Aspects of noncommutative Lorentzian geometry for globally hyperbolic spacetimes

Valter Moretti
March 26, 2002
Connes' functional formula of the Riemannian distance is generalized to the Lorentzian case using the so-called Lorentzian distance, the d'Alembert operator and the causal functions of a globally hyperbolic spacetime. As a step of the presented machinery, a proof of the almost-everywhere smoothness of the Lorentzian distance considered as a function of one of the two arguments is given. Afterwards, using a $C^*$-algebra approach, the spacetime causal structure and the Lorentzian distance are generalized into noncommutative structures giving rise to a Lorentzian version of part of Connes' noncommutative geometry. The generalized noncommutative spacetime consists of a direct set of Hilbert spaces and a related class of $C^*$-algebras of operators. In each algebra a convex cone made of self-adjoint elements is selected which generalizes the class of causal functions. The generalized events, called {\em loci}, are realized as the elements of the inductive limit of the spaces of the algebraic states on the $C^*$-algebras. A partial-ordering relation between pairs of loci generalizes the causal order relation in spacetime. A generalized Lorentz distance of loci is defined by means of a class of densely-defined operators which play the r\^ole of a Lorentzian metric. Specializing back the formalism to the usual globally hyperbolic spacetime, it is found that compactly-supported probability measures give rise to a non-pointwise extension of the concept of events.