Skip to main content
Login | Register

Local Quantum Physics Crossroads

An international platform for information exchange among scientists working on
mathematical, conceptual, and constructive problems in
local relativistic quantum physics (LQP).

Navigation

  • Papers
  • Bibliography
  • Events
    • Archive
  • Colloquium
  • Jobs
  • People
  • Help
  • About

Relative Cauchy evolution for linear homotopy AQFTs

Simen Bruinsma, Christopher J. Fewster, Alexander Schenkel
August 24, 2021
algebraic quantum field theory, relative Cauchy evolution, Gauge theory, homotopical algebra, chain complexes, BRST/BV formalism
open access link doi:10.1007/s00220-022-04352-7

Dynamical locality of the free Maxwell field

Christopher J. Fewster, Benjamin Lang
March 27, 2014
dynamical locality, Maxwell field, locally covariant quantum field theory, algebraic quantum field theory, quantum fields in curved spacetimes
open access link doi:10.1007/s00023-015-0398-9

User login

  • Create new account
  • Request new password
Please provide an optional nickname.

Filter: Keyword

  • (-) Remove algebraic quantum field theory filter algebraic quantum field theory
  • BRST/BV formalism (1) Apply BRST/BV formalism filter
  • chain complexes (1) Apply chain complexes filter
  • dynamical locality (1) Apply dynamical locality filter
  • Gauge theory (1) Apply Gauge theory filter
  • homotopical algebra (1) Apply homotopical algebra filter
  • locally covariant quantum field theory (1) Apply locally covariant quantum field theory filter
  • Maxwell field (1) Apply Maxwell field filter
  • quantum fields in curved spacetimes (1) Apply quantum fields in curved spacetimes filter
  • relative Cauchy evolution (1) Apply relative Cauchy evolution filter

Filter: Author

  • (-) Remove C. J. Fewster filter C. J. Fewster
  • S. Bruinsma (1) Apply S. Bruinsma filter
  • B. Lang (1) Apply B. Lang filter
  • A. Schenkel (1) Apply A. Schenkel filter

Filter: Publication Date

  • 2021 (1) Apply 2021 filter
  • 2014 (1) Apply 2014 filter

Impressum