A soft-photon theorem for the Maxwell-Lorentz system

Wojciech Dybalski, Duc Viet Hoang
August 07, 2019
For the coupled system of classical Maxwell-Lorentz equations we show that the quantities \begin{equation*} \mathfrak{F}(\hat x, t)=\lim_{|x|\to \infty} |x|^2 F(x,t), \quad \mathcal{F}(\hat k, t)=\lim_{|k|\to 0} |k| \widehat{F}(k,t), \end{equation*} where $F$ is the Faraday tensor, $\hat{F}$ its Fourier transform in space and $\hat{x}:=\frac{x}{|x|}$, are independent of $t$. We combine this observation with the scattering theory for the Maxwell-Lorentz system due to Komech and Spohn, which gives the asymptotic decoupling of $F$ into the scattered radiation $F_{\mathrm{sc},\pm}$ and the soliton field $F_{v_{\pm\infty}}$ depending on the asymptotic velocity $v_{\pm\infty}$ of the electron at large positive (+), resp. negative (-) times. This gives a soft-photon theorem of the form \begin{equation*} \mathcal{F}_{\text{sc},+}(\hat{k}) - \mathcal{F}_{\text{sc},-}(\hat{k})= -( \mathcal{F}_{v_{+\infty}}(\hat{k})-\mathcal{F}_{v_{-\infty}}(\hat{k})), \end{equation*} and analogously for $\mathfrak{F}$, which links the low-frequency part of the scattered radiation to the change of the electron's velocity. Implications for the infrared problem in QED are discussed in the Conclusions.

Keywords: 
none