Covariant homogeneous nets of standard subspaces

Vincenzo Morinelli, Karl-Hermann Neeb
October 14, 2020
Rindler wedges are fundamental localization regions in AQFT. They are determined by the one-parameter group of boost symmetries fixing the wedge. The algebraic canonical construction of the free field provided by Brunetti-Guido-Longo (BGL) arises from the wedge-boost identification, the BW property and the PCT Theorem. In this paper we generalize this picture in the following way. Firstly, given a $\mathbb Z_2$-graded Lie group we define a (twisted-)local poset of abstract wedge regions. We classify (semisimple) Lie algebras supporting abstract wedges and study special wedge configurations. This allows us to exhibit an analog of the Haag-Kastler one-particle net axioms for such general Lie groups without referring to any specific spacetime. This set of axioms supports a first quantization net obtained by generalizing the BGL construction. The construction is possible for a large family of Lie groups and provides several new models. We further comment on orthogonal wedges and extension of symmetries.

algebraic quantum field theory, nets of standard subspaces, Lie groups, representation theory, Bisognano-Wichmann property