$

Classify all solutions.

Local renormalization.

How to ensure that a renormalized determinant \mathcal{R} det comes from local renormalization?

Definition (Axioms)

\mathcal{R} det renormalized determinant on $\mathcal{A}=D+C^{\infty}\left(\operatorname{Hom}\left(E_{+}, E_{-}\right)\right)$if

- \mathcal{R} det vanishes exactly on noninvertible elements
- Complexity order $d+1:\left|\mathcal{R} \operatorname{det}\left(D_{A}\right)\right| \leqslant C e^{K\|A\|_{C_{m}^{d+1}}^{d+}}$ for some norm $\|.\|_{C^{m}}$.
- Local renorm \mathcal{R} det satisfies equation (attributed to Witten by

| Kontsevich-Vishik $):$ | $\delta_{A_{1}} \delta_{A_{2}} \log \mathcal{R} \operatorname{det}\left(D_{A}\right)=\operatorname{Tr}_{L^{2}}\left(D_{A}^{-1} A_{1} D_{A}^{-1} A_{2}\right)$ if |
| :--- | :--- | :--- |
| $\operatorname{supp}\left(A_{1}\right) \cap \operatorname{supp}\left(A_{2}\right)$ disjoint | |

- Smoothness counterterms, wave front of the second derivative is contained in the conormal bundle :

$$
\left(W F\left(\delta^{2} \log \mathcal{R} \operatorname{det}\left(D_{A}\right)\right) \cap T_{d_{2}}^{\bullet} M^{2}\right) \subset N^{*}\left(d_{2} \subset M^{2}\right) .
$$

Identity from Kontsevich-Vishik

Suggestion from Singer (1985).

Observe $D^{*} D_{A}: E_{+} \mapsto E_{+}$elliptic with Laplace type principal symbol.

$$
A \mapsto \operatorname{det}_{\zeta}\left(D^{*} D_{A}\right)=\exp (-\left.\frac{d}{d s}\right|_{s=0} \underbrace{\left.\sum_{\lambda \in \sigma\left(D^{*} D_{A}\right)} \lambda^{-s}\right)}_{\text {spectral zeta }}
$$

Renorm group

Theorem (D 2019)

- Every \mathcal{R} det renormalized by subtraction of local counterterms.
- The zeta determinant $\operatorname{det}_{\zeta}\left(D^{*} D_{A}\right)$ is a renormalized determinant.
- Group $\left(\mathcal{O}_{\text {loc }, \leqslant d},+\right.$) acts freely and transitively on renormalized determinants :

$$
\begin{equation*}
P \in \mathcal{O}_{\text {loc }, \leqslant d} \mapsto \exp (P(A)) \mathcal{R} \operatorname{det}\left(D_{A}\right) . \tag{8}
\end{equation*}
$$

- Bijection : holomorphic trivializations of $\mathcal{L} \simeq$ solutions \mathcal{R} det.

Thanks for your attention!

